前言:我们精心挑选了数篇优质统计学概率文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。
关键词:概率统计;信息科学;结合
作者简介:付建军(1956,8-),男,汉族,北京交通运输职业学院普通课教研室主任,高级讲师,研究方向:课程开发
数学学科作为所有自然学科的基础,对科学技术的各个领域有着极强的推动作用,而信息科学作为新时代的主流技术,也已经逐渐渗透到人们生产生活的方方面面。当然,二者在发展中还面临着许多的挑战和阻力,对于概率统计与信息科学二者的结合研究,其意义就在于加强学科间的渗透从而给各个学科带来更加广泛的运用,给学科自身发展探究带来便捷。
1简介概率统计与信息科学的发展
1.1关于概率统计学
概率与统计是一门从数量方面研究随机现象规律性的数学学科,概率与统计的概念被广泛运用到各个领域及部门。概率统计学的运用及其广泛,随机事件的研究结果对于当代各类数据分析整合都有着重要的作用。与此同时,概率与统计的学科特点也决定了其研究的难度较大,概率与统计的结论得出往往建立在大量的实验与实践基础上。作为一门应用型数学学科,其广泛性必将为未来科学技术和人们生活水平带来不可估量的影响,而其自身研究条件的局限性,尤其是实验条件的不足,将直接影响到未来自然科学发展,也势必会减慢人类在科技创新之路的发展进程。
1.2关于信息科学
信息科学主要包含信息论、控制论、计算机理论、人工智能理论和系统论,其中,信息论、控制论和系统论在信息科学中占有主要地位,而计算机理论是数学研究中的应用重点。信息科学的兴起直接带领人类走向了信息化时代,对于人类文明的有着不可估量的作用。信息科学发展到今天,其作用已经不仅仅针对于学科本身以及信息行业,在信息化趋于高度发达的今天,将会为人们的生活带来质的飞跃,对于不同的行业领域,都将有信息科学的推动,信息化带来的是未来自动化和智能化的飞速前进。而信息科学自身也在不断地发展完善,数学学科作为自然科学的基础理论学科,对于信息科学的发展也不例外,只有从基础上进行完善和补充,才能帮助信息科学走上更加成熟更加美好的未来之路。
2信息科学与概率统计学的内在联系
在信息科学已经逐步成熟的今天,其所包含的各项技术已经为人们的生活带来了更加智能化、便捷化的体验。当然,信息科学是建立在数学基础上的学科,其技术须有数学理论、数学方法的支持与论证。[1]概率统计对于现代数学更有着重要的意义,其所涉及的随机规律的研究将更加符合生产生活的需求,而随机规律的运用在信息科学中体现的更淋漓尽致,信息科学的大多数结果都需要建立在庞大计算与实践的基础上,这就需要对结果的普遍性进行概率与统计的研究分析,同样,对于概率统计学科的发展,信息科学能够很大程度的减少研究过程的繁冗,加速概率统计学的发展和进步。由此可见,这两个科学领域存在紧密的内在联系,将概率统计与信息科学整合研究对于其自身发展以及整个应用型科学的发展都有着重要的意义。
3信息科学与概率统计学的整合策略
3.1重视对二者探究观念的结合
信息科学的发展带来了许多先进的生产技术,将其应用于概率学的研究探讨可以带来事半功倍的效果,而如何将二者更加紧密的结合在一起,创造出更大的社会价值,首先就要要求在思想观念上将概率统计学与信息科学联系起来。例如,在对于概率统计的研究或者论证中,根据其研究特点将概率统计中的数学模型抽象出来,针对其特点进行信息化的整合,力求将繁冗的步骤简化,减少人力物力的过度消耗。同样,对于信息科学,要在对其先进性进行发展改进时考虑到概率统计的运用,利用概率与统计的结果和普遍性规律对信息科学技术进行改良与进化,使得信息科学在实际中的应用更具有合理性。科学具有广泛的共同性,并且都不是单一存在的,只有建立起学科间穿插研究、互相渗透的观念,才能在科学技术的发展进程中更大程度的的实现多样化,挖掘出自然科学更大的潜力。[2]
3.2重视将整合后的理论用于实践
理论是实践的基础,而实践才使得理论具有意义,这句话对于各个领域,尤其是自然科学的探究上有着重要的意义。对于概率统计与信息科学的渗透发展,仅仅局限于“敢想”是不够的,在充分的思考后,要将想法勇于实践才能真正的实现二者的结合发展。而如何将理论用于实践,不知是需要专业知识的支持,还需要对环境因素、人为操作因素、结果预估等等进行全方位的统计,在推行到实践的过程中,始终保持科学严谨的态度,把控每一个环节,抓好每一个细节,才能更好的将理论运用于实践中去,才能赋予学科间渗透结合更完整的意义。
3.3重视对实践结果的推广
成熟的技术需要进行推广才能创造更大的效益,众所周知,概率统计学的研究过程面临着庞大的实验数据,要将这些数据分析并不是人力所能承受的,这就需要在对此学科的研究中大力推行计算机科学以及信息科学的技术。将二者充分的结合渗透,研究出兼具科学性、合理性和操作性的技术模式,为研究人员、教师和学生都创造出极大的便利,也为其自身技术水平的先进化和自然科学的整体发展水平提升做出了杰出贡献。
4结束语
概率统计学发展至今,其所研究的随机规律已经带给了人们许多便利,为人们的生产生活创造了可观的经济效益,信息科学也是如此。在时代的要求下,二者的结合渗透已经成为了突破自身发展瓶颈的必要途径,加强二者在研究观念上的结合、在实践应用中的结合、在技术推广上的结合将会在未来创造出更加优异的成绩。当然,在二者的结合发展中还将会面临各种各样的难题,要努力将专业知识与实践经验结合在一起,多角度的考虑问题,解决问题,势必会为科学的进步添上其浓墨重彩的一笔。
参考文献
[1]曾祥霖,张绍文.论信息技术与课程整合的内涵层次和基础[J].电化教学研究,2012,1l.
通过在国防科学技术大学举行的“应用数学”研究生暑期学校的学习,对信息领域的概率统计学课程教学得到两点启发:一方面是对重要概念的统一化抽象,另一方面是结合授课学校的实际背景。并且在教学过程中注重“学以致用”,会使教学效果事半功倍。
关键词:
信息领域;概率统计学;教学研究
2012年7月国家自然科学基金委数学天元基金委员会举办的“应用数学”研究生暑期学校在国防科学技术大学举行,该暑期学校以“信息处理”为主题,邀请应用数学领域知名专家进行专题讲学。我有幸参加了该暑期学校的学习,获益良多。我所在的大学被喻为“信息领域的黄埔军校”,近年越来越重视概率统计学课程的教育。如何结合学校学科特点更好的把概率统计思想传递给学生,通过参加完该暑期学校的学习,有了一些体会。
1两点启发
1.1重要概念的统一化抽象由于我在学校主要讲授概率统计系列课程,所以对四川大学的马洪教授主讲的《信息处理中的统计学》很感兴趣,马老师旺盛的经历和风趣幽默的授课方式深受我们的喜爱,他所讲的内容中有两点让我深受启发,第一点:重要概念的统一化抽象。正如马老师一直强调“数学最重要的是提炼”。例如:如下的随机变量、随机向量、随机序列、随机过程重要概念可以统一化讲解。是研究“概率可测空间”到“不可数无穷维实可测空间”的“可测映射”。
1.2结合授课学校的实际背景如果说上面的内容对工科学生们有些晦涩,那么结合他们熟悉的专业课来学习概率统计,可能就让他们倍感亲切了,深受启发的第二点:结合信息领域的实际背景,比如滤波器、放大器等内容与概率统计课程的对接。信息领域的工科学生会学习电子信息方面的两门重要基础课程:《数字信号处理》与《信息与系统》,《数字信号处理》是“与概率统计对接的窗口”,打开“接口通道铁门”的“钥匙”是“泛函分析”[1][2]。例如:从滤波角度来看,很多统计学的重要理论对应于滤波。电子专业上的“滤波”就是概率统计中的“估计理论”。具体的来讲:统计中的最大后验概率准则对应于“MAP滤波”,最小均方误差准则对应于“MMSE滤波”,最大信噪比准则对应于“MaxSNR滤波”,极大似然准则对应于“ML滤波”,最小二乘准则对应于“LS滤波”。例如:在《随机过程》课程,授课到“谱分析”时,需要用到“Fourier变换”,数学中的Fourier变换与信号处理的一些内容有如下相应的对照。Fourier变换的性质是信号频谱分析的理论基础。①线性性:设f,g的Fourier变换存在,c1,c2是常数,则F[c1f+c2g]=c1F[f]+c2F[g]重要应用:线性叠加信号的频谱等于信号频谱的线性叠加②位移性质:时移性重要应用:信号时延不改变其频谱特性(多径信号频谱特性相同)。频移性重要应用:信号调制!(上变频:无线通信发射机原理!)③微分性质:重要应用:信号处理(高频放大器);概率论(求高阶矩;化积分为求导)。④积分性质:重要应用:信号处理(低频放大器);数学(简化运算:“时域上求积分”转换成“频域上作除法”)。⑤卷积性质:体现滤波器原理。重要应用:“时域上求卷积”转换成“频域上作乘积”!
2培养学生学以致用
通过本次学习,还接触了一些新领域的知识,例如“分数阶微积分”的研究,求函数的1/2阶导数?这方面的研究带来了“微分方程的变革”,现在大学所学的微积分只是其特例。1695年,微积分创始人莱布尼兹在与洛比达通信中提出了“分数阶微积分”,但是这个工作没有继续进行,他们不缺智慧,而缺运气,原因是他们生活的时代科技发展没有相应的直观需求。而最近二三十年,在物理、化学、生物学领域产生了这种需求,这方面的研究现在受到了很多研究者的关注。可见科学的生长力总是与实际应用相辅相成的。基于此,我在日常授课中非常注重对学生“学以致用”能力的培养,以下以《多元统计分析》课程为例简介一下授课内容。
在《多元统计分析》课程学习的过程中,注重“从数据到结论”的实证分析能力培养。培养学生应用概率统计的意识和兴趣,逐步提高学生的应用能力是概率统计课程教学改革的重要方向。我们根据选课人数分成兴趣小组,以小组为单位留大作业,鼓励大家查找资料、编程、实证分析。处理实际数据,分析解决实际问题的能力。教会学生至少会使用一种统计软件,常见统计软件有:SPSS、SAS、S-Plus、R、Eviews等。为了培养学生的实证分析能力,作业采用大作业方式留给学生,例如:在学习“多元统计图形的表示”时,让学生对某社会热点研究问题绘制散点图、脸谱图、雷达图、轮廓图、星族图。在学习“多元分布数字特征及估计”时,由于此阶段教学内容抽象,俗话说:“读万卷书不如行万里路”。故安排采风作业:参观国家统计局统计资料馆,介绍了国家统计局资料馆行车路线、开放时间、馆藏等内容。从官方层面上了解我国统计工作建设,统计资料的收集情况。
3结术语
我国高等教育迅速发展,已由“精英教育”转入了“大众化教育”阶段,随之而来的是对高等教育质量的忧思和批判。提高教学质量,是广大数学教师迫切关心的问题。“真正的教学效果,并不是看教师教了多少,而是要看学生学到了多少。”
参考文献:
[1]马洪.信息处理中的统计学[C].2012年国家自然科学基金委数学天元基金委员会“应用数学”会议资料,2012.
一、统计与概率的内涵的进一步认
数据能够帮助我们认识世界、做出决策和预测,而统计正是与数据打交道的科学,它是在人们对现实生活中数据资料的收集、整理、分析的过程中发展起来的。
(1)紧密联系学生生活实际,创设情境。有了这样的情感学生学起数学知识来当然是事半功倍了。例如:“分苹果”的情境创设,动手操作,激发了学生提出问题,解决问题的欲望,让学生在情境中感受、理解数学问题。再如:圆的周长的实际测量,也练习了学生的动手操作。
(2)在课堂上让学生充分交流讨论。在民主、和谐的氛围中开拓思维,积极参与,充分合作。教师适时地参与到学生的讨论和交流当中,较好地扮演了组织者、参与者、合作者的角色。
(3)运用丰富多彩的课堂教学手段。随着科技的进步和发展,我们的课堂也要跟上时代的潮流改变传统的一支粉笔进课堂,这两节数学课让我增长了很多见识,随着一个个课件的展示,本来很难理解的数学难题变得形象、具体,一个个教学难点也随之被攻破。课堂也显得生动活泼了很多。如果有条件我们也要丰富我们的课堂,提高课堂的教学效率。
(4)引用《不列颠百科全书》对统计学的一个定义。《不列颠百科全书》对统计学的一个定义:“统计学是关于收集和分析数据的科学和艺术”。我认为定义中有三个比较关键的核心词,第一个是数据。“数据”和“数”的最重要的区别是数据是具有实际背景的,而“数”则并不一定。从这个意义上我们就可以理解了为什么说可以把“统计”从过去我们认为的“数的运算”中单独出来,成为一个相对独立的学习领域,统计主要作用正是通过数据处理来提取信息从而帮助人们进行决策。进一步,“随着信息高速的增长,我们需要进一步扩大对数据的认识。事实上,现在的数据不仅仅是数,其实图像也可以看成是数据、语句也可以看成是数据。只要蕴含着一定信息的,无论是什么表现形式,都可以看作是数据”。
二、教学当中概念的处理方法
在教学中,我们应该首先注重学生统计观念的形成与培养。能从统计的角度思考与数据信息有关的问题;能通过收集数据、描述数据、分析数据的过程,作出合理的决策,认识到统计对决策的作用;能对数据的来源、处理数据的方法以及由此得到的结论进行合理的质疑。收集整理养出来的感觉,统计学习要培养学生能自觉地想到运用统计的方法解决有关的问题。学生没有经历数据的收集过程,随机的数据对他们来说还是确定的,学生也就根本无从体会统计思想方法的价值。因此必须创设原始的随机情境,突出活动性,让学生亲身面对实际问题,亲自调查、收集数据,先体会随机数据的不确定、杂乱无章,然后组织学生经历数据的分类整理,凸现随机数据的特点。在这样的教学情形下,学生才深深地领悟到统计思想确实很有用。
我们还要注重学生在概率实验中的操作体验。教学中应以学生亲身经历和体验统计过程作为主线,即对数据从收集、整理、描述到分析、运用的全过程中突出学生的主体参与,再此过程中引导学生发现并提出问题,用适当的方法收集和整理数据,用合适的图表展示数据,对数据作简单的分析并对自己的分析、思考进行交流和改进。由于处理数据没有唯一的样式,在统计过程中,不同情况下、不同的学生会用不同的方法来记录和表示数据。因此,引导学生经历数据处理过程的教学具有很强的探索性。
三、如何介绍收集和数据的分析和运用
统计处理数据的步骤主要包括:第一是要确定需要解决什么问题;第二是决定收集数据的方法并收集数据;第三是整理并尽可能清晰地描述数据;第四是分析数据,并做出决策和推断。统计学有着它科学的一面,但也有艺术的一面。对于同样的数据,由于背景和目标不同可以有多种分析的方法,需要根据问题的实际背景选择合适的方法。也就是统计的方法没有简单的理论意义上的对和错,只有好和不好。
统计在收集数据和运用数据做出推断等方面吸收了概率的主要成果和主要方法,产生了以抽样为特征的数学与概率论的统计学。数理统计学是运用统计的方法来研究随机现象、从而描述随机现象总体趋势的数学模型,它不会把注意力停留在个别的现象特征上,而是了解大量随机现象的总体的变化趋势,并由此得出随机现象的基本统计规律,进而得到关于社会发展、科学发现的统计预测。
最后,我们再概括地分析一下统计与概率的关系。实际上,众所周知,统计与概率都是研究随机现象的学科。“不论怎么说,机遇(或说偶然性)无所不在,机遇伴随着人的一生(当然随人的情况而有异),这是一个无法回避的现实”。统计与概率正是从不同的角度来研究怎样更好的刻画随机现象,统计主要侧重于从数据来刻画随机,概率则主要侧重于建立理论模型来刻画随机。另一方面,概率为统计提供了理论基础。在运用样本估计总体的过程中,抽样的合理性、样本推断总体的合理性,包括犯错误的风险,都需要概率的知识来提供科学依据(这在下文还要论述)。“‘机遇(机会)的数学’,它包含数学中的两个学科分支——概率论和数理统计学。概括来说就是,前者属于机遇数量化的理论基础。而后者则是其应用。”
四、统计与概率课程的教育价值
由上一段内容我们可以看出,统计的关键是客观地提炼和表述现实世界中广泛存在的随机信息,准确地分析并把握随机信息中的关键因素的规律性,科学地应用数据并做出正确决策是统计与概率的主要任务,而这也构成了大学阶段学习统计与概率的重要原因。具体来说,学习统计与概率的主要目的是让学生适应现代社会的需要;帮助学生形成和运用数据进行推断的思考方式;有助于学生朝着数学思考、解决问题、情感态度等多方面的发展。
在以信息和技术为基础的现代社会里,生活中充满着大量的数据和随机现象,各种信息量以成倍地速度增长,这时就需要人们面对它们做出合理的决策。事实上,每个人每天都会遇到许多需要判断和推理的事情。总之,生活已先于数学课程将统计与概率推到了学生的面前,统计与概率的思想已渗入人们日常生活和社会生活的方方面面。
许多的例子表明,随着计算机等信息技术的飞速发展,数据日益成为一种重要的信息,21世纪的公民面临着更多的机会和挑战,常常需要在不确定情境中,根据大量无组织的数据,做出合理的决策,这就需要人们能对纷繁复杂的信息做出恰当的选择与判断,具有一定的收集与处理信息、做出决策的能力,并且能够进行有效的表达与交流。而统计与概率正是通过对数据的收集、整理和分析,来为人们更好的制定决策提供依据和建议。因此,要培养学生具有收集并处理数据、做出恰当的选择和判断的能力,以适应现代社会的发展,就必须将统计与概率的基本思想、方法和知识作为义务教育阶段数学课程的重要组成部分。统计与概率的学习必将为数学与学生的日常生活及其他学科联系起来提供一条自然的途径。
参考文献:
[1]教学数学教学策略.张丹
[2]运怀立.概率论的思想与方法.中国人民大学出版社
[3]郝晓斌,董西广.数学建模思想在概率论与数理统计中的应用.经济研究导刊,2010年第16期
[4]刘清梅.统计与概率的思想方法及其联系.考试周刊,2008年第18期
[5]刘琼荪,钟波.将数学建模思想融入工科概率统计教学中.大学数学,2006年22卷第2期