美章网 精品范文 统计学论文范文

统计学论文范文

前言:我们精心挑选了数篇优质统计学论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

统计学论文

第1篇

统计学论文2000字(一):影响民族院校统计学专业回归分析成绩因素的研究论文

摘要:学习成绩是评价学生素质的重要方面,也是教师检验教学能力、反思教学成果的重要标准。利用大连民族大学统计学专业本科生有关数据(专业基础课成绩、平时成绩和回归分析期末成绩),建立多元線性回归模型,对影响回归分析期末成绩的因素进行深入研究,其结果对今后的教学方法改进和教学质量提高具有十分重要的指导意义。

关键词:多元线性回归;专业基础课成绩;平时成绩;期末成绩

为了实现教学目标,提高教学质量,有效提高学生学习成绩是很有必要的。我们知道专业基础课成绩必定影响专业课成绩,而且平时成绩也会影响专业课成绩,这两类成绩与专业课成绩基本上是呈正相关的,但它们之间的关系密切程度有多大?它们之间又存在怎样的内在联系呢?就这些问题,本文主要选取了2016级统计专业50名学生的四门专业基础课成绩以及回归分析的平时成绩和期末成绩,运用SPSS统计软件进行分析研究,寻求回归分析期末成绩影响因素的变化规律,拟合出关系式,从而为强化学生的后续学习和提高老师的教学质量提供了有利依据。

一、数据选取

回归分析是统计专业必修课,也是统计学中的一个非常重要的分支,它在自然科学、管理科学和社会、经济等领域应用十分广泛。因此研究影响统计学专业回归分析成绩的相关性是十分重要的。

选取了统计专业50名学生的专业基础课成绩(包括数学分析、高等代数、解析几何和概率论)、回归分析的平时成绩和期末成绩,结合多元线性回归的基础理论知识[1-2],建立多元回归方程,进行深入研究,可以直观、高效、科学地分析各种因素对回归分析期末成绩造成的影响。

二、建立多元线性回归模型1及数据分析

运用SPSS统计软件对回归分析期末成绩的影响因素进行研究,可以得到准确、科学合理的数据结果,全面分析评价学生考试成绩,对教师以后的教学工作和学生的学习会有较大帮助。自变量x1表示数学分析成绩,x2表示高等代数成绩,x3表示解析几何成绩,x4表示概率论成绩,x5表示平时成绩;因变量y1表示回归分析期末成绩,根据经验可知因变量y1和自变量xi,i=1,2,3,4,5之间大致成线性关系,可建立线性回归模型:

(1)

线性回归模型通常满足以下几个基本假设,

1.随机误差项具有零均值和等方差,即

(2)

这个假定通常称为高斯-马尔柯夫条件。

2.正态分布假定条件

由多元正态分布的性质和上述假定可知,随机变量y1服从n维正态分布。

从表1描述性统计表中可看到各变量的平均值1=79.68,2=74.66,3=77.22,4=78.10,5=81.04,1=75.48;xi的标准差分别为10.847,11.531,8.929,9.018,9.221,y1的标准差为8.141;有效样本量n=50。

回归分析期末成绩y1的多元回归模型1为:

y1=-5.254+0.221x1-0.4x2+0.154x3

+0.334x4+0.347x5

从表2中可以看到各变量的|t|值,在给定显著水平?琢=0.05的情况下,通过t分布表可以查出,自由度为44的临界值t?琢/2(44)=2.015,由于高等代数x2的|t|值为0.651小于t?琢/2(44),因此x2对y1的影响不显著,其他自变量对y1都是线性显著的。下面利用后退法[3]剔除自变量x2。

三、后退法建立多元线性回归模型2及数据分析

从模型1中剔除了x2变量,多元回归模型2为:

y1=-5.459+0.204x1+0.149x3+0.377x4+0.293x5(5)

在表4中,F统计量为90.326,在给定显著水平?琢=0.05的情况下,查F分布表可得,自由度為p=4和n-p-1=45的临界值F0.05(4,45)=2.579,所以F>F0.05(4,45),在表5中,所有自变量的|t|值都大于t?琢/2(45)=2.014,因此,多元回归模型2的线性关系是显著的。

四、结束语

通过对上述模型进行分析,即各个自变量对因变量的边际影响,可以得到以下结论:在保持其他条件不变的情况下,当数学分析成绩提高一分,则回归分析成绩可提高0.242分[4-5];同理,当解析几何成绩、概率论成绩和平时成绩每提高一分,则回归分析成绩分别提高0.149分、0.377分和0.293分。

通过对学生专业基础课成绩、平时成绩与回归分析期末成绩之间相关关系的研究,一方面有利于教师把控回归分析教学课堂,提高教师意识,注重专业基础课教学的重要性,同时,当学生平时成绩不好时,随时调整教学进度提高学生平时学习能力;另一方面使学生认识到,为了更好地掌握回归分析知识,应加强专业基础课的学习,提高平时学习的积极性。因此,通过对回归分析期末成绩影响因素的研究能有效的解决教师教学和学生学习中的许多问题。

统计学毕业论文范文模板(二):大数据背景下统计学专业“数据挖掘”课程的教学探讨论文

摘要:互联网技术、物联网技术、云计算技术的蓬勃发展,造就了一个崭新的大数据时代,这些变化对统计学专业人才培养模式的变革起到了助推器的作用,而数据挖掘作为拓展和提升大数据分析方法与思路的应用型课程,被广泛纳入统计学本科专业人才培养方案。本文基于数据挖掘课程的特点,结合实际教学经验,对统计学本科专业开设数据挖掘课程进行教学探讨,以期达到更好的教学效果。

关键词:统计学专业;数据挖掘;大数据;教学

一、引言

通常人们总结大数据有“4V”的特點:Volume(体量大),Variety(多样性),Velocity(速度快)和Value(价值密度低)。从这样大量、多样化的数据中挖掘和发现内在的价值,是这个时代带给我们的机遇与挑战,同时对数据分析技术的要求也相应提高。传统教学模式并不能适应和满足学生了解数据处理和分析最新技术与方法的迫切需要。对于常常和数据打交道的统计学专业的学生来说,更是如此。

二、课程教学探讨

针对统计学本科专业的学生而言,“数据挖掘”课程一般在他们三年级或者四年级所开设,他们在前期已经学习完统计学、应用回归分析、多元统计分析、时间序列分析等课程,所以在“数据挖掘”课程的教学内容选择上要有所取舍,同时把握好难度。不能把“数据挖掘”课程涵盖了的所有内容不加选择地要求学生全部掌握,对学生来说是不太现实的,需要为统计学专业本科生“个性化定制”教学内容。

(1)“数据挖掘”课程的教学应该偏重于应用,更注重培养学生解决问题的能力。因此,教学目标应该是:使学生树立数据挖掘的思维体系,掌握数据挖掘的基本方法,提高学生的实际动手能力,为在大数据时代,进一步学习各种数据处理和定量分析工具打下必要的基础。按照这个目标,教学内容应以数据挖掘技术的基本原理讲解为主,让学生了解和掌握各种技术和方法的来龙去脉、功能及优缺点;以算法讲解为辅,由于有R语言、python等软件,学生了解典型的算法,能用软件把算法实现,对软件的计算结果熟练解读,对各种算法的改进和深入研究则不作要求,有兴趣的同学可以自行课下探讨。

(2)对于已经学过的内容不再详细讲解,而是侧重介绍它们在数据挖掘中的功能及综合应用。在新知识的讲解过程中,注意和已学过知识的融汇贯通,既复习巩固了原来学过的知识,同时也无形中降低了新知识的难度。比如,在数据挖掘模型评估中,把混淆矩阵、ROC曲线、误差平方和等知识点就能和之前学过的内容有机联系起来。

(3)结合现实数据,让学生由“被动接收”式的学习变为“主动探究”型的学习。在讲解每种方法和技术之后,增加一个或几个案例,以加强学生对知识的理解。除了充分利用已有的国内外数据资源,还可以鼓励学生去搜集自己感兴趣的或者国家及社会大众关注的问题进行研究,提升学生学习的成就感。

(4)充分考虑前述提到的三点,课程内容计划安排见表1。

(5)课程的考核方式既要一定的理论性,又不能失掉实践应用性,所以需要结合平时课堂表现、平时实验项目完成情况和期末考试来综合评定成绩。采取期末闭卷理论考试占50%,平时实验项目完成占40%,课堂表现占10%,这样可以全方位的评价学生的表现。

三、教学效果评估

经过几轮的教学实践后,取得了如下的教学效果:

(1)学生对课程的兴趣度在提升,课下也会不停地去思考数据挖掘有关的方法和技巧,发现问题后会一起交流与讨论。

(2)在大学生创新创业项目或者数据分析的有关竞赛中,选用数据挖掘方法的人数也越来越多,部分同学的成果还能在期刊上正式发表,有的同学还能在竞赛中取得优秀的成绩。

(3)统计学专业本科生毕业论文的选题中利用数据挖掘有关方法来完成的论文越来越多,论文的完成质量也在不断提高。

(4)本科毕业生的就业岗位中从事数据挖掘工作的人数有所提高,说明满足企业需求技能的人数在增加。继续深造的毕业生选择数据挖掘研究方向的人数也在逐渐增多,表明学生的学习兴趣得以激发。

教学实践结果表明,通过数据挖掘课程的学习,可以让学生在掌握理论知识的基础上,进一步提升分析问题和解决实际问题的能力。

第2篇

【论文摘要】所谓统计思想,就是在统计实际工作、统计学理论的应用研究中,必须遵循的基本理念和指导思想。统计思想主要包括均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想等思想。文章通过对统计思想的阐释,提出关于统计思想认识的三点思考。

一、关于统计学

统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。

二、统计学中的几种统计思想

2.1统计思想的形成

统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。

2.2比较常用的几种统计思想

所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:

2.2.1均值思想

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

2.2.2变异思想

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

2.2.3估计思想

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

2.2.4相关思想

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

2.2.5拟合思想

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。

2.2.6检验思想

统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

2.3统计思想的特点

作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。

三、对统计思想的一些思考

3.1要更正当前存在的一些不正确的思想认识

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。

3.2要不断拓展统计思维方式

统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

3.3深化对数据分析的认识

任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。

参考文献:

[1]陈福贵.统计思想雏议[J]北京统计,2004,(05).

[2]庞有贵.统计工作及统计思想[J]科技情报开发与经济,2004,(03).

第3篇

生物统计学是生物学学科不同专业学生都应该掌握的一门重要的工具课,是许多高等院校生物学、农学、医学等专业的必修课程之一。它是现代生物学研究不可缺少的工具,是培养学生科学研究和综合分析问题能力的重要课程,也是生物学等工作者必备的基础,同时该课程又是其他专业课程的重要基础。因此该课程在生物学、农学、林学、医学、食品、环保等专业中占有十分重要的地位[12]。生物统计学需以生物材料进行研究,但通常所涉及的材料数量较大,很难也没有必要全部参加试验,必须通过科学的方法抽取有代表性的试验个体进行试验,以获得相关的数据,实现由样本推断总体的重要功能。因此生物统计学与试验设计紧密联系,主要讲授数据资料收集和整理的方法、数据资料的统计分析方法和手段以及在概率论的基础上对统计结果做出科学的推断,从而帮助我们认识研究对象的现象和本质[13]。因此,生物统计学已成为生物科技工作者必备的基础,也有利于培养和提高大学生的科学研究能力以及独立分析问题和解决问题的能力,是当代大学生系统的能力培养和全面的素质教育的具体体现。

二、生物统计学教学存在的主要问题

1.生物统计学教材方面。教材是体现教学内容和教学要求的知识载体,也是教学最基本的工具,它不仅是教师进行教学的依据,而且是学生获取知识的重要资料,选择适合教师和学生的生物统计学教材,能够保证教学过程的顺利进行,而且还能提高教学质量,达到良好的教学效果[14,15]。目前,国内所出版的生物统计学教材种类较多,各大高校由于教师和学生的情况不同,在教材方面的选择和使用也不一样。尽管如此,目前国内所出版的生物统计学教材主要包括两大类。第一大类完全是传统生物统计学的知识和内容,不涉及统计软件的介绍和使用,这一大类教材包含两小类,一类主要侧重理论教学,过分强调课程体系的完整性和理论讲授,注重公式的推导而忽视了实际应用例题的讲解。这类教材忽略了对大学生统计思维和综合分析问题能力的培养,因此有一定的缺陷。另一类是目前各大高校使用较多的生物统计学教材,该类教材虽然也存在一些必要的公式推导,但更侧重于统计学理论与实际结合,清楚介绍每一个统计原理理论后,再通过具体实例分析和巩固统计学的基本原理和基本方法,注重培养学生分析实际问题和解决实际问题的能力,因此这类教材比较适合现在生物科学等本科专业的使用。但这类生物统计学教材由于不涉及统计软件的内容,也存在一定的不足。如果教师在授课过程中未涉及一些统计软件的介绍和使用,那么即使学生完全掌握了相关的统计原理和方法,学生在复杂的试验设计及庞大的数据面前可能也会束手无策,即使会计算,在复杂及庞大的数据计算中也可能会算错,因此可能会得出相反的结论。第二大类统计教材完全是统计软件的介绍和使用,如Excel软件、SAS统计软件、SPSS统计软件、DPS统计软件、R统计软件等的介绍和使用。生物科学、技术等飞速发展的今天,这类统计软件发挥了很大的优势,给科技工作者带来了极大的方便。但这类教材也存在一定的不足,它只注重统计过程的运算和统计,没有统计原理的介绍,因此对没有相关统计学知识或统计学基础较差的学生或老师来说,即使按照教材上的步骤计算出相应的结果,但也不知道具体的含义,也不知道怎么分析。因此这类教材不适合大学本科生的教学。另外,这两大类教材要么只注重数理统计方法的讲授,要么只重视统计软件的使用,而忽视了统计学中的数理统计分析方法是建立在正确的试验设计以及所获数据资料准确的基础上才能发挥正确的作用,这是这两大类生物统计学教材共同存在的不足之处。因此,目前市场上还未见有统计学理论与实际结合,试验设计与统计原理相结合,统计软件与统计学原理相结合的较为完善的生物统计学教材。笔者认为这类生物统计学教材是当前生物科学专业、生物技术专业、生物工程专业、农学专业、医学专业、食品专业等本科专业较为适合的教材。

2.生物统计学与高等数学方面。①生物统计学与高等数学开课时间上的不一致性。国内许多高等学校生物科学等本科专业的培养方案中都把高等数学课程作为一门必修的基础课,学生通过对该门课程的学习,系统获得函数、极限、连续、导数、微积分及常微分方程等基础知识,它为后续课程的学习和解决实际问题提供必不可少的数学基础知识及常用的数学方法。而且,通过各个知识点的学习,逐步培养学生具有较为熟练的基本运算能力和自学能力,综合运用所学知识分析和解决实际问题的能力。更重要的是,高等数学课程是学习生物统计学的关键,生物统计学中的许多原理和方法都需要高等数学中相应的知识作为基础。②生物统计学与高等数学教学上的脱节性。高等数学课程作为生物科学本科专业一门必修的基础课,各高校均认识到它在生物科学本科专业中的重要性。但长期以来,高等数学和生物统计学均作为两名独立的课程开设,一般情况下,高等数学课程由数学专业教师讲授,由于数学专业的教师没有生物学专业的相关知识,不清楚生物统计学课程的知识体系,只注重数学知识的推导、讲授。因此所讲授的知识内容之间通常存在许多不衔之处,形成了不利于生物统计学课程教学的知识的断层。同样,这也是生物统计学中教师难教,学生难学、难懂、难用的原因之一。

3.生物统计学教师知识结构和科研能力方面。常言道,学生需要一滴水,教师至少要有一桶水。生物统计学的教学,相对于其他课程而言,对教师的要求更高,不仅要求教师要有一定的数学知识,较为渊博的统计学知识,还要求教师要有较强的科研能力。教师只有具备一定的数学知识和渊博的统计学知识,才能很好把握生物统计学相关原理、理论、统计分析方法等。具备较强的科研能力,才能很好将生物统计学相关原理、理论、统计分析方法与实际相结合,才能很好地进行案例教学。4.考试制度方面。考试制度在高等教育中占有非常重要的地位,考试是教学质量评价的一项重要指标,它既是对教师教学质量的反映,也是对学生学习效果的检验。考试制度是否合理

,决定着教学质量的好坏以及学生学习积极性是否能得到最大限度地调动[16]。但是现阶段我国许多高校的考试制度较为死板,缺乏合理性和灵活性。如在学期期末考试中规定一定数量的题型,当然,这种考试制度对于规范考试是必须的,但是应该根据具体课程而定,而不能一概而论。就生物统计学课程而言,如果规定一定数量的考试题型(比如四种题型),那么教师只能根据考试规定勉为其难考虑四种题型。比如说名词解释、填空、问答、计算这四种题型。很明显,这种考试方式只是较为死板的考试,不能真证体现生物统计学课程的本质,不能很好考察学生对生物统计学原理的掌握及运用。

三、生物统计学教学策略

针对目前生物统计学存在的问题,笔者根据自己近十年的生物统计学教学实践,就如何提高生物统计学的课堂教学效果,提出如下建议。

1.选择合适的教材并优化教学内容。教材是教学最基本的工具,选择适合的生物统计学教材,能够保证教学过程的顺利进行,并能提高教学质量。针对目前市场上的不同种类教材,结合学生的实际,选择统计学理论与实际相结合,试验设计与统计原理相结合,统计软件与统计学原理相结合的生物统计学教材进行教学较为合适。据笔者过去的教学实践,该课程授课内容不宜过多和过深,授课内容过多学生精力会分散,分不清重点,而过深则影响学生的接受效果[17]。因此应根据学生实际优化教学内容,坚持以试验研究实例为线索,以科学的试验研究方法为主线,理论原理和实际例子相结合,从试验研究的选题和设计、试验方案的制定和实施、试验数据的收集和整理到试验数据的统计分析,最后做出科学的推断等,尽可能把抽象的统计学概念和原理转变为具体的实例,提高学生的学习兴趣,使其更好地理解和掌握所学的课程内容[7]。很好激发学生学习生物统计学课程的兴趣,从而更好地提高教学效果和教学质量。

2.处理好高等数学和生物统计学的关系。高等数学作为生物科学本科专业的基础课,是学习生物统计学的关键。一方面,高等数学一般在第一学年开设,因此生物统计学安排在第二学年开设为宜,这样能避免高等数学和生物统计学课程开设在时间上形成的断层,有利于学生对生物统计学的学习。另一方面,高等数学和生物统计学不应分别让不同专业的教师讲授,而均应由生物学专业教师讲授,因为生物学专业的教师清楚生物统计学课程的知识体系,在讲授高等数学时,能够根据生物统计学的相关原理和内容,优化高等数学的教学内容,有侧重点进行知识的讲授。从而能避免生物统计学与高等数学教学在知识上的脱节性,也有利于学生对生物统计学的学习。

3.提高自身知识结构和科研能力,注重案例教学。生物统计学教材大多理论性强,内容枯燥,容易使学生产生厌烦感。照本宣科的传统授课方法,更会使学生失去兴趣,对于培养学生的独立思考能力和创造能力十分不利。在现代教学中,教师既是知识的传授者,也是教学活动的组织者,在教学过程中起到关键的作用,教师知识水平的高低直接影响学生的学习效果[18]。因此教师应不断加强对生物统计学基本原理、基本理论和基本方法的学习与实践。另外,教师还应不断加强自身的科研能力,在教学过程中将自己的科研工作或生产实践案例贯穿到教学中,以自身科研实例辅助教学,增加学生的学习兴趣,培养学生的统计学思维以及对统计学的实际应用能力。

4.加强试验设计的教学和实践。试验设计又称为实验设计,它以概率论和数理统计的原理和方法为理论基础,科学地、经济地设计研究方案的一项技术。一个良好的试验设计,可以用最少的实验次数,得到足够的实验数据,从而能减少人力、物力和财力的投入[6]。由于生物统计学理论性和实践性较强,且涉及大量的数学公式、抽象的概念和复杂的内容。因此在生物统计学的教学中应充分调动学生学习的主动性,加强学生对生物统计学原理、知识的理解和综合运用,强化学生综合试验设计的锻炼及其应用。提高学生利用统计原理、方法分析和解决实际问题的能力。生物统计学教学中,一方面,教师应该有渊博的统计学知识及其丰富的科研经历,另一方面,应让学生走出教室,加强实践,使学生不但能够掌握统计分析的原理和方法,而且可以解决一些生产中的实际问题,真正达到生物统计学教学的目的。

第4篇

纵观统计学的发展状况,与整个科学的发展趋势相似,统计学也在走与其他科学结合交融的发展道路。归纳起来,有两个基本结合趋势。

(一)统计学与实质性学科结合的趋势

统计学是一门通用方法论的科学,是一种定量认识问题的工具。但作为一种工具,它必须有其用武之地。否则,统计方法就成为无源之水,无用之器。统计方法只有与具体的实质性学科相结合,才能够发挥出其强大的数量分析功效。并且,从统计方法的形成历史看,现代统计方法基本上来自于一些实质性学科的研究活动,例如,最小平方法与正态分布理论源于天文观察误差分析,相关与回归源于生物学研究,主成分分析与因子分析源于教育学与心理学的研究。抽样调查方法源于政府统计调查资料的搜集。历史上一些著名的统计学家同时也是生物学家或经济学家等。同时,有不少生物学家、天文学家、经济学家、社会学家、人口学家、教育学家等都在从事统计理论与方法的研究。他们在应用过程中对统计方法进行创新与改进。另外,从学科体系看,统计学与实质性学科之间的关系绝对不是并列的,而是相交的,如果将实质性学科看作是纵向的学科,那么统计学就是一门横向的学科,统计方法与相应的实质性学科相结合,才产生了相应的统计学分支,如统计学与经济学相结合产生了经济统计,与教育学相结合产生了教育统计,与生物学相结合产生了生物统计等,而这些分支学科都具有"双重"属性:一方面是统计学的分支,另一方面也是相应实质性学科的分支,所以经济统计学、经济计量学不仅属于统计学,同时属于经济学,生物统计学不仅是统计学的分支,也是生物学的分支等。这些分支学科的存在主要不是为了发展统计方法,而是为了解决实质性学科研究中的有关定量分析问题,统计方法是在这一应用过程中得以完善与发展的。因此,统计学与各门实质性学科的紧密结合,不仅是历史的传统更是统计学发展的必然模式。实质性学科为统计学的应用提供了基地,为统计学的发展提供了契机。21世纪的统计学依然会采取这种发展模式,且更加注重应用研究。

这个趋势说明:统计方法的学习必须与具体的实质性学科知识学习相结合。必须以实质性学科为依据,因此,财经类统计专业的学生必须学好有关经济类与管理类的课程,只有这样,所学的统计方法才有用武之地。统计的工具属性才能够得以充分体现。

(二)统计学与计算机科学结合的趋势

纵观统计数据处理手段发展历史,经历了手工、机械、机电、电子等数个阶段,数据处理手段的每一次飞跃,都给统计实践带来革命性的发展。上个世纪40年代第一台电子计算机的诞生,给统计学方法的广泛应用创造了条件。20年展起来的多元统计方法虽然对于处理多变量的种类数据问题具有很大的优越性,但由于计算工作量大,使得这些有效的统计分析方法一开始并没有能够在实践中很好推广开来。而电子计算机技术的诞生与发展,使得复杂的数据处理工作变得非常容易,那些计算繁杂的统计方法的推广与应用,由于相应统计软件的开发与商品化而变得更加方便与迅速,非统计专业的理论工作者可以直接凭借商品化统计分析软件来处理各类现实问题的多变量数据分析,而无需对有关统计方法的复杂理论背景进行研究。计算机运行能力的提高,使得大规模统计调查数据的处理更加准确、充分与快捷。目前企业经营管理中建立的决策支持系统(DSS)更加离不开统计模型。最近国外兴起的数据挖掘(Datamining,又译"数据掏金")技术更是计算机专家与统计学家共同关注的领域。随着计算机应用的越来越广泛,每年都要积累大量的数据,大量信息在给人们带来方便的同时也带来了一系列问题:信息过量,难以消化;信息真假,难以辨识;信息安全,难以保证;信息形式不一致,难以统一处理;于是人们开始提出一个新的口号"要学会抛弃信息"。人们考虑"如何才能不被信息淹没,而是从中及时发现有用的知识,提高信息利用率?"面对这一挑战,数据挖掘和知识发现(DMKD)技术应运而生,并显示出强大的生命力。数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘是一门交叉学科,它把人们对数据的应用从低层的简单查询,提升到从数据中挖掘知识,提供决策支持。在这种需求牵引下,汇聚了不同领域的研究者,尤其是数据库技术、人工智能技术、统计、可视化技术、并行计算等方面的学者和工程技术人员,投身到数据挖掘这一新兴的研究领域,形成新的技术热点。虽然统计学家与计算机专家关心Datamining的视角不完全相同,但可以说,Datamining与DSS一样,使得统计方法与计算机技术的结合达到了一个更高的层次。

因此,统计学越来越离不开计算机技术,而计算机技术应用的深入,也同样离不开统计方法的发展与完善。这个趋势说明:充分利用现代计算技术,通过计算机软件将统计方法中复杂难懂的计算过程屏障起来,让用户直接看到统计输出结果与有关解释,从而使统计方法的普及变得非常容易。所以,对于财经类统计专业的学生来说,一方面要学好统计方法,但另一方面更加要学会利用商品化统计软件包解决实践中的统计数量分析问题,学好计算机信息系统开发的基本思想与基本程序设计,能够将具体单位的统计模型通过编程来实现,以建立起统计决策支持系统。

所以统计与实质性学科相结合,与计算机、与信息相结合,这是发展的趋势。了解这一点,再来看我们目前教育中的问题就更加明显了,所以一些课程要改革,教学方式也要改革。以下谈一谈统计教育需要改革的几个方面。

二、统计教育的改革

(一)统计专业课程建设问题

专业建设考虑的是应当培养什么样的人才和怎样培养这样的人才。专业建设的核心问题是课程设置和规范课程内容。课程设置主导学生的知识结构,培养统计理论人才应当设置较多的数学课程,目的是让学生能对各种统计方法有较深刻的理性认识;培养应用统计人才应当设置较多的相关应用领域的专业课程,目的是让学生如何能将统计方法正确地运用到相关领域。例如培养从事经济管理的统计人才,在课程设置上至少应当包括四方面的知识:(1)经济理论课程,让学生了解经济活动的主要进程和基本规律;(2)研究社会经济问题主要统计方法,包括常用的统计数据搜集方法,统计数据处理方法和分析方法;(3)适用电脑技术,让学生初步掌握运用电脑进行统计数据处理和分析的基本理论和技能;(4)有关统计理论和统计实践中的前沿性问题,目的不在于要学生真正掌握这些问题,而是让学生了解统计理论和统计实践的前沿发展动态,启迪学生的科学思维能力。

(二)教学方法和教学手段的改革

统计教学方法和教学手段改革中,有两个焦点问题:一是如何激发学生学习统计学的兴趣;二是应用什么教学手段来达到较好的统计教学效果等。充分运用现代教育技术、教学手段,更新教学方法,促使教育技术、教学手段和教学方法有机结合。

1.改灌输式教学为启发式教学,特别注重教育多样化和多层次性,不仅让学生掌握如何搜集、整理数据的技术,还要教学生读懂数字背后的事实。学会按照具体与抽象、动态与静态、个体与总体、绝对与相对、一般与特殊、演绎与归纳等不同的思维方式分析问题和解决问题。注重利用一题多解与一题多变,开拓学生的发散思维。

2.改单向接受式的教学为双向互动式教学,以案例分析与情景教学开启学生的思维闸门,使学生更形象、快捷的接受知识,发挥其独立思考与创造才能,培养学生创造性思维能力。

3.构建以课堂、实验室和社会实践多元化的立体教育教学体系。在传授和学习已经形成的知识的同时,加强实践能力锻炼,提高学生的动手能力和创新能力。只有将统计学的方法结合实际进行应用,找到应用的结合点,才能使统计学获得最大的生命力。

(三)统计学与计算机教学相结合

教材要与统计软件的应用相结合。现在许多教材都是内容与软件分家,现在计算机已非常普及,无论是高校、高职和中专,培养出来的学生不会用统计软件分析数据,不管哪一个层次,都已说不过去。统计学是一门应用的方法型学科,统计学应从数据技巧教学转向数据分析的训练。统计学与计算机教学有机地合为一体,让学生掌握一些常用统计软件的使用。除了要培养学生搜集数据、分析数据的能力外,还要培养学生处理大量数据的能力,即数据挖掘的能力。

(四)教学与实际的数据分析相结合

统计的教学不能只停留在课本上,案例教学与情景教学应成为统计课程的重要内容。统计教学和教材增加统计实际案例,通过计算机对大量实际数据进行处理,可以在试验室进行,亦可在课堂上进行讨论,这样学生不仅理解了统计思想和方法,而且锻炼和培养了研究和解决问题的能力。

(五)要有一批能用电脑、网络来教学的新型教师

电脑、网络的出现,不仅改变了教学的手段,还深深地影响着教学的内容,因为它影响着经济、生活的发展和需求。语文(中文、外文)、数学、计算机、专业知识是一个统计人才必备的素质,它们之间不是分离的,而是要尽可能结合在一起来进行教学,各管各教一套的办法已不适应现代化教育教学的需要,现代教育特别注重教育信息技术中的多媒体、网络化、社会化和国际化、多样化和多层次,有了电脑、网络,必需要更新,要培养出一批能用电脑、网络来教学的新型教师,以便培养出新型的21世纪的人才。

[参考文献]

[1]贺铿.关于统计学的性质与发展问题.中国统计,2001.9.

[2]袁卫.国外统计高等教育发展的趋势及对我国统计教育改革的思考.中国统

第5篇

如上所述,较低的回答率将会破坏样本的代表性,从而产生较大的无回答偏差。那么,什么样的回答率是可以接受的呢?这一问题目前尚没有一个明确的、公认的结论。科克伦和伯恩鲍姆(A.Birnbaum)等人认为对一般调查而言,回答率应在90%甚至95%以上。美国广告研究基金会则建议邮寄调查的回答率应80%以上。我国学者卢淑华也持这种看法。爱尔达斯(Erdos)则认为一个可靠的邮寄调查应有50%以上的回答率,或能用某种方法证实不回答者与回答者是相似的。莱斯勒(J.T.Lessler)认为对这一问题的回答不应是绝对的,而应考虑多方面因素。她指出应结合如下因素来讨论:(1)调查前对回答率的期望值,它取决于调查的内容、总体与数据收集方式;(2)提高回答率的成本;(3)是否对无回答采用补救方法以及采用何种方法。(4)调查内容及其结论的重要性。应该指出的是,在调查报告或研究结果中说明回答率是一项良好的调查研究应有的内容。

三、无响应问题的处理方法

为了尽量减少无响应误差的影响,统计学家们提出了许多的处理方法。这些处理方法可以归纳成两类,一类是在进行统计分析之前的处理,即在调查阶段的处理,一类是在统计分析中进行的处理,即调查完成之后的处理。

1.分析前的处理。分析前的处理方法的主要目标是提高回答率。主要方法包括:(1)认真选聘、培训、督导调查员。(2)对被调查者进行适当激励。(3)由有名望的机构出面组织调查。(4)多次访问。(5)改进调查方法。如,科学地设计调查项目与问卷外观,以使被调查者能较轻松地回答问题;调查前先与被调查者联系;仔细分析不同受访者最可能在家的时间;等等。(6)在无响应的样本单位中再次抽样。(7)使用随机化回答技术。如果引起无响应的主要原因是问卷或某些项目为敏感性问题(如隐性收入、偷税漏税、吸毒等),则可用使用随机化回答技术来进行调查。这种调查技术通过设置巧妙的“随机化装置”,使得被调查者可以说出实情而调查者并不会知道他的回答的真正含义。但调查者可以由整个样本的回答获得某类人数所占比重或某敏感性指标的均值等的估计值。

2.分析中的处理。如果由于某些原因未能采用上文所述的分析前的处理方法,或者虽已采用但仍未能达至足够高的回答率,我们就需要采取事后的补救措施。各国统计学家已为此而提出了许多方法。(1)波利兹-西蒙斯(Politz-Simmons)方法。这种方法是预先在调查时询问回答者在K个类似的期间里他有多少期间可以被找到,然后在分析时用他可被找到的期间数对其Y变量值(Y为所研究的指标的测度)作“倒数加权”。例如,对于在调查的前5天中在相同时间内呆在家里并可以接受调查的天数分别为0、1、2、3、4和5的回答者,分别用6/1、6/2、6/3、6/4、6/5、6/6作为其Y变量值的权数(分母是前5天可接受调查的天数加1,即加上调查的当天)。这种方法的隐含假设是在家天数越少者,其Y变量值越接近不在家者。(2)时间趋势法。这种方法通过考察连续各批回答者(如邮寄调查中按时间先后对回件分批)的答案,分析其中的趋势,然后将此趋势延伸,以此推测出无响应者的答案。比如,如果各批回答者的收入呈上升趋势,则推测无响应者的收入是最高的。(3)分组加权估计。这种方法要求按某些辅助信息将总体单位分成若干组,使组内各单位的Y变量值尽可能相近。在抽样调查之后,若出现无响应问题,则按各组的单位数占总体单位数的比例进行加权调整。我们用一个简化的例子来说明,设总体分成两组,第一、二组单位数分别占总体单位数的30%与70%。假设抽样调查的结果如下表。

第6篇

长期以来,各级统计部门(包括政府统计部门的综合统计和政府其他职能部门的专业、行业统计)年年讲天天讲的是,统计要为政府服务,要为领导服务。这种提法本没有错,但却是不全面的。随着社会主义市场经济体制的逐步完善,随着政府职能的逐步转变,面向公众、为社会服务,应该成为统计工作的一个重要组成部分。

统计面向公众是统计工作的性质所决定的。统计用数字描述、反映事物的发展变化及其规律;任何事物都有其数量特征。统计数字覆盖经济和社会生活的各个领域;对统计数字的需求自然也来自社会的方方面面,而绝不仅限于政府部门或有关领导。如果无视或轻视更为庞大的社会需求群体,统计工作就是不全面、也是不完整的。

统计面向公众是发展市场经济、转变政府职能的要求所决定的。一方面,随着市场对资源配置的基础作用愈来愈强,社会对统计信息的需求也必然愈来愈多。另一方面,所谓政府职能,从本质上说,就是运用法律赋予的管理手段为社会公众服务。随着市场经济的发展,政府应该逐步变管理为服务,政府统计部门自然也要转变观念和职能。

第7篇

1、内容日益丰富。长期以来,在我国存在两门相互独立的统计学——数理统计学和社会经济统计学,分别隶属于数学学科和经济学学科。20世纪80年代以来,建立包括数理统计学和社会经济统计学在内的大统计学,逐步成为我国统计学界的共识。1992年11月,国家技术监督局正式批准统计学上升为一级学科。国家颁布的学科分类标准已将统计学单列为一级学科。随着大统计学思想的建立和统计学在实质学科中的应用的需要,大多数学校和老师在财经类专业的本、专科专业《统计学》教学过程中,除了保留社会经济统计学原理中仍有现实意义的内容,如统计学的研究对象方法、统计的基本概念、统计数据的搜集整理、平均及变异指标、总量指标、相对指标、抽样调查、时间序列、统计指数等;同时也系统的充实了统计推断的内容,如:统计数据的分布特征、假设检验、方差分析、相关与回归分析、统计决策等。这一变化使得《统计学》的内容更适合相关实质学科的发展需要。

2、学生的学习难度加大。首先、结合《统计学》的课程特点——概念多而且概念之间的关系十分复杂、公式多且计算有一定难度等。如果学生不做必要的课外阅读、练习和实践活动,是很难理解和掌握的。对于财经类专业的本、专科专业的学生来说,本身的专业课学习负担已不轻。其次、对于财经类专业的本、专科专业的学生来说,由于其本专业的课程体系要求,使得学生的数学或者数理统计的基础不是特别好,对于专科学生来说更不用说,推断统计将是他们学习的困难。再说,《统计学》作为专业基础课,一般安排在一年级或二年级第一学期,在这个学习时段也是大多数专科生和本科生忙于计算机课程和英语课程的考证时段。如果以牺牲授课内容和降低要求来减轻学生的学习负担,显然有悖于《统计学》课程的教学和相关专业的发展要求。所有这一切对于学生学好这一课程面临的困难可想而知。

3、教师的教学难度加大。授课内容越来越丰富;课程难度太大可能导致学生兴趣下降;在倡导学生自主性学习的背景下,授课时数大为减少(一般安排一个学期共17~19教学周,每周2~3课时);高等教育扩招后,由于师资力量一时没有跟上,大多数学校,授课班级学生人数越来越多,一个教师跨越不同专业授课不再新鲜。这要求授课教师必须深刻领会授课内容的核心和相互关系,学会控制和驾驭课堂教学,学会激发学生的兴趣,注重统计学在不同专业领域的具体应用等等。作为这门学科的授课教师特别需要认真考虑该怎么办?

二、《统计学》教学的发展趋势分析

1、统计学从数学技巧转向数据分析的训练。在计算机及计算机网络非常普及的今天,统计计算技术不再是统计学教学的重点了。统计思想、统计应用才应该是重点。现代统计方法的实际应用离不开现代信息处理技术。统计软件的使用,不仅使统计数据的计算和显示变得简单、准确,而且使统计教学由繁琐抽象变得简单轻松、由枯燥乏味变得趣味盎然。所以,在统计教学过程中,大量的内容只需要给学生讲清楚统计基本思想、计算的原理和正确应用的条件、正确解读计算的结果,而对大量复杂具体的计算可以交给计算机去完成。

比如方差分析,手工计算量非常大,没有计算机软件的支撑,是很难教学实际问题分析的。现在我们只要讲清楚方差分析要做什么,为什么方差分析要解决的中心问题是判断有无条件误差,而原假设又是K种不同水平下总体的理论均值是否相等,检验结果表示什么等就可以了,大计算量的工作让计算机去完成。

2、通过统计实践学习统计。也就是以学生为中心,通过课堂现场教学、引导学生先读后写再议、模拟实验、利用课余时间完成项目、利用假期时间,通过参加学校组织的某些团队、小组或自己组织去开展一些与专业有关的活动,如社会调查、专题研究、提供咨询、参与企业管理等方法。全方位地激发学生的学习兴趣、培养学生的专业能力、方法能力和社会能力。

比如依同学们在设计调查问卷和调查方案的基础上,让他们组成若干调查小组(如以寝室为单位),在校园内真正进行一次统计调查活动,从具体调查对象和单位的确定,样本的抽取(不一定要很大),问卷的发放、回收与审核,数据输入与资料整理,估计与分析,一直到调查报告的编写,调查总结或体会的形成,全部由同学自己来完成。这样,同学们就亲身参与了统计调查、统计整理和统计分析(含统计推断)的整个过程,效果很好。

三、基于EXCEL的《统计学》教学设想

如何从烦琐的数理统计技巧转向数据处理的训练,同时还要使学生容易掌握并有机会辅之于实践。教师的导向是第一位的,要求必须选择容易获得而且普及性比较强的统计分析软件,并在课堂教学和引导学生实践中广泛采用。

(一)微软公司开发的EXCEL软件无疑是我们最好的选择

专业的统计分析软件SPSS、SAS、BMDP、SYSTAT其功能固然强大,统计分析的专业性、权威性不可否认,但是对于没有开设统计学专业的院校这些软件并不常用,如果学生要进行自主性学习也比较难以找到相应的工具,此外专业统计分析软件的英文操作界面,也让中国人用起来不是很顺手。微软公司开发的EXCEL软件作为一款优秀的表格软件,其提供的统计分析功能虽然比不上专业统计软件,但它比专业统计软件易学易用,便于掌握。在Windows操作系统极为流行的今天,EXCEL也是随处可见。对于《统计学》这门课程而言,利用EXCEL提供的统计函数和分析工具,结合电子表格技术,已能满足统计方面的要求。

(二)基于EXCEL的《统计学》教学设想

1、在教学内容上,依据EXCEL的函数功能、电子表格功能、数据分析功能,结合统计学原理的基本理论和方法,整合教学内容。比如传统的统计学原理教学过程中,对统计数据的搜集主要强调统计报表制度,在EXCEL环境应该更注重抽样推断,EXCEL提供的随机抽样工具使得抽样调查不再是十分复杂的技术,统计图也可以被广泛运用于对数据的描述;再比如现有统计学教材很多都讲根据整理的数据计算平均数时,都用加权平均的方法,当用组距式变量数列计算平均数时,用组中值作为各组的代表值进行计算。我们知道,组中值作为各组的代表值是假定各组变量值在组内是均匀分布的,如果实际数据与这一假定相吻合,计算结果比较准确,否则误差比较大。事实上实际数据往往就不是均匀分布的,因此用组中值计算的平均数都是近似的,而且相同资料编制的不同变量数列计算的平均数还不相等。其实为了编制变量数列,我们必须输入原始数据,EXCEL的有关程序可以得到准确平均数,哪里还有必要按加权算术平均的方法计算近似的平均数呢?那么有没有必要编制变量数列、特别是组距式变量数列呢?有没有必要按加权的方法计算平均数呢?我们认为有必要,但是组距式变量数列的主要功能不再是提供计算资料了,而是用于表现资料的分布状况和进行分析用;加权平均方法主要是介绍和要求学生掌握加权平均的思想,用于综合评价分析中。

2、案例教学成为《统计学》课程的重要内容。案例教学法不仅可以将理论与实际紧密联系起来,使学生在课堂上就能接触到大量的实际问题,而且对提高学生综合分析和解决实际问题的能力大有帮助。结合学生所学专业精选案例教学,比如对于金融专业的学生可以设计用几何平均数计算投资的平均收益率、运用标志变异指标考察投资组合的风险大小等。对于经管专业的学生,精选抽样推断、假设检验、方差分析对于控制产品质量,经营决策等方面的案例,深入浅出地介绍这些方法的基本思想、并用EXCEL进行分析。既激发了学生的兴趣、扩大了学生的视野,也使统计学的课堂不再是教师一块黑板、一支粉笔、一本教材、一张嘴巴就能将一门专业课程从头讲到尾。

3、改革考试方式和内容,合理评定学生成绩。考试是教学过程中的一个重要环节,是检验学生学习情况,评估教学质量的手段。对于《统计学原理》的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷,离考试内容和方式应更加适应素质教育,特别是应有利于学生的创造能力的培养之目的相差较远。在过去的《统计学》教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算,各类辅导书中充斥着五花八门的计算技巧。从而导致了学生在学习《统计学》课程的过程中,为应付考试搞题海战术,把精力过多的花在了概念、公式的死记硬背上。这与财经类专业培养新世纪高素质的经济管理人才是格格不入的。为此,需要对《统计学》考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出《统计学》的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不具一格,除了普遍采用的闭卷考试外,还在教学中用讨论、答辩和小论文的方式进行考核,采取灵活多样的考试组织形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中提交的读书报告、上机操作和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力培养。

参考文献:

[1]谢安邦.高等教育学[M].北京:高等教育出版社,1999.

[2]贾俊平.统计学[M].北京:中国人民大学出版社,2000.

[3]王怀伟.统计学教程[M].北京:清华大学出版社,2004.

[4]王维鸿.EXCEL在统计中的应用[M].北京:中国水利出版社,2004.

第8篇

体育统计学作为一门关于实践活动调查的科学理论与方法,并不局限在体育教学和体育研究中,而对其它的非体育行业也具有同样的效用。分析当前学生对其的态度不难看出,学生对该门课程的认识并不清楚,且传统教学模式的教学内容的限制下,并没有结合当前时代的发展而做出相应的改变。因此,对其进行改革,使之完全能够完全符合当今时代的发展。如,在教学过程中,教师要扩大自身的视野,对教学内容进行深化,不能将思想局限在体育教学与运动训练,并根据学生多元化的去向丰富教学内容。体育统计课程并非是一门一成不变的课程,其也可以变成学生喜欢的课程。如:明确体育统计学的价值作用和应用范围,在教学活动过程中通过列举一些有价值的具体事例,纠正学生的错误认识,改变学生的学习态度。其次,指导学生进行EXCEL表格的操作,对统计数据进行录入、整理、分析以及输出相关的图表,从而掌握基本的操作;最后,将在体育统计学中学到的知识和技能在毕业论文中展现出来。从而让学生通过理论与实践的结合,掌握该课程的知识与技能,进而保障其日后运用中具备基本的能力。此外,该方法的使用,还要保证在教学内容与教学模式上进行相应的革新与改变.

2体育统计学教学的内容改革

在体统计学的教学过程中,要让学生明确的认识到,体育统计学的使用并不局限在体育教育工作与体育训练研究工作当中。因此,在体育统计教学的内容改革,要对其授课的作出相应的改变和革新。首先,体育教材在的原理与知识介绍上比较简单,且不具备系统性,学生难以对该课程进行透彻的了解。以课本中的样本自由度与总体自由度的关系为例子。如果知识的讲解不具体,学生难以理解总体标准差与样本标准差的关系,从而打击学生的学习积极性。根据实际情况对教学内容进行适当的安排,在对参数估计与统计推断的例题讲解中,适当的插入一章关于抽样分布的统计学基础知识课,结合此基础,再讲授有关参数估计与统计推断的知识。学生对抽样分布知识与原理得到了较好的理解,也为参数估计与统计推断的具体应用打好了基础。其次,在知识、内容及其结构的编排上并不合理,一些陈旧的知识还在继续应用。虽然,近年来版本不断的更新,但是教学的内容并未发生过大的改变。其知识的教授主要还是集中在体育教育领域,而忽略了统计学知识的系统性。再则传统教学模式下忽视了学科知识的应用,在应用型操作技能的培养与训练上也并为提升到一定的高度。在统计学内引入新的计算机操作知识,延伸学生学习该门课程的技术能力。如引入数据的图表制作教学,Excel软件中相关统计函数命令的操作性知识;如何利用Excel软件进行数据的录入、转换、审查等知识等。最后,该教材在内容难度的把握上偏难,从而影响了学生的学习积极性。以该书的第十章类聚分析为例,这一片篇章的内容已经超过了该阶段学生能接受的难度。此外,相关数据也表明,该阶段教授这些知识的学校少之又少。且该教材在很多的高等院校中作为必修课程的教材。但其内容已经完全超过了本科生能接受的难度范围,因此,在教材的改革方面应该重新编写适宜本科阶段体育统计学,进行基础性知识的教育教学。

3体育统计学教学模式的改革实践

当前,大多数的本科体育专业学生的教学模式还停留在传统的教学模式上,典型的就是老师在讲台上讲授,学生在课堂下边听讲,课后进行练习巩固。而该教学模式的直接结果就是学生的填鸭式教学。缺乏对该课程的真实认识,且在练习巩固的过程中也不需要进行数据的统计分析,也就决定了其无法胜任科研活动的研究。尤其是当前大学生的对挂科与不挂科的态度,决定了学生学习该门课程的态度。因此,教育者在本科教学过程中,要不断的思考并进行相关教学的改革实践,其当前改革的成效大多集中在:通过毕业论文检验学生对该门课程的学习程度,以及在教学过程中引入计算机知识,培养学生的实践能力。在笔者看来,实现体育统计学教学模式的改革实践,可以从以下几个方面入手:首先将传统教学方法与一次性嵌入教学相结合,一人一台电脑进行EXCEL软件的操作,进行数据的输入、编辑、修饰以及数据图表的输出,并使用Excel内常用的统计命令使用、根据相关原始数据进行t统计学知识运用的基本操作,将教师的讲授与学生的上机操作结合起来,提高学生的学习积极性,改善教学模式,实现教学目标。

4结语

第9篇

在各种医学期刊中,半数以上是疗效观察方面的论著。现择其较普遍存在的统计学问题,结合实验设计基本原则加以讨论。

(一)对照与均衡性测定

国内医学期刊有关临床疗效观察的文章甚多,不少杂志刊登了一些事先未设计对照的文章,其结论难以令人信服。如《用柴葛解肌汤治疗上呼吸感染》一文,报道治愈好转率为97.7%,因无对照,无法断定其效果如何,因此,治愈好转率中含有假像。

对照的方法虽有多种,但对照的基本原则是与实验组齐同可比,最好作均衡性测定。

(二)安慰剂与盲法试验

安慰剂与盲法试验是医研(主要是比较性研究)中常用的科研方法,结果准确、误差性小。安慰剂在形、量、色、味等要与实验药物一样,不能给受试者和执行者任何暗示。这种试验就是双盲法试验。但近年来,尚有人用改良的双盲法,此法分两期:第一期(公开期)试验有效者留,无效者弃。有效者进入第二期(双盲试验),以确定疗效是否系安慰剂的作用。在预防效果观察时可采用该法,临床上应用诸多困难,应视具体情况而定。

(三)样本含量与重复原则

没有足够样本的研究结果,是经不起重复试验的,有的论文凭少数病例观实的结果下结论,是不慎重的。如《重症肺炎并发DIC29例》一文,作者观察脑型患者3例,其中死亡一例,就得出“一般脑型病死率高达57%,本组脑型病死率较低,看来及早用肝素阻断DIC过程,对降低脑型病死率可能具有重要意义”的结论。因无对照,结论不可靠。

(四)随机分组与实验设计类型

随机化分组即每个实验对象有同等机会被抽样(分配)到各组去,而不受任何系统因素的影响。常用的实验设计类型有完全随机设计、自身对照设计、交义设计、配偶设计、随机区组设计、拉丁方设计、正文(析因)设计、序贯设计、半数效量实验设计(动物试验),回顾性与前赡性调查研究设计等。科研设计时应根据研究目的要求选择不同类型的实验设计方法,进行相应的统计处理。

第10篇

收集我院2011年1月至2013年12月我院护理人员每个季度各科室各项报表,各科室护理统计记录,包括入院资料汇总、出院登记、门诊病人统计汇总等。收集我院由2011年1月至2013年12月间发表于国内公开杂志的护理方面论文80篇中,剔除未涉及统计方面的论文,随机抽取50余篇。对统计工作的特点进行分析,并针对目前其所出现的统计分析、统计描述、统计推断等方面的问题,予以探讨。

2分析

2.1医学信息统计的本身特点及存在的问题

第一,多样性和个体性。由于信息数据源自个体病人,病人本身的个体差异性导致了医学信息的多样性。虽然某些信息可能对临床护理或治疗极为重要,但患者出于对自身隐私的保护而拒绝回答,尤其是在既往史方面。其二,难控制性。比如在研究某种人自身性免疫性疾病的时候,护理人员需要对患者的整体生活环境、饮食状况都明确了解,但是每一个患者的生活不可能是模式化的。针对传染性疾病,虽然有季节性和地域性的特点,但是在实际工作中,患者的来源仍具有较大的分散性,这就造成了归类总结的难度加大。成本增高。其三,长期性,患者病情的好转、康复是一个漫长的过程,时间上的跨度可能极大,而患者不可能长期处于住院状态,从而增加了后期工作的困难。在实际的工作中,存在医学统计学的信息失真,主要表现为:①统计信息中的信息伪造,主要表现在某种疾病的治愈率及药品的有效性。②统计信息的遗漏:如医院医疗事故及投诉记录低于实际情况。③统计工具的误用、滥用。如由于信息的理解偏差导致统计设计不合理,分析软件使用不当,导致信息转化失真等。

2.2科研论文中统计学应用不当的情况

2.2.1统计设计不合理。

在得出有说服力的结论之前,统计设计的合理性、正确性尤为重要。不同的统计设计方法有不同的合理使用范围。统计设计的选择和使用必须要与后期解决的问题无原则上的漏洞。如果这个标准本身存在瑕疵,则期后期结果的说服力可能大打折扣。我院药剂科为比较A、B两种药物对糖尿病患者血糖控制的效果,与内分泌科合作,按随机原则挑选出68名2型糖尿病患者,分别设定对照组,安慰剂组,A、B两种药物再分别再设高剂量组和低剂量组。6周后观察血糖变化。在统计方法的选用中,采用两因素两水平的析因设计。两因素为两种不同的药物,两水平为A和B两种药物不同的服用剂量。通过统计学检验,主要回答三个问题:①不同的药物之间在控制血糖水平方面是否存在差异?②药物和所对应的服用剂量之间是否存在交互作用?③同种药物,服用剂量的不同是否在控制血糖方面存在差异?本文认为上述设计虽无明显漏洞,还需要注意到:析因设计中的主效应是某因素各单独效应的平均效应,当析因设计存在因素间交互作用时,主效应并不能反映出该处理因素的真实作用,在此例中,就需要考虑到A或者B药在剂量因素的某个处理水平上的效应。

2.2.2两组没有可比性。

某作者通过长期的调查、随访,探讨家属的探视及精神的关怀对重症颅脑损失患者后期精神症状的发生是否存在关联。实验组1的家属对患者予以无微不至的生活照顾及心灵关怀。实验组2的家属相对冷淡,在生活照顾的时间上明显缩短,对心理的关怀也较为肤浅。差异具有统计学意义(P<0.05)。但存在的问题是患者的后期预后是与其各自的治疗密切相关的,治疗的相同是基础。其二,即使同样是重型颅脑手术后患者,其身体素质,受伤情况的不同,后期的预后就有可能不同。其三,精神关怀、照顾缺乏量化标准,怎么算是无微不至,怎样才算是相对冷淡?从而使得该研究的说服力欠佳。

2.2.3统计描述方面。

在许多关于相关性分析的文章中,人们的关注点可能还主要是在P是否<0.05上,但其实,应该根据(r相关)值的大小,来说明二者是否存在高度的相关性。例如某论文中统计非甾体类药物与血清白介素浓度的相关系数(r=0.397,P<0.05)。结论认为二者之间呈高度相关性。但本文认为其表达不够科学严谨。因为在相关系数的假设检验P<0.05的情况下,直接说明的是两者之间是否存在线性关系,具体到是高度相关还是低度相关,取决于r的具体数值。一般认为相关系数≥0.7算是高度相关,0.4≤相关系数<0.7为中度相关,相关系数<0.4为低度相关。

2.2.4统计推断方面。

一般而言,当我们所得的P<0.05时,其意义在于两事物来源于不同的整体,存在差异,但并不能客观的说明本身差异的大小。例如我院皮肤科比较A、B两种治疗方法对银屑病的治效果。最初设定为A法的疗效优于B法。认为若经过统计计算,结果为P<0.001时,A法极显著优于B法;若得到P<0.01或P<0.05时,则认为A法显著或稍微优于B法。本文认为所得结论有失真实。失真的原因是就是对P值的理解不准,统计学上P值的大小只能反映两者相同或不相同,是否来源于同一整体。P值越小,越说明两种治疗方法本质上不同,治疗效果的不同,但是并不能直接反映其效果的优劣。

3对策

第11篇

关键词:统计学教学模式EXCEL

引言

进入21世纪,随着我国市场化步伐的加快,社会对新知识的需求日益增加,无论是国民经济管理,还是公司企业乃至个人的经营、投资决策,都越来越依赖于数量分析,依赖于统计方法,统计方法已成为管理、经贸、金融等许多学科领域科学研究的重要方法。

一、《统计学》课程教学面临的挑战

1.1内容日益丰富。长期以来,在我国存在两门相互独立的统计学——数理统计学和社会经济统计学,分别隶属于数学学科和经济学学科。统计学是一门通用方法论的科学,是一种定量认识问题的工具。统计方法只有与具体的实质性学科相结合,才能够发挥出其强大的数量分析功效。这些分支学科的存在主要不是为了发展统计方法,而是为了解决实质性学科研究中的有关定量分析问题,统计方法是在这一应用过程中得以完善和发展的。随着大统计学思想的建立和统计学在实质学科中的应用的需要,大多数学校和老师在财经类专业的本、专科专业《统计学》教学过程中,除了保留社会经济统计学原理中仍有现实意义的内容,如统计学的研究对象方法、统计的基本概念、统计数据的搜集整理、平均及变异指标、总量指标、相对指标、抽样调查、时间序列、统计指数等;同时也系统的充实了统计推断的内容,如:统计数据的分布特征、假设检验、方差分析、相关与回归分析、统计决策等。

1.2学生的学习难度加大。首先、结合《统计学》的课程特点——概念多而且概念之间的关系十分复杂、公式多且计算有一定难度等。如果学生不做必要的课外阅读、练习和实践活动,是很难理解和掌握的。对于财经类专业的本、专科专业的学生来说,由于其本专业的课程体系要求,使得学生的数学或者数理统计的基础不是特别好,对于专科学生来说更不用说,推断统计将是他们学习的困难。

1.3教师的教学难度加大。授课内容越来越丰富;课程难度太大可能导致学生兴趣下降;传统教学方法的主要目的是让学生了解、掌握知识,其一成不变的教学内容和模式,学生味同嚼蜡,学生只是被动地吸收知识,最后得到的效果就是使其不思进取缺乏新意。高等教育扩招后,大多数学校,授课班级学生人数越来越多,一个教师跨越不同专业授课。这要求授课教师必须深刻领会授课内容的核心和相互关系,学会控制和驾驭课堂教学,注重统计学在不同专业领域的具体应用等等。教师和学生之间不再只是简单的知识“单向”传递,而是师生之间思想、心得、智慧的“双向”交流,教师和学生都承担了更多的教与学的责任。

二、《统计学》教学的发展趋势分析

2.1统计学从数学技巧转向数据分析的训练。在计算机及计算机网络非常普及的今天,统计计算技术不再是统计学教学的重点了。统计思想、统计应用才应该是重点。现代统计方法的实际应用离不开现代信息处理技术。统计软件的使用,不仅使统计数据的计算和显示变得简单、准确,而且使统计教学由繁琐抽象变得简单轻松、由枯燥乏味变得趣味盎然。所以,在统计教学过程中,大量的内容只需要给学生讲清楚统计基本思想、计算的原理和正确应用的条件、正确解读计算的结果,而对大量复杂具体的计算可以交给计算机去完成。注重引导学生运用所学知识来解决实际问题,给学生多做一些教学案例,教学案例与教科书上的例题不同,例题的作用是单一的、有限的,通过例题只是掌握和熟练所学的统计方法及计算公式,而案例的作用是多方面的,它让学生了解了分析问题的思路,要解决什么问题,如何解决,应用什么理论和方法,需要什么数据,怎样解读计算结果,并根据分析结果,提出针对性的对策和措施,训练学生综合运用所学知识去解决实际问题的能力,激发学生学习的兴趣和求知的欲望。

2.2通过统计实践学习统计。它要求统计教师不仅要融会贯通统计理论和方法,而且要对案例中问题的解决思路和方法有熟练的把握。在教学中学生是主角,教师起引导作用,针对不同的统计教学案例,教师只有事先亲自采用各种方法进行计算和分析,才能对学生使用哪些统计方法和统计分析软件进行计算和分析提出建议,并对学生采用不同的分析方法和得到的分析结果作出比较透明的比较和评价。通过课堂现场教学,引导学生利用课余时间完成项目,利用假期时间,通过参加学校组织的某些团队、小组或自己组织去开展一些与专业有关的活动,全方位地激发学生的学习兴趣、培养学生的专业能力、方法能力和社会能力。

三、基于EXCEL的《统计学》教学设想

如何从烦琐的数理统计技巧转向数据处理的训练,教师的导向是第一位的,必须选择容易获得而且普及性比较强的统计分析软件,并在课堂教学和引导学生实践中广泛采用。

3.1微软公司开发的EXCEL软件无疑是我们最好的选择专业的统计分析软件SPSS、SAS、BMDP、SYSTAT其功能固然强大,统计分析的专业性、权威性不可否认,但是对于没有开设统计学专业的院校这些软件并不常用,微软公司开发的EXCEL软件作为一款优秀的表格软件,其提供的统计分析功能虽然比不上专业统计软件,但它比专业统计软件易学易用,便于掌握。对于《统计学》这门课程而言,利用EXCEL提供的统计函数和分析工具,结合电子表格技术,已能满足统计方面的要求。

3.2基于EXCEL的《统计学》教学设想

3.2.1在教学内容上,依据EXCEL的函数功能、电子表格功能、数据分析功能,结合统计学原理的基本理论和方法,对统计数据的搜集主要强调统计报表制度,在EXCEL环境应该更注重抽样推断,EXCEL提供的随机抽样工具使得抽样调查不再是十分复杂的技术,统计图也可以被广泛运用于对数据的描述。

3.2.2案例教学成为《统计学》课程的重要内容。案例教学法不仅可以将理论与实际紧密联系起来,使学生在课堂上就能接触到大量的实际问题,而且对提高学生综合分析和解决实际问题的能力大有帮助。结合学生所学专业精选案例教学,比如对于金融专业的学生可以设计用几何平均数计算投资的平均收益率、运用标志变异指标考察投资组合的风险大小等。对于经管专业的学生,精选抽样推断、假设检验、方差分析对于控制产品质量,经营决策等方面的案例,深入浅出地介绍这些方法的基本思想、并用EXCEL进行分析。

3.2.3改革考试方式和内容,合理评定学生成绩。对于《统计学原理》的考试,多年以来一直沿用闭卷笔试的方式。这种考试方式对于保证教学质量,维持正常的教学秩序起到了一定的作用,但也存在着缺陷。在过去的《统计学》教学中,基本运算能力被认为是首要的培养目标,教科书中的各种例题主要是向学生展示如何运用公式进行计算。这样导致了学生在学习《统计学》课程的过程中,为应付考试把精力过多的花在了概念、公式的死记硬背上。这与财经类专业培养新世纪高素质的经济管理人才是格格不入的。为此,需要对《统计学》考试进行了改革,主要包括两个方面:一是考试内容与要求不仅体现出《统计学》的基本知识和基本运算以及推理能力,还注重了学生各种能力的考查,尤其是创新能力。二是考试模式不居一格,除了普遍采用的闭卷考试外,还在教学中用讨论、答辩和小论文的方式进行考核,采取灵活多样的考试组织形式。学生成绩的测评根据学生参与教学活动的程度、学习过程中提交的读书报告、上机操作和卷面考试成绩等综合评定。这样,可以引导学生在学好基础知识的基础上,注重技能训练与能力的培养。

参考文献:

[1]谢安邦.高等教育学[M].北京:高等教育出版社.1999.

[2]贾俊平.统计学[M].北京:中国人民大学出版社.2000.

第12篇

目前,很多研究人员对影像资料分析方法的学习和理解存在一定困难,尤其初学者对繁杂的概念、复杂的计算公式、数据资料性质判断以及如何选择合适统计学方法等问题难以深刻理解。针对这些问题,王良等[1]建议采用以下模式:判断资料类型、根据研究目的选择分析方法、其他适宜方法。

1.1根据资料类型初步确定方法

临床研究中产生的各种不同原始资料,而不同数据资料类型采用的统计分析方法也不同。定量资料常用的方法有t检验、方差分析、非参数检验、线性相关与回归分析等。定性资料可用的方法有χ2检验、对数线性模型、logistic回归等,影像医师可根据不同需要选用不同统计方法。值得一提的是有些资料类型确定后,统计方法的选用对其有序性有相应要求;而多种方法联合应用或者使用部分少见的分析方法时还需要在选定统计方法后,利用统计软件(如SAS、SPSS)对应的不同命令进行初步分析试验。

1.2根据研究目的选择方法

1.2.1差异性研究

差异性分析是指评价比较组间均数、频数、比率等的差异。根据研究需要可选用的方法有χ2检验、t检验、方差分析、非参数检验等。临床上研究两组、多组样本比率或构成比之间的差别关系时最常用χ2检验,也是针对计数资料进行假设检验的一种常用的统计学方法,而对两组定量资料分析常用t检验和秩和检验,多组资料分析则常用方差分析;Fisher精确概率法主要适用于总体样本频数小于40或四格表中最小格子T值<1。虽然Fisher精确检验不属于χ2检验,但仍可以作为有效的补充,而也有人认为在统计软件普遍易得的当下,Fisher精确概率法也同样适用于大样本四格表的资料。如彭泽华等[6]在探讨冠状窦-左心房肌连接的双源CT冠状动脉成像(DSCTCA)形态特征时针对冠状窦-左心房肌连接的类型在两组类别变量采用联表的χ2检验,结果差异无统计学意义(χ2=0.115,P=0.944)。Teefey等[7]在研究超声表现及白细胞计数预测急性胆囊炎坏疽变化关系时使用Fisher精确分析。t检验适用于两组定量资料分析且资料满足方差齐性和正态性两个基本条件;同样t检验适用于完全随机设计的单因素两水平的资料,在选用t检验时应注意对资料进行相应的变量变换,若资料不能满足基本条件则选用适合分析偏态分布的非参数检验(如:秩和检验)进行分析。如Wang等[8]在研究不同侵袭性的前列腺癌组织和正常前列腺组织以及外周带前列腺癌Gleason评分与肿瘤信号对比时采用t检验。Kung等[9]在研究化脓性髋关节炎的临床和放射学预测指标时也使用t检验分析。秩和检验包括基本秩和检验(Wilcoxon等级检验、Mann-WhitneyU-检验)和高级秩和检验(Kruskal-Wallis、Friedmantests、Kolmogorov-Smirnov拟合检验)。当研究资料为两方差齐且呈正态分布的总体,而总体分布类型未知或者不满足参数检验的条件时,采用t检验对样本进行比较;但若无需比较总体参数只比较总置的分布是否相同且总体资料分布类型未知时需要采用非参数的Wilcoxon秩和检验进行比较。针对两组或多组样本的定性资料使用秩和检验比较时,需要混合两样本数据、编秩(从小到大)、计量T值、查表或计算求得P值。如Saindane等[10]在对“空蝶鞍”的临床意义判定因素研究中针对颅内压增高和偶然发现空蝶鞍患者两组资料对比时采用Wilcoxon秩和检验。Filippi等[11]在研究DTI测量儿童Ι型神经纤维瘤病胼胝体派生指标时运用Wilcoxon秩和检验。事实上在影像资料分析中经常见到多重组间比较的情况,方差分析(analysisofvariance,ANOVA)就是用来推断两个或者多个总体之间是否有差别的检验,又称F检验。多重组间比较不能单纯选用两样本均数比较的t检验,但是可以根据资料类型选用ANOVA检验。若来自两个随机样本资料呈正态分布且方差齐性同的定量资料,应采用两因素(处理、配伍)方差分析(two-wayANOVA)或配对t检验。通过F检验可以比较可能由某因素所至的变异或随机误差,同时可了解该因素对测定结果有无影响。当不满足方差分析和t检验条件时,可对数据进行变换或采用随机区组设计资料的FriedmanM检验。Obdeijn等[12]在研究乳腺术前MRI能减少术中切缘和乳腺保守术后再次手术,使用ANOVA分析两组资料,结果对照组(29.3%)相比术前MRI病例组(15.8%)有效减少切缘和再次手术(P<0.01)。

1.2.2相关性分析

相关性分析不等同因果性,也不是简单的个性化相比,其涵盖的范围和领域较为广泛。统计学意义中的相关性分析包含相关性系数的计算,其过程为:每个变量转化为标准单位后,乘积的平均数即为相关系数。相关性分析可以用直观地用散点图表示两个或者多个变量的离散,当其紧密地靠近于一条直线时,即变量间存在很强的相关性。相关分析常用的方法有Pearson相关性分析、Spearman等级相关分析和卡方检验。临床中对两个或者多个均为定量变量的资料,且变量均呈正态分布时可选用Pearson相关分析,但多数情况下Pearson相关分析适用于两组资料的相关性分析。判断两变量之间线性关系的密切程度主要用Pearson积差相关系数,其范围为-1~+1。若相关系数的绝对值越接近1,即两变量间相关性越密切;反之,相关系数的绝对值越接近0,其相关性越差。实际上在高质量期刊论文中使用Spearman等级相关分析的研究也很常见,其通过相关系数进行变量间线性关系分析来判定两个变量间相关性的密切程度。而密切程度的量化指标则通过计算样本相关系数r,根据实际计算r绝对值所属范围来推断两个来自总体变量的线性相关程度,从而推断总体的相关性。根据实际分析需要,将相关关系密切程度分为6等:当IrI=0时,说明两变量完全不相关:当0<IrI<0.3时,说明两变量不相关;当0.3<IrI<0.5时,说明两变量低度相关;当0.5<IrI<0.8时,说明两变量显著相关;当0.8<IrI<1说明两变量高度相关:当IrI=l时,说明两个变量完全相关。王效春等[13]在研究磁敏感加权成像与动态磁敏感加权对比增强MR灌注加权成像联合应用在脑星形细胞瘤分级中的价值一文应用Spearman等级相关分析,结果显示肿瘤内磁敏感信号与相对血容量最大值和病理分级呈正相关(IrI分别为0.72、0.89,P值均<0.01),相对血容量与病理分级呈显著正相关(r=0.78,P<0.01)。又如Lederlin等[14]在比较几何参数、相关功能与组织学特性在哮喘患者的支气管壁CT衰减性关系中同时使用Pearson相关分析和Spearman等级相关分析,其r=0.39~0.43,表明与对照组相比常规CT衰减参数在哮喘患者平常支气管的CT参数、气道壁衰减方面更好的区分哮喘患者,同时也更好地区分气道梗阻。值得提及的是对资料有序或无序无法作出初步判定,且明确资料类型为定性资料时还可以选择使用卡方检验和Spearman等级相关分析。

1.2.3影响性分析

由于事物之间的联系是多种多样的,而某一结局可能受到来自其他多个方面的影响,此时为分析某一结局发生的影响因素可采用的资料分析方法有线性回归(一元或多元)、logistic回归、Cox比例风险回归模型(生存分析)等。在影像资料分析中一元线性回归是将影像资料中一个最主要影响因素作为自变量来解释因变量的变化。多元回归定义为某一因变量的变化受多个重要因素的影响,而此时需要用两个或多个影响因素作为自变量来解释因变量的变化,且多个自变量与因变量之间是线性关系(多个因变量之间相互独立)。实际研究中多元线性回归模型在影像资料分析应用较为广泛。Langkammer等[15]在磁敏感系数绘图在多发性硬化中应用研究中使用多元线性分析,结果显示各种影响因素中年龄是预测磁化率影响最强的因素。Logistic回归是研究二分类和多分类观察结果与某些影响因素自己建关系的一种多变化分析方法,其经常需要分析疾病与各影像指标之间的定量关系,同时又需要排除一些混杂因素影响。Logistic回归在统计学上属于概率型非线性回归,其分析思路与线性回归大致相同,能有效解决过高或过低水平因素以及分析因素少而样本量大等问题。相比多元线性回归,Logistic回归在处理分类反应数据方面更为常用,且适用于结局为定性影像资料。如Lee等[16]研究高分辨率CT在发现小蜂窝样特发性间质肺炎纤维化的连续变化和预后应用中使用logistic回归分析,结果表明高分辨率CT在网状和磨玻璃状范围内评价普通肺炎与非特异性纤维化肺炎之间差别明显(P<0.01)。在临床实际工作中常常需要分析生存时间与影像资料之间的关系,Kaplan-Meier法就是常用的一种分析方法,其又称乘积极限法,对大小样本资料分析均适用。实践中习惯上以时间为横轴、生存率为纵轴回执的阶梯状图称为Kaplan-Meier生存曲线(survivalcurve),也称K-M曲线。Cox比例风险回归模型是另一种生存分析方法,包括参数与半参数模型两类,其主要是进行多因素生存分析的一种方法,同时可分析众多变量对生存时间和生存结局的影响。Saad等[17]在经颈静脉肝内门体静脉分流术在肝移植受者的技术分析和临床评估研究中比较成功施行肝移植与非移植病人开展门体分流术(transjugularintrahepaticportosystemicshunt,TIPS)后的临床疗效评估,使用了Kaplan-Meier法,结果显示6~12个月、12~24个月、24个月以上,移植成活率分别为43%、32%和22%。生存期大于1年的晚期肝脏疾病模型存活评分低于17分、等于17分或大于17分的存活率分别为54%和8%(P<0.05)。

2其他适用方法

2.1ROC曲线

ROC(receiveroperatingcharacteristic)曲线是欧美影像学期刊中应用较为常见的统计学方法,国内期刊应用相对较少。ROC曲线根据一系列不同的分界值以真阳性率(灵敏性)为纵坐标,假阳性率(特异性)为横坐标绘制的曲线。ROC曲线分析结合灵敏度(sensitivity)和特异度(specificity)广泛应用于医学诊断,也应用于影像诊断及人群筛查。ROC曲线根据曲线下面积(areaundertheROCcurve,AUC)的大小对诊断试验作定量分析。理论上,AUC值在0~1间。根据实际情况将诊断分为不符合诊断(AUC<0.5)、无诊断价值(AUC=0.5)、低准确性(0.5<AUC<0.7)、一定准确性(0.7<AUC<0.9)、较高准确性(0.9<AUC<1),AUC越接近于1,表明诊断准确性越高。Hyodo等[18]在研究乏血管少结节的慢性肝脏疾病患者发展成富血管性肝细胞癌风险因素一文中使用ROC曲线分析,结果显示后续发展成血管性结节平均增长率明显高于非血管过渡性结节。

2.2Kappa检验

Kappa检验主要用于评价不同资料间一致性程度,常用Kappa值评价一致程度。Kappa系数适用于两项和多项无序分类变量资料。在影像学试验中常需要判断多名医师测量同一研究对象或者同一医师多次测量同一对象的一致性,Kappa一致性检验便是最佳选择。Kappa检验还可通过计算Kappa值对两种非金标准的诊断方法进行诊断结果一致性分析。一般而言,评价Kappa一致性需要计算Kappa系数,但在研究考察新的诊断试验方法是否优于金标准,或者检验是否与金标准一致时,还需要计算特异度、灵敏度、阳性预测值和阴性预测值等指标。目前公认的Kappa系数分为六个区段即一致性极差(Kappa值<0),一致性微弱(Kappa值0~0.2),一致性弱(Kappa值0.21~0.40),中度一致Kappa值(0.41~0.60),高度一致(Kappa值0.61~0.80),一致性极强(Kappa值0.81~1.00)。

2.3Levene检验

第13篇

统计学是高校财经及管理类专业的基础课程,也是一门实践性很强的方法论学科,教材涵盖内容广泛,图表数据较多,计算公式也较为复杂。传统的课堂教学以教师讲授为主,处理分析数据主要依赖手工,速度慢且效率低,学生对统计活动的过程和功能只能部分或片面地认识和体验。多媒体教学很好地解决了这一问题。目前,多媒体教学在我国高校统计学教学领域得到了广泛应用。统计学课程多媒体教学常用的主要形式有以下几种。

第一,运用Powerpoint等课件。常用的制作课件软件有Word、Powerpoint等,后者更实用普遍。教师在占有大量统计资料、认真研究课程特点的基础上,根据教学规律精心选材并设计课件脚本,使用多媒体教学辅助系统,在Power-point课件中把文字、符号、动画、声音和影像等众多信息有机合成起来,通过操作计算机向学生一边展示课件内容一边讲授课程内容,包括解释新概念、讲述基本原理、分析论证及实践应用等,在引入案例时可配以漫画、动画及专家解读等,还可以超链接加入视频和网页资料,大大丰富了教学内容。

第二,运用Excel、Spss、Eviews等统计分析软件。在统计学教学中,选择处理各种数据的科学方法至关重要。常用的数据分析软件如Excel、Spss、Eviews等,使现代化的计算和分析工具与传统的统计理论教学有机地结合在一起,能够将教师从繁杂费劲的数据计算中解脱出来,还可将数值计算、预测、绘图、制表等过程动态地呈现出来。同时,采用统计软件辅助教学,可以去掉烦琐的理论证明和推理计算,增加统计软件使用方法的传授,将统计学的教学重点转向对统计结果实际意义的理解上,提高学生观察和处理数据的能力,锻炼学生使用统计软件解决实际问题的能力。

第三,运用Authorware交互手段。Authorware是一种解释型、基于流程的图形编程语言,编制的软件具有强大的交互功能,可任意控制程序流程,主要实现方式为提问—回答—反馈,在人机对话中,提供按键、按鼠标、限时等多种应答方式。在教学活动中,教师可编制各种统计学问题,由学生基于任务或兴趣自主检索解答。由于系统能够自动反馈并给予指导和帮助,引导学生进行自助式学习,所以被广泛应用于统计学训练、答疑和测试中,学生可以通过该交互系统进行自我检验,考察对知识原理的理解和对模型方法的掌握程度。

二、统计学课程多媒体教学的主要优点

第一,多媒体教学转变了教师传统的教育观念。传统的统计学教学主要利用板书形式,教师通过讲和问进行教学,教师和学生都拘泥于课堂的讲和听,是一种注入式教学。多媒体教学拓宽甚至颠覆了传统的教学模式,教师借助多媒体课件、演示文档及统计分析软件、互联网等进行教学,学生从被动的接受者转变为积极的参与者,有利于培养学生的实际操作能力。

第二,统计分析软件将教师从繁重的计算和验算劳动中解脱出来,有助于教师合理安排教学活动。传统的统计教学建立在手工计算的基础上,由于受到课时和学生数学基础的限制,教学重点是统计学基础理论和原理,教学广度与深度都无法满足实际应用的需要。用统计分析软件如Excel、Spss、Eviews等代替手工计算后,教师能够快速完成数据资料的处理,将统计学概念和原理演算以课件方式自动演示,节省复杂演算的时间,减少体力劳动的付出,将时间和精力转向统计学在社会经济现象中的实践应用,使学生深入理解和掌握各种统计方法的应用条件和实际效果。

第三,教师根据课程特点制作多媒体课件,可以增大课堂容量,提高教学效率。教师可以在认真研究课程特点的基础上,根据教学规律精心选材并组织设计教学内容,制作以文字为主,穿插图片、统计图表、超链接视频等资料的课件,统计学中的统计图、统计表、统计公式和计算过程等也可以通过操作Excel软件完成。演示课件可以帮助教师节省板书时间,大大缩短演示图表、统计计算的时间,非常适合统计学类课程教学。

第四,互联网强大的链接功能,可以丰富学生视野,激发学生兴趣。统计学中的各种统计方法和模型的应用和实践是课程教学的重点。传统的统计学教学在实施案例教学时多依赖教师的语言和肢体描述,学生无法真切地体验统计模型和方法在经济社会中的具体功用。而多媒体教学充分利用网络媒介,把文字、图形、影像、声音、视频、动画等有机融合在一起,克服空间和时间的限制,使抽象内容形象化,为课堂教学营造图文并茂、形象生动的模拟与仿真情境,有利于激发学生学习统计学的兴趣。

第五,学生通过操作计算软件完成模拟分析,有助于提高他们解决实际问题的能力。由于统计学教学内容涉及大量的计算、演算及分析活动,在传统的教学条件下,无法让学生利用多种统计方法处理同一组资料,显示多种统计图形,快捷地输出计算结果,也无法让学生体验不同统计方法的优缺点。在统计学实践教学模块中,借助计算机能快速完成数据处理,学生在实训室操作计算机,通过录入数据、选择模型、检验参数、数据分析、导出统计图表等一系列活动,对统计理论及计算过程的理解会有很大程度的提高,突出了统计学课程实践性的特点。

第六,借助多媒体教学手段,开展创新教育,培养学生的创造性思维。统计学教学的核心是训练学生的统计思维。教师借助现代化教学手段,根据教学内容选择恰当的教学方法,可以激发学生的思考热情和学习好奇心,有助于培养学生的创造性思维。例如,在统计调查环节,教师指导并组织学生根据兴趣自主选题,从调查方案的设计、制定和实施,统计资料的整理、审核、分析,再到调查报告的编写都由学生完成,学生在轻松愉悦的氛围中完成一项完整的统计活动,有助于提升他们的思维能力。

三、统计学课程多媒体教学的弊端

第一,以辅代主,过度依赖多媒体。多媒体教学应与传统教学相结合提高教学效果。书写与讲解能够清晰地显现思维过程,教师的黑板书写、娓娓道来的讲解不仅能将问题讲清楚,也使课堂氛围显得生动与亲切。从目前统计学教学现状来看,有些学校要求课程教学必须采用多媒体技术,有的教师授课时过分依赖课件,课堂驾驭能力差,难以控制课堂教学活动,甚至在多媒体出现故障时无法正常讲课。

第二,缺少高质量的统计学课件。多媒体教学对教师提出了更高的要求,除了要掌握统计学知识之外,还要熟悉计算机操作技能、具备制作课件的能力、能应用至少一种统计分析软件。教师制作一套直观、生动、形象的课件绝非易事,如果仅仅是将教材上的文字和图形搬上课件,其思维方式和设计思路仍停留在传统教学模式上,就无法达到激发学生学习兴趣、提高课堂效率、实现教学过程最优化的多媒体教学初衷。

第三,信息超量,教学没有重点。信息充分是多媒体教学的优势,但教学内容不能脱离学生的接受能力。信息量太大、节奏太快,会使学生无法跟上讲课进度,只能被动地接受授课内容,缺乏思维过程。而为了迎合学生兴趣追求课件的新颖性和动感,过多地运用强烈的色彩、图片和动画或插入过多的动画及视频文件,学生的注意力就难以集中。从多媒体课堂教学实践看,过多的课件信息,会使教学显得主次不分,学生不知教学目的所在。因此,按照统计学的教学目标和教学内容,收集合适的资料,向学生传递适量的信息,才能充分发挥多媒体教学的长处,弥补传统教学的不足。

第14篇

笔者探讨的是全校的统计学公共课中案例教学的实施问题,鉴于课程大纲要求的教学内容较多,而分配的教学课时偏少,我们没有充裕的时间在整个课程中全程或者大量应用案例教学法,于是选择了教材中的“相关分析和回归分析”和“主成分分析和因子分析”两章进行案例教学。之所以选择这两章进行案例教学,是因为在这之前已将统计学的大部分基本理论知识介绍完毕,学生已经熟悉了统计学的基本概念和基础理论。另外与课本中之前章节侧重理论知识不同,这两章内容更侧重统计方法的介绍与应用,更能完整地体现统计学在实践领域中应用时的思路、方式和方法。教改试验班级为经济学院的几个不同本科专业的混合班级,总人数达八十多人,人数较多但是具有比较一致的专业背景,所以我们选用来自经济金融领域的实际案例。此类案例非常多,相应的数据获取途径也很多,我们在选择案例时主要考虑了以下几个原则:1.案例所阐述的问题应该具有实际背景和现实意义,能够激发学生研究并解决问题的兴趣。能够调动学生主动学习的积极性是案例教学与传统教学最主要的区别,所以这是我们在选择案例时应该首先考虑的原则。2.案例需要解决的问题应该是清晰的。在课程中,案例是作为一种介绍统计方法的媒介,我们希望学生在使用案例的过程中掌握相应的统计方法,因此不可选择那些过于复杂庞大的案例,重点在于方便学生厘清思路。3.解决案例问题的所需知识和方法最好能够涵盖已学的所有知识点,并能最后留一些思考和引申的空间。无论是传统教学还是案例教学,最终目的都为了促进学生掌握知识,提高学生解决问题的能力。所以如果一个案例能够充分地展现已学知识的用处,在带给学生成就感的同时还能给学生留有一些思考的余地,激发他们学习探索的兴趣是再好不过的了。

二、案例教学的实施与操作

统计学的教学目的是为了介绍统计方法和思想,是服务于实际案例的一种工具,并不是案例需要解决主体问题。因此在组织统计学案例教学的过程中与管理学、法学等学科的案例教学组织方式有所不同。后者更注重从宏观层面分析问题,而统计学更侧重于解决问题的方法,让学生找出统计方法能够解决问题的切入点所在。因此对于统计学案例教学的课堂组织可以分为三个层次进行,具体来讲,首先,通过教师讲授只包含有少数知识点的案例,让学生了解分析案例解决实际问题的基本思路,在这个层次下,以教师的讲授为主,但是应该有相应的案例对学生进行训练和巩固,在学生已经掌握基本的常用的统计分析方法后,给出一些较为综合的包含多个相关知识点的案例,让学生分组讨论,给出解决方案,并报告各组的分析结果。该层次下的应该以学生为主体,由于统计案例的分析离不开统计软件对数据以及模型进行分析,因此该阶段最好放在机房进行,而且应该提前给出案例,让学生有足够的时间讨论研究,在上课过程中主要以小组为单位讲解自己的案例分析过程和结果,各组之间可相互评论。在此,教师可针对报告过程中暴露出来的问题或者学生的一些好的想法给予适当的点评和总结。最后,当学生对中型的案例分析有了一定的分析思路,并对统计方法解决实际问题有了一定的经验后,可以给出更加综合的实际案例,可称之为项目的案例,让学生分组讨论最终以研究报告的形式给出分析结果,在此层次上是对学生综合能力的考验,教师可以进一步对研究报告的形式内容,以及分析思路上给予指导和点评。在这个阶段还需要有一个概括总结的过程,可以让学生来做总结,也可以由教师自己来做总结,讲明案例中的关键点以及该案例讨论当中存在的不足和长处,揭示出案例中包含的理论,强化以前所讨论的内容,整理案例分析的思路。以上的实施操作思路是一种理想状态,更适合于小班教学。考虑到公共课人数较多,而案例规模不是很大,需要学生分工合作寻找解决办法的需求不大,我们在实际操作中简化了上述过程,教师先通过一个较为简洁的例子引入讲解知识点以及进行案例分析的思路与步骤,交代案例分析报告的撰写格式与要求,然后给出一个新的案例,学生单独自行分析,并通过提交案例分析报告来汇报分析结果,没有以小组形式进行分析讲解。如此操作当然会减弱案例教学的预期效果,但是只要案例选择得当,基本能够达到训练的目的。在教学过程中我们并非一定要执着于某种形式的教学,因为不同的教学方法都是为教学目标服务的,只要能够达到教学目标,就可以不用太拘泥于形式。教师最后通过案例分析报告获取学生对知识的掌握情况。

三、案例教学的效果及评价

根据案例教学的特点以及其与传统教学的区别,我们需要构建以思维状况的考查为主体的成绩评判与考核机制,改变以往那种以知识积累的考查为主体的机制。在案例教学过程中,如无必要一般对学生案例分析、讨论的表现不宜作优劣评价,而应以鼓励表扬为主,要避免学生由于答案对错的优劣而影响对思维过程的关注。评判时,教师要克服主观随意性和自己对案例理解分析的局限性,应着重考量学生分析的步骤是否恰当(即思路是否清晰)思维要点的选择是否科学、能否抓住重要问题和是否抓住了问题的实质和关键,运用了哪些思维方法以及从什么角度看问题等等。针对我们上面提到的考核方式,即学生单独分析案例并提交案例分析报告的形式,我们对学生的评价就完全取决于报告的质量了。虽然老师无法针对报告对学生提出问题用以考察学生对问题的真正了解情况,但是一份好的报告基本能够反应学生解决问题的思路与对知识方法的掌握情况。提交案例分析报告的考察方式是一种介于传统教学法的知识点考试方式与案例教学法中常用的分组讨论报告之间考察形式,非常适合我们统计学公共课案例教学法的尝试,不但考察了学生知识点的掌握情况,也考察了学生分析问题和解决问题技能的掌握情况。

四、存在的问题与不足

第15篇

统计学案例教学是指在教学中,教师以案例导入所讲内容,围绕要解决的问题,进行知识讲解,学生在教师指导下,运用所学的统计原理和方法,对案例中需要解决的问题进行研究和讨论,对计算过程和计算结果进行分析和评价,最终解决案例中的问题的活动过程,是一种模拟统计实践过程的实践性教学活动。

(一)统计学案例教学的目的

1.培养学生必备的统计思维。正如著名学者Wells所说“统计的思维方法会成为效率公民的必备能力”,培养学生运用统计学的逻辑思维方法去发现问题、分析问题并解决问题,是统计学的目标之一。在传统的教学方法下,学生的统计思维较为缺乏,往往是学完了统计学课程,仍然不会用统计学的原理和方法去思考和解决实际中的问题。通过案例教学,培养学生在社会实践中,面对客观现象的各种数据表现,要善于利用统计的思维方式来思考实践中遇到的问题,用所学的统计方法,对数据进行调查、整理和分析,发现数据内在的数量规律性,从而进行科学的统计预测和决策。

2.提高学生熟练运用统计理论和方法解决实际问题的能力。各种典型的案例都是源于社会经济的实际问题,通过案例教学,分析和讨论案例成功或失败的经验和教训,使学生从传统教学中的被动的“接收者”转变为活动的主动“参与者”,从“理论的学习者”转变为“实践的创造者”,并通过对案例的分析和经验的学习,引导学生提出解决问题的思路、方法等,从而提高分析和解决实际问题的能力。

3.强化学生运用计算机处理统计数据的能力。统计学是一门信息量大且应用性很强的学科,在实践中需要处理的数据繁多、计算复杂,必须借助于计算机和统计软件计算出结果,才能利用计算结果对实际问题进行分析,提出解决问题的具体方案。常用的统计软件SPSS、SAS、EXCEL、E-VIEWS等具有完整的统计分析工具、较强的模拟工具和作图功能,既能实现对现有数据的统计处理,又可以进行各种数据模拟和试验,生动、直观地展示抽象的统计公式、原理和分析结果。通过案例教学,教会学生根据实际需要,选择合适的统计软件,在掌握统计方法和原理的基础上,学会使用计算机和统计软件进行较复杂的计算分析。

(二)统计学案例教学的特点

案例教学法改变了传统教学方法教学内容枯燥、教学方式单一、教学效果不佳的缺点,弥补了传统教学方法的不足,有其自身的优势。

1.激发学生学习的积极性和主动性。统计学的信息量大,内容复杂,表现为一是统计学的概念比较抽象;二是统计原理与数学关系密切,推断统计部分许多公式需要有微积分、概率论等数理知识;三是各种统计分析方法有其特定的应用条件和分析步骤,使统计学成为了一门难学的课程,学生普遍感觉枯燥无味、难学难懂,学习积极性不高,主动性不足。案例教学对实践活动进行真实模拟,将抽象、枯燥的理论结合真实具体的案例进行讲解和分析,既给了学生自主表现的机会,又使学生在教师的指导下,在讨论中学习统计学的原理和方法,主动参与,积极讨论,学生之间相互启发,提高了学生的沟通能力、倾听能力和表达能力,从而充分调动学生学习的主动性和积极性,提高了教学效果。

2.锻炼学生独立思考和分析解决问题的能力。传统讲授法注重统计理论和方法的讲解,学生处于被动地位,案例教学法立足于学生,以学生为中心,学生是教学的主体,注重引导学生运用所学知识解决实际问题。案例将分散的信息、复杂的情景加以描述,在教师的组织和引导下,通过对案例的分析,使学生调动形象思维和逻辑思维,对其中的有关信息进行整理,积极思考、寻求解决问题的有效方法,在独立摸索到解决问题的过程中,逐步形成自己独特的分析和解决问题的方法。统计案例教学使学生从学习者转变为问题的解决者,学会了利用资料来思考、研究并作出判断,在分析案例过程中充分锻炼自己的思维及运用理论知识分析和解决实际问题的能力。

3.加强师生之间的互动。传统讲授法中,教师主要是“教”,充当讲解员的角色,注重知识的“单向”传递,学生被动接受知识,师生间缺乏交流和互动。案例教学中,教师主要是帮助学生从模拟的统计实践活动中“学”,充当导演的角色,引导学生自己发现问题、解决问题。教师从介绍典型案例开始,指导教学的全过程,引导学生去观察思考问题的本质并筛选有关数据信息,通过对案例的组织、讨论和分析,启发学生发现问题并寻找解决问题的方法,最后对整个讨论情况作出总结和评价,引导学生提炼和掌握具体的统计分析方法。学生在教师指导下,积极参与案例的讨论、分析,从学习过程中获得经验。通过案例教学,师生都承担了更多的教与学的责任,加强了师生间“双向”的交流和互动。

4.突出教学内容的可操作性。传统的统计学教学也重视联系实际,但往往由于时间短,联系实际不深入,或者是以干代学,削弱了学校教育的优点,既费时也片面。案例教学的案例来源于社会经济的实践活动,是以培养学生的实践能力为教学目的,学生积极参与案例教学的过程,动脑动手,极大地发挥学生的主观能动性,达到学以致用的目的,获得最好的学习效果。

二、会计专业统计学案例教学的实施

(一)统计学案例教学的准备

实施案例教学之前,教师和学生不仅要明确各自的角色定位,还必须做好相应的准备工作,从而取得更好的教学效果和学习效果。

1.准备合适的统计案例。合适的典型案例是统计学案例教学的前提。教师要准备具有实用性、代表性和针对性的典型案例。首先,案例的内容以统计学的原理和方法为基础,必须密切联系会计专业学生实际和社会经济生活实际。其次,案例必须使学生真正掌握统计原理和方法在社会经济中的应用。最后,案例要围绕学生应掌握的统计基本原理和方法,有针对性地选择社会经济中的实际问题。

2.熟悉统计案例的内容。教师要阐明案例教学的基本思想,如案例分析的方式、过程、常用方法、应注意的问题、教学时间和程序安排等,明确案例的核心内容,熟悉案例的重点、难点。对学生提出学习目的和要求,按要求进行案例的预习,了解案例的背景知识,思考案例所提出的问题,初步形成问题的见解、对策和方案,准备好解决问题必备的知识和多媒体应用技术。

3.必要的数据处理。统计学案例分析经常涉及大量的数据,学生在熟悉案例的同时,必须运用合适的统计软件对相关的统计数据进行处理,做必要的计算和分析,为解决案例中的问题做好准备。

(二)统计学案例教学的组织

案例教学的组织是教学的关键环节,有效组织学生进行案例分析、讨论是教师在案例教学中最重要的任务。成功的案例分析活动,除要求学生普遍接受系统的理论学习外,还要做好以下几方面的组织工作。

1.组织学生进行讨论。首先,进行小组讨论。学生在案例预习并获得有关案例问题的见解后,进入小组讨论阶段。将全班学生分成若干小组,由小组长组织小组讨论。小组成员提出对案例的看法供大家讨论,共同解决案例中提出的问题后,对其中的关键问题再进行重点讨论,比较各种决策方案后形成新的认识。小组讨论完成后,组长准备案例讨论的汇报材料,并在课堂讨论中发言。其次,进行班级讨论。各组代表向全班同学提出本组解决方案(小组成员可以补充),其他学生认真倾听。发言结束后,教师要鼓励学生阐述不同的观点,让其他学生自由提问或是从个人的角度来分析同一案例。

2.教师进行案例教学总结。经过认真的案例讨论后,教师要对不同的观点进行评判,在案例课结束前做案例分析小结。分析案例教学法对实现学习目标的意义、成效、存在的问题及原因,总结经验教训,明确需要进一步探讨和实践的问题,而不是总结个别学生的表现、评价某种观点或是措施的优劣,从而对学生的讨论结果作方向性的指导,提出一些更深层次的问题,引导学生课后继续深入思考。

3.撰写案例分析报告。为了加深学生对案例的理解,案例分析结束后,教师还可以要求每位学生撰写案例分析报告,既综合学生在案例课上的各种观点,又可以加入自己的进一步思考。

三、会计专业统计学案例教学应注意的问题