美章网 精品范文 土建工程和建筑工程的区别范文

土建工程和建筑工程的区别范文

土建工程和建筑工程的区别

土建工程和建筑工程的区别范文第1篇

关键词:场地和地基;地震效应;场地类别;软土震陷;活动断裂

一、前言

场地和地基地震效应评价是岩土工程勘察的重要内容之一。

现行的三种国家标准:《岩土工程勘察规范》(GB50021―2001)、《建筑抗震设计规范》(GB50011-2001)、《建筑地基基础设计规范》(GB50007―2002)明确规定,抗震设防烈度等于或大于6度的地区,勘察设计时应进行场地和地基地震效应评价。

场地和地基地震效应评价评价内容一般包括:场地基底的地震加速度;覆盖层厚度和土的剪切模量不同,会产生不同的地面支运动;地面运动是否会造成场地和地基的失稳或失效,主要是考虑液化、震陷、滑坡、崩塌等;地表断裂造成的破坏,主要是活动断裂蠕动、突然错动造成建筑物剪切破坏;局部地形、地质构造的局部变化引起的地面异常波动所造成的破坏进行建筑抗震地段划分的主要原因。

二、关于场地地段的划分

现行《建筑抗震设计规范》(GB50011-2001)规定,选择建筑场地时,应按表1划分对建筑抗震有利、不利和危险地段。(见表1)

此外,对场地或场地邻近存在岩质陡坡时,尚应具体分析岩层(岩体)的结构特征,尤其是软弱结构面产状,及其与坡面的关系,节理、裂隙发育情况以及破碎程度,评价其稳定性,再按上述原则划分地段。

国内对震害实例的调查及理论分析表明,局部地形地貌、土质条件对震害影响是明显的,因此工程勘察中一定要根据地形地貌查明地基范围内有无故河道、暗滨、埋藏凹地、沟壕、浅埋基岩起伏等微地貌,特别是在地形、土质变化的交界位置,地震时对上部结构有较大影响。场地较大时应对不同地段进行分区划分,以便选择建筑场地时选择有利地段,避开不利地段、不在危险地段建设或采取有效措施,即工程地质建设适宜性分区。

三、建筑场地类别的划分

在建筑物抗震设计中,对建筑场地类别的划分相当地重要,按我国目前的勘察设计体制,是由岩土工程勘察单位采用剪切波速测试结合建筑场地条件(覆盖层厚度)确定建筑场地类别。

(一)钻孔剪切波速的测试

关于剪切波速,《建筑抗震设计规范》(GB50011-2001)则采用地面下20m且深度不大于覆盖层厚度范围内土层的等效剪切波速值。等效剪切波速是按公式1、2计算的。

Vse=do/t 1

t=∑(di/Vsi)(i=1…n)2

式中Vse――土层的等效剪切波速;

do――计算深度(取20 m和覆盖层厚度二者的较小值);

t――剪切波在地面至计算深度之间的传播时间;

Vsi―― 计算深度范围内第i层土的剪切波速;

di――计算深度范围内第i土层的厚度;

n――计算深度范围内土层的分层数。

(二)场地土类型的划分

《建筑抗震设计规范》(GB50011-2001)对场地土类型的划分,按表2,主要依据土层的剪切波速度或其承载力特征值。(见表2)

大量的岩土工程勘察资料表明,在城市区域内,近地表人工堆积层或被扰动的地层分布范围很广,而且厚度可达数米,由于填土的成分不同,其强度和剪切波速度一般低,但局部偏高,严重影响了20m以上场地土层等效剪切波速度值。对于一般高层建筑物,该层土往往被挖除,不作为基础持力层。在考虑该层土是否参加场地土层等效剪切波速度值计算的问题上,以及如何取值参与计算,应根据实际情况确定。

(三)场地覆盖层厚度的确定

《建筑抗震设计规范》(GB50011-2001)规定,建筑场地类别的划分应根据土层等效剪切波速和场地覆盖层厚度按表3划分为四类。(见表3)

从上表可以看出,场地覆盖层厚度的大小对场地类别的划分影响是很大的,而岩土工程勘察中有时会遇到拟建场地存在大面积堆填或大面积开挖的情况。若大面积填方或挖方厚度较大时,如何确定场地覆盖层厚度,将对场地类别的划分产生影响。

《建筑抗震设计规范》(GB50011-2001)规定:场地覆盖层厚度的确定,一般情况下,应按地面至剪切波速大于500m/s的土层顶面的距离确定。当建筑场地设计整平标高与现有地面标高相差不大时,可按现有地面至剪切波速大于500m/s的土层顶面确定;若建筑场地存在大面积、大厚度的挖方或填方,场地设计整平标高与现有地面标高相差较大时,本人认为应按整平标高至剪切波速大于500m/s的土层顶面距离确定。

(四)建筑场地类别的划分还应考虑的因素

1.基础埋深

建筑物基础通常分为浅基础和深基础,浅基础是指建筑物基础位于地面下0.0~5.0m范围内的基础持力层上;深基础是指建筑物基础位于5.0m以下数米深处的基础持力层上。《建筑抗震设计规范》(GB50011-2001)给出的建筑场地类别划分主要依据自然地面下20m范围内土层的性状和覆盖层的厚度,而不考虑建筑物的实际基础埋深;如果考虑基础埋深,即基础下20 m 范围内土层的性状,往往建筑场地类别可以提高。

对于高层建筑且有地下室好几层,基坑开挖超过20m,桩长35m,若仍以地面下20m深度进行评价确定场地类别,则此范围内仅仅包括基础埋深以上的土层。

2.复合地基

换填垫层法是否可以改变建筑场地类别?

人工填土的成因具有极不均匀性,堆填时间短,成分复杂等特征,受人为影响因素控制。对待人工填土层在20m深度内的波速贡献,我们可以这样推理:一般的人工填土层沉积时间为几十年~几百年,近几年甚至近期在场地的弃土仍属人工填土的范畴。那么,某场地假定覆盖层厚度为51m,自天然地面以下20m深度范围内土层等效剪切波速值为249m/s,按规范判定其建筑场地类别为III类;若在勘察以前对场地浅层人工填土挖除2m,采用均匀性及密实度好的土层碾压处理,处理后的填土层仍然隶属于填土层,再行勘察时20m深度范围内土层等效剪切波速值必然大于250m/s,由此就会得出建筑场地类别为II类的结论。

3.其它地基处理方法是否也可以改变建筑场地类别?

对于深部地基处理后,提高基础下地基土的强度和变形模量外,还提高了地基土的抗震性能。天然地基经加固后,地基土承载力可较大的提高,地基土的性状得到了很大的改善。如果按照天然地基,该场地20m 范围内土层承载力特征值加权平均值200Kpa,则为中硬场地土。由此可以给出天然地基为Ⅲ类建筑场地、复合地基则为Ⅱ类建筑场地的结果。

4.地震动参数的确定

《中国地震动参数区划图》(GB18306-2001),为工程技术人员确定地震动参数提供了基本依据,《建筑抗震设计规范》GB50011_2001为我国主要城镇中心地区地震动参数确定提供了依据。岩土工程勘察要提供的地震动参数主要为:抗震设防烈度、设计基本地震加速度值、抗震设防分组、场地设计特征周期、常时微动卓越周期。

地震动参数的确定时还应该考虑二个方面:一是建筑物抗震设防类别,《中国地震动参数区划图》(GB18306-2001)和《建筑抗震设计规范》(GB5001I_2001)适用于一般建设工程抗震设防,而对重大工程、可能发生严重次生灾害的工程、核电站和其它有特殊要求的核设施建设工程需做专门研究,《建筑工程抗震设防分类标准》(GB50223-2004)所规定的甲类建筑、乙类建筑不是一般建筑,属于抗震设防要求高的重要工程,要进行专门研究。一般建筑允许按本地区抗震设防烈度的要求采取抗震措施,包括丙类建筑和丁类建筑。二是建筑场地情况,就建筑场地而言下列情况也需做专门研究:(1)位于地震动参数区划图分界线附近(相关规定中将地震动峰值加速度区划图峰值加速度分区界限两侧各4km界定为分界线附近);(2)某些地震研究程度和资料详细程度较差的边远地区(地震研究较差地区)。岩土勘察设计工程师要准确把握这一要求,就需要注意搜集地方地震研究部门的资料。

5.地震液化问题

地震液化判别是岩土工程勘察时经常遇到的问题。对饱和粉土、砂土进行液化判别,首先要进行初步判别,初步判别时考虑:(1)地质年代;(2)细粒土含量;(3)天然地基的建筑的基础埋深、地下水埋深和上覆非液化土层厚度。在依据地质年代和细粒土含量判为可液化土层,还需要根据基础埋深、地下水埋深深和上覆非液化土层厚度判别。

当初步判别认为需进一步进行液化判别时应采用标准贯入试验判别法判别地面下15m深度范围内的液化;当采用桩基或埋深大于5m 的深基础时,尚应判别15~20m 范围内土的液化。当饱和土标准贯入锤击数(未经杆长修正)小于液化判别标准贯入锤击数临界值时应,判为液化土。当有成熟经验时尚可采用其他判别方法。

在地面下15m 深度范围内液化判别标准贯入锤击数临界值可按下式计算:

Ncr=N0[0.9+0.1(ds-dw)](3/ρc)1/2(ds≤15) (3)

在地面下15~20m 范围内液化判别标准贯入锤击数临界值可按下式计算:

Ncr=N0(2.4-0.1ds)(3/ρc)1/2(15≤ds≤20) (4)

式中 Ncr 液化判别标准贯入锤击数临界值;

N0 液化判别标准贯入锤击数基准值应按表4采用;

ds 饱和土标准贯入点深度(m);

ρc 粘粒含量百分率当小于3 或为砂土时应采用3。

由液化机理可知,液化产生是由于地震时饱和粉土、砂土孔隙水压力上升所致,当基础埋深较小、上覆非液化土层较厚、地下水埋深较深时,初判天然地基不考虑液化影响,是由于考虑基础底以下非液化土层达到一定厚度而起到的约束作用,并不代表其深部饱和粉土、砂土地震时土层不发生液化。

桩基础设计时,仍然要穿透液化层,计算该层桩侧摩阻力时,仍然要考虑发生地震液化的影响。对于复合地基,由于处理方法很多,应具体分析,为提高承载力而设计的桩体,桩端不可放在可液化土层及其以上;基础底以下非液化土层达到一定厚度,满足初判可不考虑液化条件时,可等同天然地基对待,一般情况下,基础和上部结构设计,不再考虑液化土层影响。

6.软土震陷问题

软土震陷是指地震作用下软弱土层塑性区扩大或强度降低而使建筑物或地面产生的附加下沉,一般是较大面积的地面下沉,多见于软弱粘性土层。虽然震陷问题在科学试验和理论研究中得到证实,在宏观震害调查中,也证明它的存在,但当前很难进行可靠预测和计算,《岩土工程勘察规范》(GB50021―2001)也仅作为推荐性条款列出。岩土工程师应根据建筑物类别、在进行地基处理等时,进行具体分析,采取适宜的抗震措施。

7.活动断裂的影响

全新活动断裂为在全新地质时期(一万年)内有过地震活动或近期正在活动,在今后一百年可能继续活动的断裂;全新活动断裂中、近期(近500 年来)发生过地震震级M≥5级的断裂,或在今后100 年内,可能发生M≥5级的断裂,可定为发震断裂;对全新活动断裂的准确鉴别和合理评价,其对建筑抗震乙、丙、丁类建筑工程的影响是断裂勘察的核心内容。

鉴别活动断裂一般从地形地貌特征、地质特征、地震特征和历史记录等几个方面进行调查判定。(见表5)

活动断裂对工程影响,地震时老断裂重新错动直通地表,地面产生错位,对建造在位错影响带上的建筑,产生不同和度的破坏,不是简单地用能用工程措施避免的断裂。

全新活动断裂有缓慢蠕动和突然错动两种基本活动方式。蠕动在活动断裂带普遍存在,现代活动速率代表今天的活动水平,可以此作为活动断裂工程评价标准之一,历史的和地质的活动速率可以作为参考。资料研究显示,中国东部地区的活动断裂,现代活动速率 ≥1.0mm/a(Ⅱ级),西部地区活动断裂,现代活动速率 ≥5.0 mm/a的活动断裂,将有可能发生中强级以上地震。突然错动将导致地震,强震对工程建筑的破坏也最大,因此,活动断裂工程是否具有震中烈度≥6°的发震条件,特别重要的是它是否具别震中烈度≥8°的发震条件,震中烈度6°基本对应5级地震,震中烈度8°基本对应6级地震稍强。同时,要考虑第四系未受错动的覆盖层对产生地震断层的抑制作用,覆盖层厚度越大,越对抗震有利。

在此还要特别强调三点:第一活动断裂往往具有分段活动特征,强震往往发生在活动深断带的特殊部位,如活动断裂破碎交汇处、活动断裂两端、多次强震重复发生地段等,同一断裂在不同地段的破坏影响是不同的。第二无覆盖层的断裂,一旦发震破坏严重,应注意判定是否为全新活动断裂。主要靠分析研究断层破碎带,采取断层泥样品实测地质年龄来确定是否属于活动断裂。第三平均活动速率>1.0mm/a是《岩土工程勘察规范》(GB50021_2001)强烈全新活动断裂判定标准之一、震级≥6级也是《岩土工程勘察规范》(GB50021_2001)中等全新活动判定标准之一。

四、结论

场地和地基地震效应评价是岩土工程勘察设计的重要内容之一,关系设计人员对于基础埋深、型式的选择、地基处理方式、地基抗震设防、承压力的验算等。本人结合工程实践,就现行规范中该部分内容的认识,浅谈了几点见解,供同行们探讨。

参考文献:

[1]《岩土工程勘察规范》(GB50021―2001),中国建筑工业出版社,2002

[2]《建筑地基基础设计规范》(GB50007―2002),中国建筑工业出版社,2002

[3]《建筑抗震设计规范》(GBS0011―2001),中国建筑工业出版社,2001

土建工程和建筑工程的区别范文第2篇

【关键词】土木工程建筑结构设计;存在问题;改进建议

在我国城市建设正在如火如荼的开展,城市建设的一个重要标志就在于城市建筑的高速发展,现代城市高楼大厦已经是一个极为重要的体现,但是城市建筑的发展还需要解决许多的问题,尤其是在我国地域差异较大,人文特征有别的国家,如何进行有效的土木工程建筑结构设计,为人们提供舒适可行的安居环境,是建筑企业或者机构需要重点思考的方面,这也是保障其发展的一个前提。其实经过几十年的发展,我国土木工程建设结构设计水平和能力已经得到了极大提升,但是囿于多种方面的原因,其中存在的问题还需要我们进行深入的剖析解决。

一、我国土木工程建筑结构设计中存在的问题分析

从我国近些年土木工程建筑结构设计的发展来看,城市建筑水平已经得到极大提升,建筑工程设计也开始多样化,并且在实际的工作中较为注重对于人们生活质量要求的相关问题,但是具体分析来看,我国土木工程建筑结构设计存在的问题也是有的,而且这些问题体现在多个方面,需要引起设计者和相关管理者的关注。

1.土木工程建筑结构的牢固性有待提高

众所周知一个建筑工程最为主要的就是要保障具有牢固性,这不仅仅体现在建筑物的安全和稳定,更主要的是对于居住者的一种安全保障,引起要切实做好牢固性的管理工作。载现代社会的土木工程建筑结构设计中,如何做好工程牢固性的相关工作逐渐成为一个较为重要且必须思考的问题。但是我国土木工程建筑结构设计中对于这一问题的解决力度还不够,其中存在的一些安全隐患问题并没有切实的解决。在土木工程建设结构设计中,虽然表面上没有任何问题,但是一旦出现自然灾害,比如地震、火灾等都有可能对于建筑物造成巨大的冲击,致使建筑结构发生一定的变化,对人们的生活安全造成严重影响,这些问题都是在土木工程建筑结构设计过程中没有做好地基工作。比如在我国2008年发生的汶川大地震造成众多房屋、桥梁等出现坍塌的情况,都是因为没有做好工程牢固性的保障工作。

2.构造柱和承重柱的区分问题

土木工程砖混结构建筑的构造柱和梁配合设计,能够起到良好的防止墙体断裂的情况,是一种重要的保障措施,更是对居住者生命财产进行保障的重要基础,但是在现实的工作中,一些土木工程建筑结构设计人员没有清晰的认识到两者的区别,尤其是没有分清楚构造柱和承重柱的概念,将承重柱的设计方法直接套用到构造柱设计当中,没有为构造柱设置基础。因此,难以抵抗地震的震动强度,从而导致结构裂缝、沉降等,甚至引起建筑物倒塌。另外。为了方便分析承重柱受力,将其截面面积设计得太小。这样在外力的作用下,柱体和梁体就会出现开裂问题。

3.缺乏对环境因素的考虑

前面已经提到,我国是一个地域差异较大的国家,每一个地区都具有自身的特征,不仅仅是居民对于建筑的需求,更主要的是建筑结构设计中的一些需求问题,比如地域环境对于建筑结构设计的影响,在我国东西南北土质、水质、文化等因素差别比较大,比如在潮湿度方面,南方比北方较为潮湿,那么如果在土木工程建筑结构设计过程中不能进行有效的考虑,而采用同样的建筑结构设计理念,在建筑材料的使用方面没有区别,那么在建筑物的使用过程中必定会出现一些问题。

二、土木工程建筑结构设计问题的有效改进措施

作为土木工程建筑结构的设计人员,在进行相关设计工作的过程中必须主动进行实地调研,不断 提高自身的设计水平,尤其是对于上述提到的一些问题必须进行及时的改正,提高认识,全面提高建筑结构的设计水平,保障工程的质量和人民群众的生命财产安全。

1.全面做好牢固性设计工作

前面对于牢固性设计存在的问题进行了详细的分析,因此作为设计人员在未来设计的过程中必须充分重视这一问题,第一个方面是做好内力组合设计工作。内力组合是土木工程结构承载力抗震设计的要点,它要求在调整承载力抗震系数的基础上设计。工程结构抗震设计要求材料强度的设计值应大于没有考虑抗震要求时的材料强度设计值。如果采用非抗震设计的材料强度设计值进行计算,则抗震设计需要对承载力抗震的系数进行调整。通过综合受弯梁、偏压柱、受剪等的系数调整,提高结构的承载能力;两一个方面是做好板设计和配筋。板设计和配筋的结构设计,要分析板长边和短边的长度。如果长度差距< 2mm,则适合采用双向板计算的方式设计;

如果两者的长度差距在2 ~ 3mm 之间,则适合沿着短边的受力单向板进行计算,并将足够的构造钢筋布置在长边位置。根据工程结构板的具体大小,可按照弹性的方法计算。对于连续双向板跨中的最大弯矩计算,要求根据荷载分布的具体情况,对满布荷载进行分解和间隔进行布置。

2.充分考虑环境的因素

针对我国建筑结构设计中存在对于环境因素认识不足的问题,在以后的设计中,我国的设计人员必须及时提高认识,对于环境问题进行解决,首先是要认清楚当地的实际土质,土质环境决定了建筑物的稳定程度,也就是要求这些设计人员在设计的过程中对当地的土质情况进行充分的考察了解,如果在土质较为疏松的地域进行建筑,就比考虑进一步进行加固的问题;其次是做好天气等问题的考察,在我国南北方的雨水差异较大,因此要根据这些区别进行不同的建筑设计,比如在南方,雨水较多,那么在进行建筑结构设计中要充分考虑有效防水、防潮的问题,避免因雨水过多而影响建筑物的质量;最后是要区别地域人文环境,我国是一个地域广阔,多民族的国家,每个地区和民族在发展的过程中都有独特的风格,因此建筑结构设计也要充分考虑居民的需求,在设计过程中有所区别。

结语

土木工程建筑结构设计的重要性不言而喻,在现代社会发展的过程中,建筑结构的设计者不仅仅要考虑利益,更要考虑建筑物的实用和安全,综合来看,我国建筑结构设计的水平与国外一些先进国家还有一定差距,需要在以后的发展中逐渐学习提高。

土建工程和建筑工程的区别范文第3篇

关键词 场地类别; 西安; 工程地质单元; 波速; 覆盖层厚度

中图分类号:F407.1文献标识码:A 文章编号:

引言

近年来,随着国民经济的迅猛发展,各类建筑物特别是高层建筑日益增多,西安市作为陕西省陕西省的政治、经济、文化、教育、交通中心,是我国重要的科研、高等教育、国防科技工业和高新技术产业基地及辐射北方中西部地区的金融、科技、教育、旅游、商贸中心,建筑需求量巨大,城市面貌更是日新月异。如何做好建筑物场地钻孔剪切波测试及场地类别划分,为拟建高大建筑物的地基处理和建筑结构设计提供依据,是工程解决的首要课题[1]。

西安市位于西安市地处渭河新生代断陷盆地的中南部,北部为渭河流域,东部有浐河、灞河流经市区,西南部有皂河过境,地貌形态丰富,地层结构各异,形成不同的地貌单元。由于地层结构的差异,造成剪切波速测试值的差异,因此,按照地貌单元,在考虑人工填土和饱和软黄土对地震动参数影响的基础上,进行工程地质分区,并依据剪切波速和覆盖层厚度对场地类别进行划分,对于日后建设工程场地的勘察和地震安全性评价工作都有一定的参考价值。

本次讨论的范围为《西安市2004-2020年城市总体规划》中城区涉及的区域(东至灞桥洪庆一带;南至长安区潏河;西与咸阳市交界;北至渭河南岸),涉及面积约1075km2。以下简称场地。

1 工程地质单元的划分(1)

西安城市的工程地质条件主要受控于地质构造和地貌。整个分区按照“区内相似,区际相异”的原则,采用三级划分:先按地貌及其成因形态分区,按二级地貌单元以及岩土体结构等进行二级分区,划分到亚区,最后根据工程地质问题划分,划分到段。

本区地貌分为:渭河冲积平原、浐灞河冲洪积平原、黄土塬前洪湖积台地、黄土塬、洪积扇五大成因类型。按照五大地貌类型,西安市共分为渭河冲积平原工程地质区、浐灞河冲洪积平原工程地质区、黄土塬前洪湖积台地工程地质区、黄土塬工程地质区、洪积扇工程地质区等五大工程地质区,分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ表示。

按照土体结构的一致性或相似性,因此,渭河冲积平原工程地质区、浐灞河冲洪积平原工程地质区、黄土塬前洪湖积台地工程地质区等三大区又可划分工程地质亚区。其中,渭河冲积平原工程地质区分为三个亚区,分为河漫滩、一级阶地、二级阶地工程地质亚区,分别为Ⅰ0、Ⅰ1、Ⅰ2表示;浐灞河冲洪积平原工程地质区,分为三个亚区,分为河漫滩、一级阶地、二级阶地工程地质亚区,分别用Ⅱ0、Ⅱ1、Ⅱ2表示;黄土塬前洪湖积台地工程地质区,分为五个亚区,即一级台地、二级台地、三级台地、四级台地、五级台地,分别为Ⅲ1、Ⅲ2、Ⅲ3、Ⅲ4、Ⅲ5表示。此外,还有少陵塬工程地质亚区(Ⅳ1)和洪积扇工程地质亚区(Ⅴ1)。全区共分为划分十三个亚区。见表1 和图1。

图1 工程地质分区图

2 场地覆盖层厚度的确定

按照《建筑抗震设计规范》[2],场地覆盖层厚度是指由地面至剪切波速大于 500 m/s且其下卧各岩土的剪切波速均不小于 500m/s 的土层顶面的距离。为此,笔者收集了西安市地震小区划工作及以往工作中的深钻孔波速资料,合计256个钻孔。由于西安市地震小区划工作范围与本文场地范围一致,且按照1km×1km网格状布设钻孔,因此,孔位的分布已基本覆盖了西安市区。根据各孔的剪切波速值统计出各个工程地质亚区场地覆盖层厚度,见表1。

可以看出,场地内的覆盖层厚度均大于50m。

3场地土类型的划分

按照《建筑抗震设计规范》,场地土类型划分为4 类(参看规范) 。当场地土为单一土层时 ,则土层类型即为场地土类型;当为多层土时 ,应根据各土层的厚度和类型综合判定 ,即根据各土层的性质及土层厚度在评价深度内所占权重综合判定[3]。

西安市的地层除上部为填土(杂填土、人工填土)外,下部为黄土状土、粉质粘土、粉土、古土壤、砂层、卵石、砾石层,每层的厚度及各个工程地质单元所含土类型均因沉积环境、地质时代和成因的不同而有所差异[4]。

根据《建筑抗震设计规范》GB 50011-2010,应依据20 m 深度与覆盖层厚度二者较小值的等效剪切波速来判定建筑场地的场地土类型。由于场地覆盖层厚度均大于50m,因此,按照规范要求,选取20m内的等效剪切波速作为划分场地类别的依据,将各个工程地质亚区20 m 深度内的 Vse作了统计,数值见表1。

表1 工程地质亚区波速统计表

工程地质区 工程地质亚区 500m/s波速埋藏深度 等效剪切波速

平均厚度

(m) 数据个数(个) 平均波速

(m) 数据个数(个)

渭河冲积平原工程地质区(Ⅰ) 河漫滩工程地质亚区(Ⅰ0) 81 11 238 11

一级阶地工程地质亚区(Ⅰ1) 80 15 256 15

二级阶地工程地质亚区(Ⅰ2) 79 22 264 22

浐灞河冲洪积平原工程地质区(Ⅱ) 河漫滩工程地质亚区(Ⅱ0) 72 19 267 19

一级阶地工程地质亚区(Ⅱ1) 72 10 273 10

二级阶地工程地质亚区(Ⅱ2) 75 9 276 9

黄土塬前洪湖积台地工程地质区(Ⅲ) 一级台地工程地质亚区(Ⅲ1) 79 29 256 29

二级台地工程地质亚区(Ⅲ2) 78 80 268 80

三级台地工程地质亚区(Ⅲ3) 78 32 271 32

四级台地工程地质亚区(Ⅲ4) 76 6 264 6

五级台地工程地质亚区(Ⅲ5) 74 9 278 9

黄土塬工程地质区(Ⅳ) 少陵塬工程地质亚区(Ⅳ1) 68 9 284 9

洪积扇工程地质区(Ⅴ) 洪积扇工程地质亚区(Ⅴ1) 71 3 264 3

从表1可以看出,渭河河漫滩等效剪切波速均值小于250m/s,一级阶地、二级阶地平均等效剪切波速均大于250m/s,且逐渐变大;浐灞河内各工程地质单元的平均等效剪切波速均大于250m/s,同样逐渐增大,且均比渭河各亚区的高;塬前台地平均等效剪切波速大于250m/s,台地由低级到高级再到黄土塬波速总体趋势逐渐变大;洪积扇等效剪切波速仍大于250m/s,可能跟收集的测试数据量小有关。

综合判定,可知渭河河漫滩(I0)工程地质亚区为中软场地土,除渭河河漫滩(I0)工程地质亚区外的其它亚区,其场地等效剪切波速平均值均大于250m/s,属中硬场地土。

4场地类别的划分

根据《建筑抗震设计规范》GB 50011-2010根据土层等效剪切波速和场地覆盖层厚度对建筑的场地类别的划分规则。

渭河河漫滩(I0)工程地质亚区中,其场地等效剪切波速均值为238m/s,属于250≧Vse≧140m/s,覆盖层厚度均值81m,属于大于50m档,属于III类建筑场地。

除渭河河漫滩(I0)工程地质亚区外的其它亚区,其场地等效剪切波速平均值均大于250m/s,属中硬场地土,覆盖层厚度均大于50m。因此,综合评价除I0工程地质亚区外的其它亚区属于II类建筑场地。但渭河一级阶地(I1)、浐灞河一级阶地(II1)、黄土塬前一级台地(III1)、二级台地(III2)、三级台地(III3)和四级台地(III4)工程地质亚区中的部分饱和软黄土区和人工填土区属于III类建筑场地。

5结语

西安市区按照地貌及地层结构和工程需要,分为五大工程地质区,13个工程地质亚区。综合分析收集的实测波速资料,按照建筑抗震设计规范,将西安市的建筑场地类别分为II类和III类。除渭河河漫滩、少部分饱和软黄土区和人工填土区属III类建筑场地外,其余的均属于II类建筑场地,也就是说,西安绝大部分地区为 II类场地,工程地质条件良好。

本文在统计时,采用的是各工程地质单元内等效剪切波速的均值,在大的范围内对西安市的建筑场地类别和工程地质单元的关系进行了简单论述,并不足以代替每个具体场地,因此,仅在宏观方面作为参考,具体工程还需按照实际情况和相关规范作详细的研究。

参考文献

[1]黄善金.钻孔剪切波测试及场地类别划分[J].山西:山西建筑,2003,29(4):61.

[2]徐正忠,王亚勇等.建筑抗震设计规(GB50011-2010)[M].北京:中国建筑工业出版社,2010.15-17.

土建工程和建筑工程的区别范文第4篇

关键词:工程地质勘察;目的;任务;勘察报告

1工程概况

巴黎花园项目由某公司筹资兴建,场地位于成都市龙泉驿区西河镇西河大道295号,交通便利。

根据《岩土工程勘察规范》(GB50021-2001)(2009年版)及《高层建筑岩土工程勘察规程》(JGJ72-2004),其工程重要性等级为一级,场地为中等复杂场地,地基为中等复杂地基,岩土工程勘察等级为甲级。

2勘察目的及要求

本次工程勘察目的及要求:根据拟建物的性质和地下室的埋深,查明拟建场地的工程地质条件,提出基础设计、基坑设计及施工所需参数,为拟建工程的地基基础施工图设计与施工提供依据。具体要求如下:

(1)查明建筑场地的地层结构、均匀性,场地土类型以及各岩土层的物理力学性质;查明持力层和主要受力层内土层的分布,尤其应查明基础下软弱地层和坚硬地层的分布,对于岩质地基和基坑工程,应查明岩石坚硬程度、岩体完整程度、基本质量等级和风化程度,判定有无洞穴、临空面、破碎岩体或软弱岩层。

(2)查明有无可液化地层,并对液化可能性及等级作出评价;判明建筑场地类别,提供抗震设计有关参数。

(3)调查了解有无古河道、暗浜、暗塘、人工洞穴或其它人工地下设施;查明建筑场地内及其附近有无影响工程稳定性的不良地质作用的类型、成因、分布范围、发展趋势和危害程度,预估进行工程活动的后果,对不良地质作用的防治提出建议,并提供所需计算参数。

(4)查明地下水类型、埋藏条件、补给及排泄条件、腐蚀性、稳定水位;提供基坑开挖工程应采取的地下水控制措施,当采用降水控制措施时,应分析评价降水对周围环境的影响,提供降水设计所需的参数。

(5)对地基岩土层的工程特性和地基的稳定性进行分析评价,提出各岩土层的地基承载力特征值;论证采用天然地基基础形式的可行性,对地基类型、基础形式、持力层选择、基础埋深等提出建议。

3.勘察实施情况

3.1勘探点布设

根据《岩土工程勘察规范》(GB50021-2001(2009年版))、《高层建筑岩土工程勘察规程》(GB50007-2011)及《建筑基坑支护技术规程》(JGJ120-2012)中的有关规定及成都雨龙世纪置业有限公司提供的拟建建筑物总平图等设计资料,在拟建建筑物的轮廓线、角点、基坑周边及地下车库范围内进行勘探点的布置。高层建筑物主楼部分的勘探孔间距为10.79~18.00m;多层商业、纯地下室及基坑边勘探孔间距为15.84~27.60m。本次勘察共布设勘探点165个,其中控制性钻孔55个,一般性钻孔110个。

根据相关规范、规程的有关规定及拟建建筑物的性质、平面形式、荷载分布等情况,结合我院的类似基坑支护经验、场区附近已有地质资料、可能采用的基础型式等综合确定勘探钻孔数量及深度,具体如下:

(1)1~8号楼高层建筑物勘探点:本部分为高层建筑物,共布控制性钻孔38个,钻孔深度为29.90~35.20m,一般性钻孔76个,钻孔深度为24.80~30.20m,全部采用回转钻探取芯钻进工艺。(2)高层建筑裙楼及纯地下室勘探点:本部分按建筑物轮廓线及地下室范围布设钻孔33个,其中控制孔11个,钻孔深度为29.80~30.20m,一般性钻孔22个,钻孔深度为24.20~26.20m,均采用回转钻探取芯钻进工艺。(3)基坑边线勘探点布设:基坑边钻孔按场地地形地质条件结合可能采用的支护方案综合确定其深度,结合《高层建筑岩土工程勘察规程》(GB50007-2011)、《建筑基坑支护技术规程》(JGJ120-2012)及成都市该地区基坑支护施工经验,考虑采用排桩支护需要,地下室基坑边线共布控制性钻孔6个,深度为29.20~30.40m,一般性钻孔12个,深度为28.70~29.00m。1号楼、7号楼及8号楼高层建筑区域内20个勘探点距离基坑开挖线较近,基坑孔未单独布设。

3.2勘察方法及手段

本次详勘工作主要采取了如下的勘察方法及勘察手段:

(1)搜集资料及工程地质调查测绘:搜集和研究了场地区域地质、地震资料及场地附近已有的工程勘察、设计和施工技术资料和经验,进行了现场踏勘及工程地质调查测绘,特别是对基坑边线以外20米范围内进行了地质调查测绘,收集相关市政管线、区域地质、水文气象资料等。(2)钻探:目的是通过钻取原状岩土,采取岩土试样,查明地基土结构、性质、鉴别岩土体类别及特性,确定各工程地质层及亚层的分布埋藏界线。本工程所有钻孔均采用XY-100型回转钻机钻进全孔取芯;(3)原位测试:本次勘察对淤泥质粘土、粘土、全风化泥岩进行了标准贯入试验,对粘土质卵石进行了超重型动力触探,以测定各土层和岩层的力学性质,提供其承载力和变形参数。(4)波速测试:为了确定和划分场地土类型、建筑场地类别及评价场地的地震效应,获得场地内各地层的剪切波速及动力学参数,估算场地卓越周期,评价岩体的完整性等,本次勘察对10幢高层建筑物各选取1个钻孔(8#、10#、28#、40#、65#、79#、81#、107#、121#、139#)做单孔波速测试。(5)室内岩土试验:本次勘察现场采取原状土样、岩样进行室内岩土常规试验、土的腐蚀性试验及粘性土的膨胀性试验,以确定场地内各主要土层的物理力学指标及判定场地内土对混凝土、混凝土中的钢筋及钢结构的腐蚀性。(6)地下水水质分析试验:在场地内采取地下水试样2件(9#、126#钻孔),进行室内水质简分析,判定地下水对混凝土、混凝土中的钢筋腐蚀性。

4.岩土层工程性质评价

根据本次勘察成果资料,场地内的地层由人工填土、淤泥质粘土、粘土、粘土质卵石和泥岩组成。结合拟建物的特征和采用的基础型式,各岩土层用作基础持力层的适宜性评价如下:

(1)场地内的人工填土层为新近回填土,结构松散、厚薄不均、承载力低,压缩性大,不能作为拟建物的基础持力层。

(2)场地内的淤泥质粘土虽在上部人工填土作用下局部有固结现象,但其结构松散、厚薄不均、压缩性较大,承载力低,不能作为拟建物基础持力层。

(3)场地内的粘土分布较稳定,承载力较大,可作为多层建筑及纯地下室基础持力层,也可作为高层建筑下复合地基桩间土使用。

(4)场地内的粘土质卵石具有一定承载力,但呈透镜状分布,厚度及分布不均,不能选作拟建物基础持力层。可作为多层建筑物地基基础持力层的下卧层。

(5)场地内泥岩宏观上呈现自上而下随深度风化程度逐渐减弱、承载力增高的趋势,按其风化程度的差异分为全风化泥岩、强风化泥岩和中风化泥岩三个亚层。需注意的是各风化带的划分只是相对的,各风化带之间风化程度往往呈逐渐过渡,实际并无明确的分界线。全风化、强风化泥岩:该层土在场地内埋藏、分布较为稳定,厚度大,可考虑作为多层建筑及地下室地基持力层,也可作为高层建筑下复合地基桩间土使用;中风化泥岩:该层土在场地内埋藏、分布稳定,厚度大,承载力高,可作为高层建筑地基持力层。当采用桩基时,中风化泥岩层可作为各类桩基础桩端持力层。

土建工程和建筑工程的区别范文第5篇

关键词:建筑地基;基础工程;施工技术

1.前言

房屋类型千差万别,地基处理永远在前。学习、研究、创造性掌握先进的地基处理技术,是建设者的毕生追求,也是建筑高质量楼房的前提。因此,作为企业的施工人员和管理着,仅了解房建位置的地质结构,现有状况是不够的,还要亲临现象,根据施工点的具体情况,精心选择施工方案,地基处理技术,以确保地基建成后的稳固性,为提高房层建设质量打下坚实基础。

2.影响房屋建筑地基基础质量的主要因素

(1)地基基础缺陷的种类及其对建筑物使用、安全、耐久性等方面的影响。

(2)上部结构的整体性、安全度、使用要求等具体情况对地基基础变形的适应性。

(3)地基基础和结构变形的数值,发展速度和趋势。

(4)地基基础缺陷和加固上部结构的可能性和经济性。

3.确保房屋建筑地基基础工程施工的合理性

3.1 重视工程勘查的准确性

工程勘察报告要全面反映房屋建筑场地工程地质和水文地质情况,预防地基与基础的工程事故,首先对场地工程地质和水文地质条件进行全面正确的了解, 要做到这一点关键要搞好工程勘查工作,根据建筑物场地的特点, 建筑物情况合理确定工程勘查目的和任务,勘查工作是设计的重要前提,决不能忽视不做,也不能随便做而不考虑是否适用。特别是对复杂的、软弱的地基,更应慎重对待。

3.2 提高结构设计的合理性

地基基础的设计应当根据建筑物的使用要求,结构型式和工地的土质条件,并结合现场具体情况,在适用与经济的前提下,保证建筑物的主要承重结构在正常使用过程中不发生裂缝或损坏。设计人员应慎重对待工程勘查报告提供的地基承载力建议值,严格计算基础的实际土压力,若对勘查报告的建议值有怀疑,可以再做载荷试验验证。施工人员在天然地基上建造大中型工程时,应复核设计地基承载力的合理性。一旦发生地基产生较大的沉降或倾斜,必须立即停工,会同勘查、设计和使用单位共同研究。采取必要措施,防止地基和建筑物发生灾难性破坏。

4.工程实例

阳江市某建筑工程项目分为四个建设区,1 区和3 区分别为14 层和l0层主体建筑物,2 区为5 层的裙楼部位,4 区为4 层建筑物。1 区和3区的高度分别为58.30m、40.25m, 四个区的建筑主体结构均为框架抗震墙结构,单柱最大荷重约为4500kN、10200kN;2 区的建筑主体高度为27.60m,单柱最大荷重约为6800kN,为框架结构;4 区建筑主体高度为16.40m,单柱最大荷重约为5500kN,为框架结构。通过地质勘查情况,可以发现:①场地内人工填土分布连续,结构紊乱,均匀性较差,承载力低;②场地内粘土、粉质粘土分布基本连续,其承载力均偏低;③场地内细砂呈层状或透镜体分布于卵石土顶板,承载力较低,属可液化土,地基液化等级为中等;④场地内中砂呈透镜体分布,承载力较低,属不液化土;⑤场地卵石土分布连续,主要以稍密、中密、密实卵石为主,局部地段为松散或夹透镜体中砂。稍密、中密及密实卵石具承载力高、压缩性低的工程特性,为场地良好的天然地基土。

从工程实践中得知,素填土、粉质粘土、细砂不能满足荷载要求,且细砂为可液化土层,未经过处理不能作为基础持力层。卵石土能满足荷载要求,可作为基础持力层。

5.地基处理技术要点

5.1 人工挖孔灌注桩

(1)主要施工程序。场地平整放线、定桩位一浇垫层一架设支架,安装设备等一边挖边抽水一桩孔周壁的清理一支撑护壁模板一浇灌一周护壁混凝土一拆模后继续下挖,支模,浇护壁混凝土,循环作业一作扩大头,对桩孔验收一排除孔底积水,钢筋笼设置固定一浇灌桩身混凝土。

(2)成孔工艺试验。挖孔桩在正式施工前应进行成孔工艺试验,数量不得少于两个,检验桩侧壁土层有无坍塌缩孔、流泥、涌砂现象,混凝土护壁是否起到应有效果,桩端扩大头成型能否符合设计要求。

(3)桩距开挖顺序。当桩净距小于2 倍桩径且小于2.5m 时,应采用间隔开挖。排桩跳挖的最小施工净距不得小于4.5m,待第一批桩浇灌混凝土达到设计强度60%时,再开挖相邻桩。

(4)挖孔方法。由人工从上至下逐层用锹镐进行,遇坚硬土层用风镐、锤钎破碎,遇孤石时应由专业爆破人员采取可靠的爆破措施。爆破时应注意安全,防止炸坍护壁,设计建议优先采用小剂量炸药多次爆破法进行。挖土次序为先中间后周边,按设计桩径加两倍护壁厚度控制截面。

(5)护壁。每节护壁长度为1000mm,应视现场挖孔情况而定。第一节护壁须高出地面200mm, 同时做护肩, 第一节定位后安装护壁钢筋,支护壁模板,然后浇灌混凝土。护壁混凝土强度达5.MPa 以后,方可进行下层土方的开挖。护壁往下施工时,以每一节作为一个施工周期,每浇筑完三节护壁,需校对桩中心位置及垂直度。

(6)钢筋笼制安。钢筋笼制作、安装、主筋接头错开50%,螺旋箍筋每隔1.0~1.5m 与主筋按梅花形用点焊固定, 每隔2m 加设一道加劲箍。对于长度大于15m 的钢筋笼可分段制作,现场吊装就位时焊接,应采取措施将钢筋笼悬固在孔内正确位置及标高上。

(7)混凝土浇筑。浇筑前必须对成孔进行复测,不符合设计要求的及时处理;浇筑混凝土时,孔日处应设护口筒,灌注时尽量避免碰撞孔壁;灌注桩的混凝土灌注充盈系数不得小于1.0,混凝土坍落度控制在80~100mm;浇注混凝土时应采用串筒,串筒末端离孔底高度不得大于2m,混凝土应连续浇筑,分层采用插入式振捣器振实;混凝土浇筑完毕后进行养护。

5.2 冲孔灌注桩

(1)设备及调试。钻孔机具及工艺的选择应根据桩型、钻孔深度、土层情况、泥浆排放及处理等条件综合确定。

(2)护筒。施工前应定出施工所用护筒的规格数量并运到现场。护筒埋设应准确、稳定,护筒中心与桩位中心的偏差不得大于50mm。护筒埋设深度应超过杂填土埋藏深度0.2m。护筒周围应用粘性土分层回填夯实,并在开钻之前复核一次护筒的位置。

(3)泥浆护壁。施工期间护筒内的泥浆面应高出地下水位1.0m 以上,在受水位涨落影响时,泥浆面应高出最高水位1.5m 以上。在清孔过程中,应不断置换泥浆,直至浇注水下混凝土。浇注混凝土前,孔底500mm 以内的泥浆比重应小于1.25,含砂率小于等于8%。

(4)清孔。浇灌混凝土前,孔底沉碴厚度应≤50mm。

(5)桩允许偏差。桩孔桩中心位移偏差100+0.01Hmm;桩的垂直度偏差H/ 100(H 为桩长);桩径允许偏差+50mm。

(6)钢筋笼制安。主筋接头错开50%,螺旋箍筋每隔1.0~1.5m 与主筋按梅花形用点焊固定,每隔2m 加设一道劲箍。对于长度大于15m的钢筋笼可分段制作,现场吊装就位时焊接,应采取措施将钢筋笼悬固在孔内正确位置及标高上。

(7)混凝土浇筑。浇筑前必须对成孔进行复测,不符合设计要求的及时处理, 合格后尽快浇筑混凝土; 水下混凝土坍落度控制在180~220mm。泌水率应控制在4%之内;浇注混凝土时应采用导管,导管定长偏差不超过,0.5%,连接部位内径偏差不大于2mm,,内壁光滑平整;连接成导管时,轴线偏差不大于20mmc。连接后在0.5~0.7MPa 的压力下不漏水;混凝土浇筑完毕后,应对混凝土进行养护。

参考文献:

土建工程和建筑工程的区别范文第6篇

【关键词】煤矿采空区;岩土工程;地质勘察

目前我国大多数矿山,留下大量未处理的采空区,采空区的存在,严重影响了矿山的安全生产。采空区对工程的危害是显著的,主要体现在两个方面:一是采空区顶板大面积冒落,产生气流冲击,对井下工作人员和设备产生重大伤害,而且可能引起地表沉陷和开裂,地面建筑物的陷落、倒塌及矿区地震等形式的严重地压灾害;另一个就是在矿山开采过程汇总,采空区围岩受爆破震动影响导致岩体裂隙发育,甚至贯通地表或连通老窿积水,发生透水事故,从而淹没坑道何工作面,造成损失。由此可见,采空区稳定性研究已成为一个重要的研究课题。

一、工程概况

某大酒店高21层,由主楼及裙楼组成,主楼东西长42m,南北宽20m,框剪结构;裙楼位于主楼东、南、西三侧,外包尺寸东西长66m,南北宽43~50m,高度均为3层,框架结构,主、群楼均设一层地下室,彼此结构独立。

场区抗震设防烈度为7度,设计基本地震加速度值为0.15g,分组为第二组。

场区地层主要为石炭~二叠系煤系地层,整体走向NE,倾向NW,倾角平缓,上覆第四系地层由黏性土组成,厚度约10m。场区共含煤21层,煤层总厚度5.32m,其中场地可采、局部可采煤层6层,场地位置实际开采煤层为17煤、20煤和21煤。场区内煤矿开采方法为走向长臂法,顶板管理为自由垮落法。各采煤工作面基本情况详见表1-1:

二、场地稳定性评价

1采煤沉陷对建筑物地基的影响

采煤沉陷区,建筑物的地基处理或设计主要考虑的是地基的承载力和地基的变形,对于该项目前期工程的拟建设场地,结合采煤沉陷区建筑物地基的特点、建筑物的地基承载能力、地基的允许变形量等对该场地进行分析和评价。

1.1 采煤沉陷区建筑物地基的特点

位于采空区上的建筑物地基基础,与一般场地上的建筑物相比,有以下特点:

(1)建筑物的地基范围不同。一般建筑物地基的深度为地基沉降计算影响深度,宽度为以应力扩散角向下扩散至地基沉降计算深度为止,对于先建后采的建筑物,从开采矿物底板到地面各岩层的移动与变形都对建筑物有影响,其平面范围视建筑物在地表移动盆地的位置不同而不同。对于先采后建的建筑物,则建筑物的地基范围在深度上则较非采动影响区的同类建筑物的地基深度深,但较先建后采的建筑物的地基深度却要浅的多。

(2)建筑物的地基变形组成不同。一般建筑物,地基变形主要是沉降,基本上是地基土受建筑物荷载压缩和固结所致;而采空区上建筑物地基,其沉降变形除地基土本身的压缩和固结变形外,还会受采空区岩、土层的变形和移动制约,除垂直方向的下沉外、还有由于非建筑荷载作用而产生的地基土扭曲。

(3)地基中应力状态不同。一般建筑物会在原自重应力场中形成因其重量产生的附加应力;而采空区上建筑物除其自重引起的附加应力外,还存在由于采矿引起的附加应力。

(4)建筑物地基沉降稳定所需的时间不同。一般建筑物地基沉降稳定的时间为地基土的压缩和固结所需要的时间;而采空区上的建筑物,地基稳定时间还受到地表残余沉陷所需的时间制约。

1.2 采煤沉陷区建筑物地基的承载能力

采煤沉陷区建筑地基除受建筑物自身荷载产生的附加应力场外,还受到地表残余移动变形引起的附加应力场影响。建议采用地基的临塑荷载作为地基承载力的特征值,其计算公式为:

(2-1)

式中: 为地基的临塑荷载,kPa;

为基础埋深范围内土层的重力密度,kN/m3;

为基础埋深,m;

为基础底面下土的粘聚力,kPa;

为基础底面下土的内摩擦角,°;

、 为地基承载力系数,可以查表确定(林在贯等.岩土工程手册,中国建筑工业出版社,1994年)。

鉴于地表的残余移动变形仍然可能达到较大水平且采煤沉陷区地基条件比较复杂,建议在预计的地表残余移动变形破坏等级超过Ⅰ级的采煤沉陷区域,进一步加大其地基承载力设计标准值,采用提高的地基承载力标准值,以确保建筑物的安全:

(2-2)

式中, 为地基承载力特征值,kPa;

为按临塑荷载计算的基地承载力标准值,kPa;

为地基承载力提高系数,对基础设有钢筋混凝土圈梁的建筑物可按表2-1选用(表中L为建筑物独立单元长度,H为建筑物基础底面至檐口的高度)。

表2-1 采煤沉陷区地基承载力提高系数

地基土的类型 值

砾砂、粗砂、中砂 1.20 1.50

细砂、粉砂、砂质粉土 1.50 1.80

粘质粉土、粉质粘土、粘土 1.40 1.75

1.3 采煤沉陷区建筑物地基的允许变形量

地基土层承受上部建筑物的荷载,必然会产生变形,从而引起建筑物基础沉降。当场地土质坚实时,地基的沉降较小,对工程正常使用影响小;但若地基为软弱土层且厚薄不均,或地基下方隐伏有老采空区破碎岩体而受到建筑物附加荷载扰动失稳时,地基将发生严重的沉降和不均匀下沉,其结果将影响建筑物的正常、安全的使用。因此,在采煤沉陷区上兴建建筑物,在地基承载力和变形两个条件中,满足地基变形条件也是十分重要的。

为防止因地基变形或不均匀沉降造成建筑物的开裂与损坏,必须对地基变形特别是不均匀下沉加以控制,要求地基的变形值Δ应满足:

(2-3)

式中, 为地基允许沉降与变形值,根据建筑物的结构特点、使用条件和地基土的类别确定。不同建筑物地基的允许变形值,我国建筑部的《建筑地基基础设计规范》(GB50007-2002)给出了明确的规定。

三、结语

采动影响区拟建建筑物的处理措施包括采空区治理、地基基础处理与设计及建筑物的建筑、结构抗采动影响设计。该场地对应的地下采空区尚未完全、充分垮落,拟建工程属于先建后采类工程建设活动,为确保拟建建筑物的功能可靠、结构安全,建议应对上述部分房屋对应的采空区进行注浆治理,同时建筑物的设计应采取一定的抗采动影响措施。

参考文献

[1]常士骠,张苏民.工程地质手册-4版.中国建筑工业出版社,2007.

土建工程和建筑工程的区别范文第7篇

刘欣欣(1990-),男,汉族,重庆人,郑州大学,水利与环境学院10级,水利水电工程

摘要:近年来,受河砂资源减少的影响,一些沿海城市在工程建设活动中利用海砂拌制混凝土和砂浆,使建筑工程出现了氯离子腐蚀情况,降低了工程的耐久性,给工程质量带来了安全隐患。2013年3月13日,央视315曝光了深圳海砂危楼。深圳曝出居民楼房楼板开裂、墙体裂缝等问题,每逢雨天渗水不止。而根据深圳市政府的调查结果显示,问题的根源就是建设时使用大量海砂。海砂中超标的氯离子将严重腐蚀建筑中的钢筋,甚至倒塌。“海砂危楼”在深圳比比皆是。因为海砂可以节省一半的成本,所以很多无良心的开发商选择“海砂”做建筑混凝土[1]。

关键词:海砂 腐蚀钢筋 防治措施 法规

前言:随着我国经济的快速发展,建设规模的日益扩大,特别是东南沿海地区城市进程的快速推进,导致很多沿海城市面临河砂资源枯竭的困境。由于开采成本、运输成本的限制,河砂在建筑工程中使用的比例在逐年降低。因此出现了大量使用海砂在建筑工程中的现象,这些海砂没有经过严格的程序净化,甚至没有经过处理就直接用于建筑工程中。而这些海砂当中的盐分(氯离子)会侵蚀钢筋,从而破坏建筑的混凝土结构,给工程带来安全隐患

(一)如何识别海砂和河砂

首先,砂子从开采来源可分为三类—海砂、河砂和山砂。

(1)海砂和河砂从外观上的区别。

海砂色泽暗沉,显深褐色,常混有海洋细小贝壳 ,河砂色泽相对黄亮,显浅黄色;海砂颗粒粒径很细,有些甚至如同粉末状,用手直接揉搓就可识别,河砂则颗粒粒径较粗,质感较硬,表面粗糙度适中,较为干净。

(2)海砂和河砂从味觉上的区别。

可用味觉辨别,海沙有咸味,河沙则没有味道。

(二)使用未净化的海砂对建筑工程的危害

氯离子在混凝土里面对于钢筋的锈蚀引起的腐蚀引起结构的裂化,就像人的体内的癌细胞一样。从建筑结构上看,钢筋混凝土结构的裂化,是钢筋混凝土最主要的导致钢筋锈蚀比较重要的因素。不符合国家规定的含有超标氯离子的海砂,如果大量存在于建筑工程中,这个裂变侵蚀钢筋的过程,被专门划分为潜伏期与发展期,经历这两个阶段之后,使用海砂的建筑基本就可以称之为危楼。相比国家规定的50年民用建筑寿命,海砂建筑寿命短了很多。

(1)海沙含丰富的盐分(氯离子),混凝土中氯离子含量超过临界值时,氯离子会与钢筋产生化学反应,钢筋受到锈蚀,体积会膨胀,使得周边的混凝土受到张力而裂开。

(2)含有氯离子的混凝土,对钢筋起着不间断的化学作用,这种化学作用直接破坏钢筋的保护膜,从而侵蚀钢筋的内部结构,也就是大家常说的钢筋生锈,钢筋一旦持续生锈,就必然会减少原有的支撑力。另外氯离子会使混凝土膨胀,简单的说,就是混凝土会从内部开始开裂,这个过程,住房者在前期是很难察觉的,而到了最后的阶段,大家看到危险的时候,建筑物表面已经出现混凝土的松溃,而整个钢筋混凝土的墙体会直接露出一根根钢筋,混凝土也最终会一点点全面脱离钢筋。而房屋也会因为失去钢筋的支撑,出现垮塌现象[2]。

(三)建筑用海砂的管理与防治措施

(1)进一步提高对加强建筑用海砂管理重要性的认识。利用海砂,必须确保工程质量,这关系到社会经济的可持续健康发展,关系到广大人民群众的切身利益。各地建设行政主管部门和工程建设各方责任主体要充分认识到建筑中滥用海砂的危害性,采取切实可行的措施和办法,严禁不合格的海砂进入建筑工程。

(2)各地建设行政主管部门要严格管理制度,强化对海砂应用的监管。要开展专项监督检查,认真摸清海砂的产地、分布、规格和材料性能指标,掌握海砂的实际应用情况,预防海砂应用不当而存在的潜在危害,切实保证工程质量。

(3)凡采用海砂地区的建设行政部门要根据本地区实际,制定海砂应用技术措施和规范性文件,及时指导有关工程管理、技术人员掌握海砂应用技术和应用条件。同时,认真做好采用海砂的经验总结和交流,宣传海砂使用不当的危害性,开展有针对性的科学研究和实验。

(4)严格执行标准,对违反标准进行建筑活动的必须依法严查。海砂的开采、除盐处理、混凝土拌制等过程,必须严格执行国家标准《建筑用砂》、《混凝土质量控制标准》和行业标准《普通混凝土用砂质量标准及检验方法》。违反下列强制性条文的,应依据建设部令《实施工程建设强制性标准监督规定》进行查处:

1、对重要工程混凝土使用的砂,应采用化学法和砂浆,长度法进行骨料的碱活性检验。

2.对钢筋混凝土,海砂中氯离子含量不应大于0.06%。

3.对预应力混凝土不宜用海砂。若必须使用海砂时,则应经淡水冲洗,其氯离子含量不得大于0.02%。

(5)建筑工程中采用的海砂必须是经过专门处理的淡化海砂。公共建筑或者高层建筑不宜采用海砂。钢筋混凝土抹灰面层不得采用未处理的海砂作砂浆。采用海砂的建筑工程应当严格工程质量检查;对结构构件的混凝土保护层不符合规范要求的,必须进行处理后,才得进入下一工序。

(6)大量使用海砂的地区应采用集中拌制商品混凝土。各预拌混凝土生产企业必须配备专人及相关检测设备,对建筑用砂的质量进行全过程跟踪监管。采用建筑用砂前,应当慎重选择用砂的供应单位和砂源。商品混凝土出厂前应当进行氯离子含量检验。

(7)施工单位和监理单位必须严格执行建筑用砂的进场联合验收制度和用前有见证取样检验制度。施工单位不得使用未经验收、检验或验收、检验不合格的建筑用砂。监理单位要认真履行监理职责,对施工单位违规使用建筑用砂的,应当及时予以制止,并报告建设行政主管部门查处[3]。

(8)使用自动化海砂淡化生产线处理建筑用商品海砂。全自动生产线具有效率高、质量有保证、操作简单的特点,而且减少生产环节、节约成本,起到节能减排、安全环保的作用。

(四)防治使用未经处理海砂的相关法规

(1)按照中华人民共和国建设部2004年8月23日的《关于严格建筑用海砂管理的意见》中规定,海砂必须经过净化处理,满足要求后方可用于配制混凝土。对钢筋混凝土,海砂中氯离子含量不应大于0.06%。若必须使用海砂时,则应经淡水冲洗,其氯离子含量不得大于0.02%。如果建筑用海砂不符合国家的强制标准,超标的氯离子含量将严重腐蚀建筑中的钢筋,造成重大的安全隐患[3]。

(1)按照中华人民共和国住房与城乡建设部2010年5月18日颁布的行业标准《海砂混凝土应用技术规范》JGJ 206-2010,经过净化处理的海砂,可以用于混凝土结构的施工[4]。(作者单位:郑州大学水利与环境学院)

参考文献:

[1]央视网 2013-03-14

[2]人民网 [引用日期2013-03-14] .

土建工程和建筑工程的区别范文第8篇

【关键词】高层建筑;岩土地层勘察;地质探测;土层

1、引言

在高层建筑的建设过程中,岩土地层的勘察工作是非常重要的一个环节。尽管整个环节不直接参与到高层建筑建设过程中,但是,细致的地质勘查对于高层建筑建设具有非常重要的作用,它是从根本上保证了建筑建设过程中基础的安全性。随着行业的发展,高层建筑建设过程中岩土地层勘察工作也趋于正规,一般建筑企业都会委托正式的岩土勘察公司进行岩土地层勘察工作,通过岩土地层的勘察来制订合适建筑规划,然后才进行正式的施工。本文主要对高层建筑大厦岩土地层勘察过程进行分析,对勘察过程中的四个部分分别进行了阐述,按照正规的岩土勘察报告开展课题研究。文章内容对于高层建筑的地质勘察工作具有一定的指导意义,对于建筑工程具有非常重要的参考价值。

2、地质勘察的准备工作

这一部分主要是对所要勘察的建筑项目进行分析,明确地质勘察的任务和目的,并对布置简单的勘察工作简况。

2.1 工程概况分析。工程概况所要分析主要包括工程的地理位置,并熟悉周围环境,例如一系列的道路,地下线路以及重要的建筑组成。并且,在工程概况的最后要明确工程的重要性。例如,经过对周围环境的分析,该工程重要性等级为一级,场地等级为二级,地基等级为二级,勘察等级为甲级。最后做出的判断对于整个建筑过程具有非常重要的指导意义。

2.2 岩土地层勘察目的与任务。这一部分是对整体勘察工作进行目标的具体化。其中,勘察目的主要查明沿线的区域文地质及工程地质条件,并对场地水文和工程地质条件进行评价,并且查明不良地质作用的性质、特征、范围,提出对不良地质作用防护、治理的措施;勘察任务较勘察目的更加明确,主要包括查明沿线区域地貌、地层、岩性、地质构造和水文地质条件及其对工程方案的影响;查明地下水类型、埋藏条件以及补给、径流、排泄条件,对水位、涌水量、水质等水环境特征作出评价;并且要分析周边建筑物、地下管线在施工过程中的稳定性,并提出监测和防护措施。

2.3 勘察工作依据的标准及技术要求。这一部分主要是明确勘察过程的技术要求。一般来说,在岩土勘察工作中,主要根据国标的要求进行施工。例如《岩土工程勘察规范》、《建筑抗震设计规范》、《建筑地基基础设计规范》、《建筑基坑支护技术规程》等。

2.4 勘察工作简况。这一部分包含的内容较多,具体内容包括,勘察工作时间及投入设备、钻孔测放、具体的勘察方法、工作量统计以及资料整理等内容。其中,具体的勘察方法对于整个勘察工作具有非常重要的意义。在实际的勘察工作中,根据不同的地质条件和地质特征,勘察方法主要有钻探方法、标准贯入试验、静力触探、波速测试、地下水位的量测及室内土工试验。根据不同的工作环境,选择合适的勘察方法可以得到更为准确的数据。

3、场地工程地质条件

这一部分是整个地质勘察的核心部分,在确定勘察方法之后,通过具体的勘察得到建筑工程的岩层地质情况,并给出各个底层的岩土指标,以此指导工程应用。

3.1 区域地层地质概貌描述。地层地质概貌是对工程地质条件的整体描述,对于后期的建筑的施工方法的选择以及施工顺序等具有非常重要的指导意义。例如,在一个高层建筑的地质勘察报告中,对于区域地层地质概貌给出了具体的描述,本区地层属江南地层区苏州~长兴小区的江苏部分,场地位于太湖冲湖积平原区,地势平坦,地表水系发育,第四系覆盖层厚度较大,各土层水平向分布较稳定,基底地质构造与水文地质条件较复杂,人类工程活动对地质环境的扰动和作用强烈。地质环境条件复杂程度属中等地区。勘察区域为广阔的冲湖积平原,水系发育,地势平坦,系典型的水网化平原。

3.2 地基土的分布及特征。地基土的分布特征是整个勘察工作的核心内容,它给处了建筑地基各个土层的土质以及物理指标等,而这些量化的指标对于工程整体施工具有决定性的作用。

3.3 水文地质条件。水文地质条件也是地质勘察非常重要的部分。水文地质条件的勘察主要包括对地表水以及地下水情况勘察。

4、工程地质评价

工程地质评价是在工程勘探结果基础上给出的一系列地质评价,它主要是对地质结构稳定性内容给出相应评价。主要包含场地稳定性及适宜性等四个部分的内容。这一部分内容主要是通过实例的问题体现。

4.1 场地稳定性及适宜性。场地稳定性及适宜性是工程在施工过程中发生地质滑坡等问题的一种判断。例如在某勘察过程中,分析场地的稳定性及适宜性:本区属江南地层区的太湖冲积平原区,场地第四系覆盖层厚度大。据区域资料及工程场地地震安全性评价报告,场地内未发现晚更新统以来的活动性断裂,属地壳活动相对稳定区。

4.2 地基土的分析及评价。地基土分析评价是建立在地基土土质分析的基础上开展的。例如,据勘察结果,沿线51.45m以浅各土层分布较稳定,地层层序较完整,土层均匀性中等较好。

4.3 围岩分类及土可挖性分级。这一部分是在地基土勘察明确以及地基土的分析及评价之后进行明确的等级界定

5、结论与建议

通过对岩土地层的勘察,针对工程地质情况,最后要给出勘察的结论以及对工程施工的建议。这一部分是最后施工单位所需要的,对于建筑工程具有非常重要的意义。特别是在对工程的建议部分,施工单位可以根据工程的需要,结合这一建议制定合理的工程规划。因此,岩土地层的勘察在施工过程中必要而且非常有价值。

参考文献

[1] 覃学英. 浅析某高层建筑岩土地基的处理方法 [J].中华民居,2011,7.

土建工程和建筑工程的区别范文第9篇

关键词:建筑工程;氡浓度;保障;居民

中图分类号:TU198 文献标识码:A 文章编号:

氡(222Rn)是放射性核素镭衰变形成的无色无味的放射性气体,其与肺癌的关系早已引起人们的高度重视[1]。低层建筑物室内氡主要来自地基的土壤和岩石,一般占室内氡的 90%左右。据统计,其全国低层建筑物室内氡浓度超过 148Bq/m3限值的比率为 12%。我国以环境氡为目的的调查始于 20 世纪 80 年代,主要开展了区域放射性调查与室内氡调查相配合的工作[2]。近年来,我国室内氡-土壤氡关联性研究课题也已启动[3]。

1土壤中氡浓度的测定方法及步骤

土壤中氡浓度测定的关键是取决于从土壤中采集的空气的质量高低。此次测定所用仪器为FD216环境氡测量仪,属于闪烁瓶检测法

表1 主要检测仪器一览表

1.1布置测量点

在业主提供的拟建建筑物平面图上拟建建筑物范围内布设测量点时,应布设间距 10 m 的网格线,其网格线交点即为测量点,其中当遇到较大石块时可偏离±2 m,但是测量点数总数不应少于 16 个,且测量点应覆盖整个拟建建筑物的范围。

1.2 成孔

每个孔的直径宜为 20~40 mm,且孔深宜为 500~800 mm。每个测量点均应采用专用钢钎打孔,成孔后应使用头部有气孔的取样器进行取样,当取样器在靠近地表处时应进行密闭,避免过多大气渗入孔中,干扰测量结果;然后将取样器插入打好的孔中,进行抽气,一般进行抽气 3~5 次。如遇雨天应在雨后 24 h 后进行取样。

2实例分析

2.1建筑场地概况

场地用途:天津湾C地块住宅工程

场地地址:天津市河西区南北大街与古海道交口

场地面积:C地块地上总建筑面积241432 m3

此次选取的新建民用建筑工程场地,原有建筑物已经全部被拆除,场地平坦。据该场地岩土工程勘查资料,建筑场地的土壤主要为人工填土层和少量的第四纪沉积土层[4]。

2.2测点布置

一般情况下,民用建筑工程地点的土壤氡测定目的在于发现土壤氡浓度的异常点。大量资料表明,土壤氡来自土壤本身和深层的地质断裂构造两方面,因此,当土壤氡浓度高到一定程度时,须分清两者的作用大小,此时进行土壤天然放射性核素测定是必要的。对于I类民用建筑工程而言,当土壤的放射性内照射指数(IRa)大于1.0或外照射指数(Ir)大于1.3时,原土再作为回填土已不合适,也没有必要继续使用,而采取更换回填土的办法,简便易行,有利于降低工程成本。也就是说,Ⅰ类民用建筑工程要求采用放射性内照射指数(IRa)不大于1.0、外照射指数(L)不大于1.3的土壤作为回填土使用[5]。

2.3测量结果

从防氡降氡角度出发,工程设计关心的地面范围,仅限于可能影响到建筑物室内环境的地面区域,包括建筑物基础所占有的地面部分,以及工程设计中与建筑物相沟通的各种地下通道、地下管线预留沟槽、空洞等所占有的地面部分等。只要这些通道、沟槽、空洞与建筑物相连,那么,其中的氡气就可能相互串通,最终对建筑物的空间造成污染。因此,建筑物施工所涉及的这些地面区域,设计人员均应对其土壤中的氡浓度情况予以关注。

表1 测量结果分析

3新建民用建筑工程场地土壤氡浓度的防治措施

土壤氡水平高时,为阻止氡气通道,可以采取多种工程措施,但比较起来,采取地下防水工程的处理方式最好,因为这样既可以防氡,又可以防止地下水,事半功倍,降低成本。况且,地下防水工程措施有成熟的经验,可以做得很好。只是土壤氡浓度特别高时。才要求采取综合的防氡工程措施。在实施防氡基础工程措施时,要加强土壤氡泄露监督,保证工程质量。我国南方部分地区地下水位浅(特别是多雨季节)难以进行土壤氡浓度测量。有些地方土壤层很薄,基层全为石头,同样难以进行土壤氡浓度测量。这种情况下,可以使用测量氡析出率的办法了解地下氡的析出情况。实际上,对室内影响的大小决定于土壤氡的析出率。

结论

建筑物室内氡主要源于地下土壤、岩石和建筑材料,有地质构造断层的区域也会出现土壤氡浓度高的情况,因此,民用建筑在设计前应了解土壤氡水平。通过工程开始前的调查,可以知道建筑工程所在城市区域是否已进行过土壤氡测定,及测定的结果如何。工程设计勘察阶段应进行土壤氡现场测定。

参考文献:

[1] 苏晓书,肖德涛,杨彬华. 基于MSP430的多探头核辐射剂量率仪研制[J]. 现代电子技术,2011(05):118-119.

[2] 位楠楠,刘卫,肖德涛,林俊,李燕,陈长虹,IIDA Astuo. 隧道大气细颗粒物及其元素的粒径分布特征[J]. 环境科学研究,2011(05):124-125.

土建工程和建筑工程的区别范文第10篇

关键词:建筑工程;地基;施工;方法;处理

1.前言

我国地域辽阔,自西向东,有南而北;从沿海到内地,由山区到平原,分布着多种多样的地基土。地基土的抗剪强度、压缩性以及透水性等,因土的种类不同而可能有很大的差别,地基条件区域性较强。因而使地基基础这门学科特别复杂。随国民经济的快速增长,我国的建筑业也取得较快的发展。现在,国内不少知名的房地产开发商家纷纷将开发项目转向自然风光优美的山地(譬如:各类度假山庄、高档高尔夫球场、某某庄园等);虽然这给楼盘增加了不少卖点,但是随之也引来诸多不便及问题。

本文主要从工程技术及安全角度,对山区地质条件进行分析,找出引起地基基础不均匀沉降的主要因素,并提出处理措施。

2.建筑工程地基处理的主要内容

伴随建筑事业的发展,建筑工程施工技术也取得了长足的进步;在现代的建筑工程施工中,不仅事先要选择在地质条件良好的场地上从事建设,而有时也不得不在地质条件不良的地基上进行修建。

另外,随着科学技术的日新月异,结构物的荷载日益增大,对变形的要求也越来越严格,因而原来―般可评价为良好的地基,也可能在一定条件下,非得进行地基处理不可。

所以不仅要针对不同的地质条件、不同的结构物选定合适的基础形式、尺寸和布置方案,而且要善于选取最恰当的地基处理方法。利用换填、夯实、挤密、排水、胶结、加筋和热学等方法对地基土进行加固,用以改良地基土的工程特性。

一般情况来讲:当建筑物的天然地基存在以下问题之一或几个时,即须采用地基处理措施以保证建筑物的安全与正常使用:强度及稳定性问题、压缩及不均匀沉降问题、渗漏问题、液化问题。这也是建筑物的地基所面临的最主要问题。

3.山区基础岩层的特点

3.1 山区基岩起伏变化较大

山区基岩起伏变化较大,由于基岩起伏,其上覆土层的厚度不同,常常使建筑物一部分基础置于坚硬的基岩上,另一部分基础则置于土层上甚至是人工填土上,易使建筑物产生不均匀沉降。

3.2 山区地面高差悬殊很大

地面高差悬殊很大,大量的平整场地工作往往使同一建筑物的部分基础置于挖方区,而另一部分基础置于填方区;一部分基础置于河道上,而另―部分基础置于硬上层上,如果处理不当,很容易使地基产生不均匀沉降。

3.3 山区土层的分布方向的差异

山区地基由于土层在平面与竖向分布上常有很大的差异,不但层次多,且各种土层的物理力学指标相差悬殊,常常遇到同一深度处部分岩层物理指标良好,而另一部分则处于全壤风化状态,不宜同时直接应用为建筑物的持力层;基岩与填土交接。

3.4 山区建筑物的不完全坐落

当建筑物部分坐落在岩石上,另一部分坐落在人工填土上,岩石与填土的交接处若不被妥善处理,极易产生地基间滑移,引起建筑物的不均匀沉降甚至倾覆破坏;山区常遇到有河道沟渠的淤泥细砂,软塑状粘性土层等局部软弱土层,―般面积不大,对―个建筑物地基的影响虽只是局部的,但如果处理不当,易产生基础不均匀沉降,也应重视。

4.针对上述问题所应采取的处理方法

针对上述特点山区建筑地基基础可采取下列处理方法:

4.1 桩基础法

采用爆扩桩、灌注桩,打入桩穿过软弱土层,将基础支撑在坚硬土(石)层上,根据建筑物具体的情况,选择撞击的持力层、确定桩型和长度,使建筑物的沉降差满足设计要求,这种方法能同时取代或减少地基处理和开挖基坑的土方工程,可以节约人力和缩短工期,山区普遍采用此法。要使桩基础达到经济上合理,技术上安全可靠,必须做到精心设计和精心施工,否则虽采用了桩基础也会发生问题。

4.2 覆土层浅基础法

充分利用覆土层,根据具体建筑物附近地质的情况可采用浅基础。当地基上部土层的强度较高、分布较均匀且具有一定的厚度,应优先采用浅基础较为经济合理。若部分位置分布有软弱土层。应进行软弱下卧层的验算及相应措施,但不应影响采取浅基础的基础形式。

4.3 换填法

换填法适用于淤泥、淤泥质土、湿陷性黄土、素填土、杂填土地基及暗沟、暗塘等的浅层处理。根据具体工程采取不同的垫层种类,或以强换弱或以弱换强,总之为协调建筑物的地基基础整体平衡陛,采取合理作法至关重要。

4.4 强夯法

强夯法一般适用于碎石土、砂土、低饱和度的粉土与粘性土,湿陷性黄土、杂填土和素填土等地基。对高饱和度的粉土与粘陛土地基,当采用在夯坑内回填块石、碎石或其它粗颗粒材料进行置换时,应通过现场试验确定其适用性。直接采用强夯法加固高饱和度的粘陛土,一般来说处理效果不显著,尤其是淤泥和淤泥质土地基,处理效果更差,应滇用。

5.在地基基础处理过程中需注意的问题

5.1 弄清工程水文地质条件

工程水文地质条件比较复杂,只有在查清工程地质结构和水文地质条件的情况下,经过认真勘测才能对地基采用因地制宜的合理方案。因此山区建设中搞好水文地质勘测工作,显得尤为重要。

5.2 合理利用填土地基

建设中,平整场地时不可避免地出现较多填土区,合理地利用填土地基,对山区建设具有重要的意义。利用填土地基的关键是提高填土的密实度。因此,要统―规划,安排好平整场地、地基上压实处理及基础施工的综合方案,提高填土质量。

5.3 确定桩基的承载力

山区建设软硬不均地基比铰复杂,在设计时应考虑减少建筑物的沉降差。桩基础是一种较常用的方法,选用什么样的桩型及工艺应根据地质情况租具体条件确定。为了保证质量,在现场进行桩的静载试验来确定桩基的承载力是非常必要的。

5.4 科学制定施工工序

地质条件比较复杂的地区,主要建筑物的基槽(坑)开挖后,应组织质监、地勘、设计、监理、建设、施工单位进行验槽后,方能进行下一道工序的施工,基础施工应作好隐蔽工程记录,特殊处理记录。

6.结束语

综上所述:地质条件的形成存在着年代远近不同,埋藏深浅不同,分布疏密不同,范围大小不同,没有规律可循,只有认真作好地质勘测,精心分析处理,才能避免其上建筑物的安全隐患。

土建工程和建筑工程的区别范文第11篇

关键词:建筑工程; 桩基基础; 施工技术; 施工要点

一、引言

现代化城市建设要快速推进,各类工程建筑建设是基础,只有有效确保建筑工程质量的前提下,城市的现代建设才能又好又快地向前推进,同时也是增长居民生活质量的重要支撑所在。而在建筑工程中桩基基础是一项极为重要的要素,建筑工程桩基施工质量直接影响到整个建筑工程的质量,抓好建筑工程施工中桩基施工,可以非常有效地增强施工质量和提升工程施工的效率,对于建筑工程具有非常重要的价值与意义。因此,必须切实加强建筑工程桩基基础建设的关注力度,加强建筑工程中桩基础技术的应用研究,以确保和提升建筑工程施工质量与效率。

二、建筑工程中桩基技术应用概况

综合分析建筑工程中桩基技术的应用情况,当前应用最为普遍的是“灌注桩”与“混凝土桩”两类桩基施工技术。其中“灌注桩”在具体施工过程中,必须引入沉管成孔作业,在完成成孔工作任务过程中置入钢筋笼,并注入混凝土进行浇筑,等待混凝土硬化之后,从而完成建筑桩基的浇筑工作。在实施“灌注桩”技术过程中的成孔作业操作方式中通常采用的是“冲击法”与“震动法”。而“混凝土桩”在具体实施过程中,通常引入管桩或” 方桩施工方法,桩基基础都采用预制混凝土桩,施工的着重点在于锤击打入、沉桩、静压等,在实际施工过程中必须注意对挤土问题的处理,才能有效保障施工质量。

三、建筑工程桩基基础施工分析

有关建筑工程桩基基础的施工主要涉及到预制桩基基础施工和灌注桩基施工。对于预制桩基的施工,是建筑工程最为重要的组成部分之一,在具体施工实施过程中,必须事前论证和确定入桩的具体线路,只有在确定较为科学与合理的入桩线路之后,才能有效保障桩基施工的顺利进行,才能更加有效地避免桩基倾斜、上溢等诸多问题的产生,才能更加有效地在挤压施工过程中保护好桩基体,有效减轻桩基的损伤。在具体施工过程中要注意四个方面的问题:一是如果桩基发生偏移,则要及时实施适当的压力,从而最大限度地减小偏移量;二是如果土壤出现抗剪力硬度时,要积极采取有效措施有效释放抗剪力;三是在对桩基实施施压过程中,必须确保下下桩基在同一个接触面;四是在继续进行压桩作业中,预制桩要满足要求。

在灌注桩基作业的具体实施工作过程中,必须对建筑工程混凝土灌注桩实施浇筑作业,于其中必须注意关注?个方面的问题:一是在灌注桩基的浇筑过程中,必须加强对浇筑设备、材料的检查,加强浇筑施工人员技术能力的监测,为确保桩基浇筑质量把好用人关与材料质量关;二是在对混凝土浇筑过程中要加强对施工各项相关指标的审核,特别是对混凝土配制比例、混凝土搅拌情况的审核,由此在物质基础上保证桩基基础施工质量;三是必须对灌注桩基所使用的混凝土均匀性的设置加强关注,对坍塌度进行较为严格的检验,以及对混凝土浇筑条件进行检验,确保各项使用条件都达标,并由此更加有效地保障桩基的达标;四是如果对混凝土进行了二次搅拌,那么就必须再次对其相关参数进行检验,以确保其各项技术指标能够达标,如果二次搅拌生成的混凝土参数不能达标,则坚决不能将混凝土应用的桩基基础施工之中,以有效保障桩基质量,避免由于桩基质量问题而留下的安全隐患,确保整个建筑工程的质量。

四、建筑工程中桩基施工案例剖析

某单位拟建设一高层办公楼建筑群,在建筑规划过程中将建筑工程施工地域划分为A、B、C与D等4个区域,其中A区域和C区域拟建设成高度为13层具有较好抗震结构建筑,A区建筑高度定为65.2米,C区建筑高度定为61.3米,而B区建筑定为建设成为两栋框架结构裙楼,其高度定为15.6米,D区建筑则打算建设成两栋三层高的楼房,高度为10.2米,建筑工程地面设计的标高定高11.8米,地下室的深度为4.9米。从这些建筑工程基本参数数据出发,有必要展开深入细致的研究,以确实是否科学合理。通过现场实地勘测,发出拟建筑工程所处的土质主要由软土组织构成,因而必须对建筑工程周边的环境情况进行分析,获得有可能影响建筑工程施工质量的因素。而通过有关建筑工程技术人员现场考察与分析,采取人工挖空的方式对建筑工程周边地基进行考察。然后将相关材料与数据移交给建筑工程专家组进行分析,专家组一致认为如果在A区域和C区域分别建设一个17层与13层的建筑物,那么会导致载荷过大的问题。此外,该建筑工程所处的风化岩石的深埋程度比较深,则会导致风化的概率较大,因而,建议建筑工程单位必须满足实地具体要求才能进行人工深挖的灌注桩施工作业,并控制施工灌注长度必须介于23米至25米之间,同时需求保证没有事先腐蚀现场的存在,以有效避免施工质量隐患的发生。

五、结束语

建筑工程桩基是建筑物的骨架,对建筑工程的质量起着至关重要的关联作用。因而,建筑工程桩基基础施工技术应用是事关建筑工程质量的根本,当前国内外对建筑工程桩基技术的研究日益重视。然而,建筑工程桩基技术的应用在把握总体原则的情况下,必须紧密结合建筑工程所处地点土层的具体特点,并结合实际土质情况实施正确的施工方式,才能有效消除施工过程由于这样或那样的问题引发工程质量隐患,确保建筑工程整体质量,同时为建筑事业的稳定发展奠定基础。

参考文献:

[1]龚红燕.工民建筑桩基施工现状与建议[J].城市建设理论研究,2014(5).

[2]谢启明.刍议框架建筑桩基施工中的质量控制[J].建筑遗产,2014(2).

土建工程和建筑工程的区别范文第12篇

【关键词】高层建筑工程;梁柱节点;混凝土施工技术

0.引言

混凝土施工在建筑工程施工过程中是一个重要的步骤,特别是在高层建筑不断发展的今天,混凝土施工技术就更为重要,只有控制好混凝土施工技术,才能有效保证工程质量。而目前多数高层建筑中存在着不同强度等级混凝土的施工情况,这样就造成了梁柱节点处的施工难度增大。本文结合工程实例,对多强度的混凝土施工技术进行探讨。

1.工程概况

某住宅小区是由A、B、C三栋高层建筑组成,其中A、C栋为地上28层,B栋为地上30层,地下1层,裙楼3层,框剪结构。总建筑面积116800m2,建筑高度112.915m。该工程设计为多种强度等级的混凝土。其中竖向构件混凝土强度等级分别为C50、C45、混凝土强度C40、C35、C30、C25,梁板结构混凝土强度为C25。

2.多强度等级混凝土浇筑方案

当柱、核心筒墙混凝土强度等级高于梁、板混凝土强度等级不超过2级时(10MPa)可根据实际情况采用柱、核心筒墙混凝土随同梁、板一起浇注。但考虑到梁柱节点处的混凝土强度如果取用梁、板的混凝土强度,可能会引起柱在竖向荷载作用下的承载力不足,以及地震作用下节点核心区的抗剪承载力不足,可相应采用加插短筋(柱主筋数的0~50%)的方法进行补强。整个方案应征得设计单位同意。

当地下室外墙与梁板混凝土强度等级不同,柱和核心筒体与梁板混凝土强度等级不同,级差大于2级以上时,在柱、墙梁底向上10mm~15mm处设置水平施工缝,柱、墙混凝土分两次浇筑。第一次先浇筑柱和核心简体混凝土到梁底面向上15mm处;第二次浇筑混凝土前,在梁柱核心简体距离柱边梁上设置钢丝网片,应在支梁侧模前做好此工作;浇筑不同强度等级混凝土的顺序为:先核心筒体区梁、柱、墙高强度等级混凝土,其次浇筑地下室外墙混凝土(分次浇筑),再浇筑梁、板混凝土(分次浇筑)。必须在梁柱节点高区混凝土和地下室外墙混凝土初凝前浇筑梁板混凝土。为避免梁、板低强度等级混凝土流入柱、核心筒墙高强度等级混凝土范围,以及防止高强度等级混凝土流淌过远,造成浪费。因此在施工过程中,在柱、核心筒墙、梁板节点处四周确定合适的距离(600mm)加设钢丝网。

3.混凝土浇筑方式及流程

混凝土的施工可根据一次浇注方量、浇注种类、混凝土供应情况、气温、机械及人员等情况,每个自然层采取分两次浇注或一次性浇注的方法。其具体方式及流程如下:(1)主体结构中每个自然层作为两个施工段:浇筑柱、核心筒墙混凝土(混凝土浇至梁底向上15mm处)安装梁、模板,梁板钢筋工程+浇筑梁、板混凝土。(2)每个自然层作为一个施工段,即柱、核心筒墙、梁、板混凝土一次性浇筑。混凝土浇筑顺序:浇筑核心筒墙浇筑柱混凝土浇筑梁、板混凝土。

4.施工过程质量控制

4.1确定各强度等级混凝土配合比

施工单位应提前对商品混凝土搅拌站试验室提出各种强度等级的混凝土技术指标(混凝土加缓凝剂,初凝时间不小于8h等)。同时应要求实验室考虑在满足强度等级及可泵性的条件下,对柱子混凝土,尽可能减少水泥用量、减少水灰比、减少含砂率、减少坍落度、增加石子含量,并对粉煤灰和外加剂的用量作相应的调整。商品混凝土搅拌站试验室按照相应技术要求进行试配制。试配后制作试块,测量坍落度、初凝时间、终凝时间,到28天进行强度试验。试验各项指标合格,开出各种配合比单经监理工程师确认后,按配合比投料搅拌混凝土。每次搅拌的混凝土要求沙、石料同一产地,水泥同一厂家同一批号,外加剂同一厂家生产的产品。

4.2混凝土坍落度选择

在施工现场必须加强不同强度等级混凝土输送监督和调度工作。根据浇筑部位的不同选用不同强度等级及不同坍落度的混凝土,控制好浇筑进度,确保强度等级不同的混凝土在初凝前整体浇筑完毕。同时在现场,应对每车混凝土都进行坍落度检测。

4.3混凝土的运输与浇注

混凝土运输应以最少的转载次数和最短时间,从搅拌地点运到浇筑地点。其混凝土的延续时间不宜超过相应的规定。作为拦截高强度等级混凝土的方式,钢丝网片的设置与梁板钢筋绑扎同时进行,位置位于在梁上距柱边距离600mm处,钢丝网片应绑扎牢固,能够抵抗混凝土浇注时的冲击力。浇筑时,先浇筑柱、核心筒墙的高强度等级混凝土区;后浇筑梁板低强度等级混凝土区,浇筑混凝土的原则允许高强度等级混凝土流至梁上距柱边距离600mm,超过钢丝网片,不允许低强度等级混凝土流入柱、核心筒墙区。对少量通过网眼渗入梁底的冷浆要及时处理干净。当采用输送管输送混凝土时,应由远而近浇筑;同一层的混凝土,先竖向结构后水平结构的顺序,分层连续浇筑;当不允许留施工缝时,区域之间,上下层之间的混凝土浇筑停歇时问,不得超过混凝土初凝时间。

梁板的混凝土采用二次振捣法,即在混凝土初凝前再振捣一次,增强高低强度等级混凝土交接面的密实性,减少收缩。混凝土自吊斗口下落的自由倾落高度不宜超过2m。梁、板应同时浇筑,浇筑方法应由一端开始用“赶浆法”即先浇筑梁,根据梁高分层阶梯形浇筑。当达到板底位置时再与板的混凝土一起浇筑,随着阶梯形不断延伸,梁板混凝土浇筑连续向前推进。和板连成整体高度大于1m的梁,允许单独浇筑。浇筑时,浇筑与振捣必须紧密配合,第一层下料慢些,梁底混凝土充分振实后再下二层料。用“赶浆法”保持水泥浆沿梁底包裹石子向前推进,每层均应振实后下料,梁底及梁帮部位应振实,振捣时不得触动钢筋及预埋件。梁,柱节点钢筋较密时,浇筑此混凝土时,宜用小粒径石子同强度等级的混凝土浇筑,并用小直径振捣棒振捣。

4.4混凝土养护

混凝土养护应及时,使其不会因温差和强度等级不同而产生收缩裂缝。浇水次数以能使混凝土面层保持湿润状态为准,特别是梁。除了板面浇水外;还应在板下梁侧浇水养护,并尽可能推迟梁侧模的拆模时间。防水抗渗混凝土养护期不少于14天;一般混凝土养护不少于7天;后浇带混凝土养护不少于28天。

5.结语

总之,要熟悉有关技术规范和操作规程,了解设计要求及细部、节点做法,弄清有关技术资料对工程质量的要求,弄清完成施工任务中的薄弱环节和关键部位,然后对施工现场进行勘察和了解,仅限于对工程图纸的了解是不够的,要清楚、全面了解工程,掌握工程概况,必须亲自到现场进行勘察、了解。认真了解工程的基本情况,有利于更好地实施管理,落实施工方法,更好地完善工作。

【参考文献】

土建工程和建筑工程的区别范文第13篇

【关键词】建筑工程;地基结构设计;地基计算;桩基设计;

建筑工程地基结构设计等级分为甲级、乙级、丙级三种。甲级用于30层以上的高层建筑、大面积的多层地下建筑物、开挖深度大于15m的基坑工程等;乙级用于除甲级、丙级以外的基坑工程、工业与民用建筑物;丙级用于次要的轻型建筑物、场地和地基条件简单且开挖深度小于5.0m的基坑工程等。

一、建筑地基工程存在的问题

导致建筑工程地基问题有因素,笔者认为主要有以下几方面:(1)强度及稳定性问题。地基的强度问题直接决定了房建的质量好坏,当地基的抗剪强度不足以支撑上部结构的自重及外荷载时,地基就会产生局部或整体剪切破坏。(2)由于动荷载引起的地基问题。当遇到不可避免的因素,例如地震或爆破等时,这种动载荷动力会引起地基土、特别是饱和无黏性土的液化、失稳和震陷等。(3)压缩及不均匀沉降问题。建筑不可避免的问题是沉降问题,这一直是专家学者研究的课题之一。当地基在上部结构的自重及外荷载作用下产生过大变形时,会影响建筑物的正常使用,特别是超过规范所容许的不均匀沉降时,结构可能会开裂。

二、建筑工程中地基结构设计的计算

1、地基计算前首先应确定基础埋深:(1)建筑物的用途,有无地下室、设备基础和地下设施,基础的形式和构造;(2)作用在地基上的荷载大小和性质;(3)工程地质和水文地质条件;(4)相邻建筑物的基础埋深;(5)地基土冻胀和融陷的影响。除岩石地基外,基础埋深不应小于0.5米。高层建筑基础的埋置深度应满足地基承载力、变形和稳定性要求。位于岩石地基上的高层建筑,其基础埋深应满足抗滑稳定性要求。在抗震设防区,除岩石地基外,天然地基上箱形和筏形基础埋深不宜小于建筑物高度的1/15;桩箱或桩筏基础的埋置深度(不计桩长)不宜小于建筑物高度的1/18。当存在相邻建筑物时,新建建筑物的基础埋深不宜大于原有建筑物基础。

2、地基稳定性计算;地基稳定性可采用圆弧滑动面法进行验算。具体可按照《建筑地基基础设计规范》GB50007-2011第5.4.1条、5.4.2条、5.4.3条相关规定进行验算,山区地基(包括丘陵地带)的设计,还必须按照第6.1.1条中可能出现的设计条件进行分析认定,避免发生滑坡、泥石流、崩塌等引起房屋倒塌的事故。

3、地基承载力计算应满足《建筑地基基础设计规范》GB50007-2011第5.2.1条、5.2.2条相关规定。

4、地基变形计算;地基变形特征可分为沉降量、沉降差、倾斜、局部倾斜。建筑物地基变形值,不应大于地基变形允许值。建筑物地基变形允许值按照《建筑地基基础设计规范》GB50007-2011第5.3.4条中表5.3.4规定采用,建筑物地基最终变形量按照第5.3.5条进行计算。

三、建筑工程中的地基结构设计

3.1建筑工程中无地下室的地基结构设计

建筑工程属于砌体结构应优先采用刚性条形基础,如毛石条形基础、四合土条形基础、灰土条形基础、混凝土条形基础、毛石混凝土条形基础等,当基础宽度大于2.5m时,可采用钢筋混凝土扩展基础即柔性基础。多层框架结构,无地下室,荷载过大,地基较差的情况时,这时需采用十字交叉梁条形基础,以便减少不均匀沉降、增强整体性;框架结构地基较好,无地下室,荷载较小时,可选用独立柱基,在抗震设防区可按《建筑抗震设计规范》设柱基拉梁。框剪结构无地下室,地基较好,荷载较均匀时,可选用框架柱独立柱基,剪力墙下条基,抗震设防地区,柱基下设拉梁并与剪力墙下条基连结在一起。剪力墙结构不论有无地下室,地基较好,这种情况下可以选用交叉条形基础。如采用上述基础不能满足地基基础强度和变形要求,又不宜采用桩基或人工地基时,可采用筏板基础。

3.2建筑工程中有地下室的地基结构设计

现在的高层建筑一般都设有地下室。一般情况下有地下室的建筑物可采用筏板基础;在有地下室,地基较好,建筑物无防水要求,柱网、荷载较均匀的情况下,应使用筏板基础、钢筋混凝土交叉条形基础,或是选用独立柱基,抗震设防区加柱基拉梁;当基础地基较差,为满足地基强度和沉降要求,可采用桩基或人工处理地基;当有防水要求时,可选用筏板基础或箱形基础;另外建筑物属于框架结构,有地下室且上部结构对防水要求高,不均匀沉降要求严格,柱网均匀时,可采用箱型基础,柱网不均匀时,就采用筏板基础;如果地下室设置有均匀的钢筋混凝土隔墙时,采用箱形基础;要注意建筑物地基结构施工时无论采用何种基础都要处理好基础底板与地下室外墙的连结节点。

3.3桩基础设计

建筑工程地基结构设计过程中,当天然地基或人工地基的地基承载力或变形不能满足设计要求,可采用桩基础。

(1)桩平面布置原则:同一结构单元不应同时采用摩擦桩和端承桩;各桩桩顶受荷均匀,上部结构的荷载重心与桩的重心相重合,群桩在承受水平力和弯矩方向有较大的抵抗矩;大直径桩宜采用一柱一桩;筒体采用群桩时,在满足桩的最小中心距要求的前提下,桩宜尽量布置在筒体以内或不超出简体外缘一倍板厚范围之内;在伸缩缝或防震缝处可采用两柱共用同一承台的布桩形式;剪力墙下的布桩量要考虑剪力墙两端应力集中的影响,而剪力墙中和轴附近的桩可按受力均匀布置;在纵横墙交叉处都应布桩,横墙较多的多层建筑在横墙两侧的纵墙上布桩,门洞口下面不宜布桩。

(2)桩端进入持力层的最小深度:应选择较硬土层或岩层作为桩端持力层。桩端进入持力层深度,对于粘性土、粉土不宜小于2d(d为桩径);砂土及强风化软质岩不宜小于1.5d;对于碎石土及强风化硬质岩不宜小于1d,且不小于0.5m。桩端进入中、微风化岩的嵌岩桩,桩全断面进入岩层的深度不宜小于0.5m,嵌入灰岩或其他未风化硬质岩时,嵌岩深度可适当减少,但不宜小于0.2m。当场地有液化土层时,桩身应穿过液化土层进入液化土层以下的稳定土层,进入深度应由计算确定。

(3)桩型选择原则。桩型的选择应根据建筑物的使用要求,上部结构类型、荷载大小及分布、工程地质情况、施工条件及周围环境等因素综合确定。预制桩(包括混凝土方形桩及预应力混凝土管桩)适宜用于持力层层面起伏不大的强风化层、风化残积土层、砂层和碎石土层,且桩身穿过的土层主要为高、中压缩性粘性土,穿越层中存在孤石等障碍物的石灰岩地区、从软塑层突变到特别坚硬层的岩层地区均不适用。其施工方法有锤击法和静压法两种。

四、结束语

地基在建筑工程中的结构设计和施工过程中是最重要的。建筑工程中地基结构设计的关键是基础类型的选择,在地基结构设计的过程中,应该根据工程实际情况进行选型,以保证其设计的科学、合理。

参考文献:

[1]《建筑地基基础设计规范》GB50007-2011.

[2]丁瑜婷.探索地基结构设计及处理方法[J].江西建材,2012

土建工程和建筑工程的区别范文第14篇

关键字:高层建筑;岩土工程;勘察;措施

Abstract: This article from the geotechnical engineering investigation of tall buildings and basic requirements of the job content, put out the detailed analysis to strengthen the building of geotechnical engineering investigation measures.

Key words: high-rise building; geotechnical engineering; surveying; measures

中图分类号: TU19 文献标识码:A文章编号:2095-2104(2012)

1.引言

高层建筑的岩土工程勘察工作量大、内容繁杂, 具体要求表现为钻孔深度大、平面布置要合理;土工试验安排应保证参数符合实际要求;岩土工程评价要准确、详尽;岩土治理方案应科学、安全、实用、经济。

2.高层建筑岩土工程勘查的基本要求

建筑由于自身的特点,在岩土工程勘察报告和专题报告中,应对以下问题进行分析评价,并提供相应的岩土物理力学性质指标和参数。

2.1 地基承载力

地基承载力的评价应以同时满足极限稳定和不超过容许沉降为原则。确定地基承载力应根据地区经验,采用载荷试验、理论公式计算和其它原位测试方法综合确定。在承载力不满足时(包括下卧层),应进行地基处理或选用桩基础,并提出其设计参数。

2.2 变形和倾斜

查明地基土在纵横两个方向的不均匀性,以满足地基变形验算的要求。高层建筑天然地基均匀性可按以下标准进行评价:

当持力层层面坡度大于10%时,可视为不均匀地基,此时可加深基础埋深,使超过持力层最低的层面深度。当加深不可能,则可采取垫层加以调整。

基础持力层和第一下卧层在基础宽度方向上,地层厚度的差值小于0.05b(b为基础宽度)时,可视为均匀地基;当大于0.05b时,应计算横向倾斜是否满足要求,若不能满足要求,应采取结构或地基处理措施。

3.勘察工作量及工作内容安排

3.1钻孔深度问题

勘察规范规定,当采用箱基或筏基时,控制性勘探孔深度应大于压缩层下限, 一般性孔应能控制主要受力层;当采用桩或墩基时,控制孔深度应达压缩层计算深度或在桩尖下取基础底面宽度的3倍~5倍,一般性孔深度宜深入持力层3m~5m。

根据以上规定经过分析,勘探深度实际上由三方面因素决定(按需要进行变形计算考虑):基础埋深;预计桩长和压缩层深度。对基础埋深设计人员大都可以提供,或者无特殊要求时可根据建筑物高度预估,可视为已知值;对预计桩长,当然只对采用桩基时而言,可根据荷载大小、区域地质资料,参照附近建筑经验,通过预估桩的类型、分布方式,初步选定桩长。如果按勘察规范有关条文预估控制孔深应达70m,而实际通过计算50m孔深就满足了要求。尤其当基础型式同时满足其它要求设置时―――比如为满足地下设施的防水等要求将基础连为整体,压缩层深度更不能按基础宽度预估。

应力控制法比较直观、可靠、实用。即自基底或桩端平面算起,算至附加压力等于土层自重压力的10%~15% ,荷载较小、土层较硬、无相邻荷载影响时,可取较大值,荷载较大、土层较软、且有相邻荷载影响时,可取较小值。计算时应注意几个问题:

3.1.1应考虑地下水的影响,如地下水浮力对附加压力的消减,水位以下土层应采用有效重度计算土层的自重应力;

3.1.2计算桩端平面以下压缩土层厚度应与具体的布桩方式相结合;

3.1.3采用复合地基时应考虑加固以后土体对应力扩散的影响;

3.1.4宜按建筑平面中心位置处的应力确定。另外大量计算表明,对筏基或箱基而言压缩层厚度一般不会超过2倍的基础宽度。

简言之,勘探点深度可大略表示如下:

天然地基:控制孔深(m) =基础埋深+地基压缩层厚度;一般孔深(m) =基础埋深+ 0.5~1.0倍的基础宽度(深入稳定分布的地层并应小于2 /3压缩层厚度) 。

桩基础:控制孔深(m) =基础埋深+预计桩长+桩端平面下压缩层厚度;一般孔深(m) =基础埋深+预计桩长+5。

另外,当场地或场地附近没有可信资料时,至少要有一个钻孔满足地震场地划分对覆盖层勘察的要求。

3.2钻孔间距问题

岩土工程勘察规范(GB50021-2001)规定高层建筑勘探点间距15m~35m,其包含的意思:间距比一般建筑的要小,且比安全等级高的更要小。实际上钻孔间距应主要取决于场地的复杂程度,即场地是否存在暗沟、塘、浜等异常带,保证钻探所揭露地层能准确反映水平和垂直方向土质情况及地下水存赋形态等等,而不是建筑物安全等级决定孔距。当然布孔位置也要考虑到拟建建筑物的条件,如在主体建筑角上、荷载和建筑体形变异较大处应有勘探点进行控制。另外对于不同地貌交界处也应加密勘探点。

一般而言,应根据地貌条件,在地层结构简单的场地,对于有丰富建筑经验的地区,孔距可放大。因此,根据具体情况可适当放大孔距,比如在某一方向布较少孔时,孔距可能超过了35m,再增加一个孔就可满足孔距规定要求,而按地层分布情况又无必要时,大可不必墨守成规。国外有些报告显示很多情况下,钻孔间距可达50m以上。

3.3压缩试验试样加荷

按分层总和法计算地基沉降量时,要用到各土层的压缩模量,这一模量值应是一单元土层所受有效自重压力至有效自重压力与附加压力之和这一压力段的值。土工试验规程规定试验时,试样最后一级压力应比土层的计算压力大于100kPa~200kPa。笔者认为这一压力的取值也应通过应力计算实现,如果计算压缩层深度时采用的是应力控制法,此时则可参照其计算过程使用。

4.岩土工程评价

4.1基坑支护及施工降水

针对基坑开挖及支护,宜根据开挖深度及预估的场地岩土工程条件,在开挖边界外至开挖深度的1倍~2倍范围内布置勘探点,土质条件好可取小值,反之可取大值。勘探点布置可兼顾考虑,且孔深不必大。针对施工降水,首先应掌握场区所在地段区域性水文地质背景资料,必要时应进行水文地质勘察。

通过必要的测试手段提供相应的设计参数,诸如:根据土层结构及岩土性质, 提出土的有效应力强度参数或不排水抗剪强度参数;查明开挖范围和邻近场地地下水分布特征和渗流特征,提供相应的参数,并分析施工过程中水位变化对支撑系统和邻近建筑物与设施的影响,推荐计算模型、甚至支护方案及施工降水、隔水措施。

4.2地基的液化势及湿陷性评价

采用桩基时液化势评价深度应加大,平原地区一般为20 m;每一土层的液化势要评价,不论是否满足由基础埋深、水位埋深等控制的初判条件,为提供桩侧阻力做准备。大于15 m 深度的液化判别可采用剪切波速法、静探法、铁路抗震规范(GBJ111 87)提供的标贯判别法,甚至动三轴试验法。

由于高层建筑基础埋深大、湿陷性评价有两方面应注意:1)Ⅱ级湿陷性黄土地基有可能总湿陷量微乎其微,因为Δzs > 7 cm时,Δs≤30 cm均在Ⅱ级之列,理论上大于零值即可。结论中应标明总湿陷量值,尤其小于5 cm时应特别指出,以免给设计人员造成错觉;2)总湿陷量计算公式中的修正系数β对于基础埋深很大时偏于保守,应注意,笔者另文对此进行了探讨,在此不再赘述。

4.3桩侧壁摩阻力

相关规范规定,对液化土层极限侧阻力标准值宜折减;对自重湿陷性黄土场地上单桩承载力的确定,应考虑湿陷土层范围内桩侧的负摩擦力。以上二者应酌情提供,并应注意同时提供相应段土层的正常侧摩阻值―液化、非湿陷状态时的值,以便为工程试桩提供必要数据。

4.4地基基础方案建议

虽然目前最终的地基基础设计方案由结构工程师决定,但是除了勘察报告中一些数值标识外,岩土工程师基于一些认识经验及感知,从岩土工程角度提出的建议还是有独到之处的,因此也是必要的;同时由于结构工程师有其设计习惯,加之,每种方案都有其施工难易、环境影响等诸多方面的优缺点,虽然最经济合理的只有一个,但还是多建议几个方案为宜。

5.加强高层建筑岩土勘察的对策

5.1 加强勘察市场的监督和管理,尽早推行岩土工程监理体制。

5.1.1加强对勘察合同、勘察纲要的审查和管理。防止越级或盲目勘察。

5.1.2加强勘察现场工作的监督;建立确实可行的勘察现场旁站制度,防止打假孔及不规范的编录、取样及试验等现象发生。

5.1.3加强对勘察报告的审查,对勘察报告中的勘探孔数量、勘探质量、资料数据分析及结论建议逐一进行审查,特别是对基础方案选择论证,场地稳定性评价及施工建议等内容进行重点把关,防止勘察报告中只重视描述,缺乏深入的评价分析的现象发生。

因此,勘察单位自身必须健全和推行全面质量管理,同时还必须加强政府部门和社会监督机构对勘察市场的监督和管理,即尽早推行岩土工程监理体制,以确保勘察市场健康发展。

5.2加强岩土工程技术人员培训

我国推行岩土工程体制进展缓慢,主要原因之一是缺乏岩土工程技术人才,而工程地质专业人员对岩土工程的理论、内容及方法等缺乏了解,习惯于工程勘察的原理及方法。因此,要全面推行岩土工程体制,当务之急是加强岩土工程技术人员及管理人员的培训,特别是岩土工程设计及施工:技术人员的培训,以适应岩土工程市场发展的急需。

5.3重视地区性研究,尽早制订地方性勘察规程,有条件的地级市要尽快制定地方性勘察规定。

岩土工程勘察规范是全国统一的勘察准则,是根据我国各地区的特点,总结几十年来勘察经验成果制订而成的法规,具有普遍性指导意义。但由于我国幅员辽阔,地质环境条件十分复杂,同一名称的地基土,由于成因环境不同,其物理力学性质,特别是力学性质都有很大差异。就地基土的承载力而言,有的地区高一些,有的地区会低一些,而规范是从工程建筑的安全角度来考虑,所建议的指标,对大多数地区是可行的。但对有的地区,可能偏于保守。因此,必须加强地区性研究,尽早制定出地方性规程。

5.4重视工程与环境的共同作用。

工程建设对环境的影响,待别是工程施工及运营时对环境可能产生的不良岩土问题,必须作弃分论证和预测,并提出相应的治理措施。

5.5要大力采用新技术、新设备及新方法,以保证岩土工程的质量和进度,使之能在激烈的市场竞争中取胜。

5.6加强计算机技术在岩土工程中的应用研究。当前,岩土工程正朝规范化、标准化方向发展。岩土工程问题日趋复杂,传统的岩土工程方法,已难以适应发展的需要,因此,利用计算机技术对岩土工程的各项工作进行科学、系统的管理,以提高工作的效率;利用计算机对岩土工程资料进行分析处理,如制作岩土工程图件,进行指标统计分析等等;更重要的是利用现代计算机技术分析、模拟复杂的岩土问题的发生、演化过程,以便制定出正确的处理方案;利用计算机进行岩土工程设计、岩土工程施工模拟以及岩土工程治理效果模拟。这样不但可以对岩土问题作预测预报以及防治,而且还可以节省大量人力和物力。

5.7加强与建筑设计单位及施工单位的合作,力求做到勘察、设计及施工一体化。

5.8加强技术上和体制上的立法工作,使岩土工程逐步规范化、系统化。

5.9尽早推行岩土工程监理体制。长期以来,我国对岩土工程的监督管理,一直由政府部门承担,几十年的经验证明,这种管理体制存在许多弊端,很难适应社会主义市场经济发展的要求。为此,必须建立专业化、社会化的岩土工程监理机构,由其协助政府监督管理岩土工程市场,使岩土工程市场进一步规范化。

6. 岩土工程勘察应重视的问题

6.1地震效应GB50011-2001建筑抗震设计规范4.1.3.2对场地做剪切波速试验有明确规定:对单幢建筑,测量土层剪切波速的钻孔数量不宜少于2个;对小区中处于同一地质单元的密集高层建筑群,测量土层剪切波速的钻孔数量可适量减少,但每幢高层建筑下不得少于1个。地基处理后其剪切波速值也发生了变化,场地地基土类型及场地类别也有可能因此发生变化,这在岩土工程评价及地基设计时有时没有得到足够的重视,而且对重要的建筑必须进行波速测试,确定场地覆盖层厚度的钻孔应达到覆盖层一定深度,其直接影响场地类别判定及建筑工程的抗震造价。这种情况的存在是由于勘察技术人员没有理解规范,对地震效应的认识不足。

6.2地下水地下水作为建筑工程的环境,直接影响了岩土的形状和行为,也影响建筑物的稳定性和耐久性。在设计中既要考虑地下水对岩土及建筑物的各种作用,及可能产生的各种结果;施工中又要估计地下水对施工带来的各种问题和事先应采取的防治措施。因此,在工程勘察中,提供地下水完整的、准确的、可靠的技术数据是不可忽视的大问题。根据《岩土工程勘察规范》GB50021-2001规定,稳定水位的时间间隔按地层的渗透性确定,对砂土和碎石土不得少于0.5h,对粉土和粘性土不得少0.8h,并宜在勘察结束后统一量测稳定水位。在采用泥浆护壁钻进或塑性指数较大的粘性土层中,水位稳定的时间比规范规定的要长,在全场钻探工作结束24h后量测稳定水位比较合适。

土建工程和建筑工程的区别范文第15篇

关键词:混凝土结构设计规范,设计方法,材料强度,受弯构件承载力

一、概述

近年来,我国高校中的土木工程专业已涵盖建筑工程、水利工程、交通工程等不同的专业方向。在建筑工程和水利工程钢筋混凝土结构的学习和设计中,构件的承载力计算是一个重点的内容。本文对建筑工程的《混凝土结构设计规范》(GB50010一2002)和水利工程的《水工混凝土结构设计规范》(SUT191一96)中关于受弯构件的结构设计方法、材料强度取值、正截面及斜截面承载力计算方法及需要注意的问题进行了说明比较,供结构设计人员和高等院校师生参考。

二、钢筋混凝土承载能力极限状态设计表达式

1极限状态设计表达式的比较

建筑工程对于承载能力极限状态,结构构件应按荷载效应的基本组合或偶然组合,采用以下

极限状态设计表达式:

水利工程对于基本组合,应采用以下极限状态设计表达式:

水利工程中对于偶然组合,极限状态设计表达式应按下列原则确定:偶然作用分项系数可取为1.0;参与组合的某些可变作用,可根据各类水工建筑物设计规范的规定作适当折减;结构系数下d按规定取值。式中叭―结构重要性系数:建筑工程中规定对安全级别为一级或设计使用年限为100年及以上的结构构件,不应小于1.1;对安全级别为二级或设计使用年限为50年的结构构件,不应小于1.0;对安全级别为三级或设计使用年限为5年及以下的结构构件,不应小于0.9;在抗震设计中不考虑结构构件的重要性系数。水利工程中规定对结构安全级别分别为1,n,111级的结构及构件,可分别取1.1,1.0,0.9。

S―承载能力极限状态的荷载效应组合设计值。

R―结构构件的承载力设计值,在抗震设计时,应除以承载力抗震调整系数下RE。

R(•)―结构构件的承载力函数。

―分别为混凝土、钢筋的强度设计值。

ak―几何参数的标准值。

为―分别为永久荷载和可变荷载分项系数。

―分别为永久荷载和可变荷载标准值。

―设计状况系数,对应于持久状况、短暂状况、偶然状况,可分别取1.0,0.95,

0.85;

―结构系数,对钢筋混凝土及预应力混凝土结构均取1.2。

2荷载分项系数取值的比较

式(l)与式(2)的形式虽然相同,但荷载分项系数的取值有所区别:建筑工程的基本组合中,在永久荷载分项系数由可变荷载效应控制的组合时取1.2,在由永久荷载效应控制取1.35;可变荷载分项系数则在由可变荷载效应控制或由永久荷载效应控制的组合中都取1.4。水利工程的基本组合中,一般永久荷载分项系数取1.05,可变荷载分项系数则取1.2。

3受弯构件正截面承载力

计算表达式的比较对应的受弯构件正截面承载力计算表达式,建筑工程为M〔M。,而水利工程为叭.M簇M。。对于同一钢筋混凝土构件,在结构安全级别相同时,假如在只有一个可变荷载作用下,当考虑各种系数后,按建筑工程表达式计算出来的M值一般都会略小于按水利工程表达式(持久状况)计算出来的下dM,而两者计算M。的方法基本一致,这样可满足水利工程的安全储备略高于建筑工程的要求。对于两种及两种以上可变荷载作用下的受弯构件,建筑工程需对一种主要可变荷载以外的其他可变荷载均乘以小于1的可变荷载组合系数,而水利工程的可变荷载不区分主要可变荷载,可变荷载均不需乘以可变荷载组合系数。显然,为M值比M值提高的幅度会比只有两种可变荷载作用情况下更大些,也可满足水利工程安全储备稍高的要求。

三、材料强度的取值

我国规范将结构构件抗力分项系数7。分解为混凝土材料分项系数7。和钢筋材料分项系数下,,由于两种材料的力学性能和离散程度不同,两种材料强度设计值的折减比例也不同,因此构件的实际受力性能变得不清楚。水利工程与建筑工程的混凝土结构中所用钢筋和混凝土的材料性质相同,只是各自使用的环境不同,结构可靠度的要求不同,所以对钢筋和混凝土的要求以及强度设计值的规定不同。两种规范中的混凝土强度设计值比较见表1,钢筋强度设计值比较见表2。

表1

表2

3.1混凝土强度设计值的比较从表1、表2的比较可以看出,对于强度等级小于等于C50的混凝土,建筑工程的混凝土抗压及抗拉强度设计值均略小于水利工程的取值。这是由于二者的混凝土立方体抗压强度的标准值fc.、k确定方法相同,对相同级别的混凝土其几,k取值相同,在混凝土强度等级不超过C50时,轴心抗压强度标准值与立方体抗压强度的标准值存在 fcu.k的关系,而且材料强度标准值与设计值之间的换算公式为 ,但两种规范规定的材料强度分项系数下。的取值不同,建筑工程中下。取1.4,水利工程的 则取1.35。但对于强度等级大于C50的混凝土,则是水利工程中的相同等级的混凝土强度设计值小于建筑工程中的取值,也就是水利工程更加注重构件破坏时的延

性与承载力储备的协调,即延性差的构件,承载力储备随延性的降低而增大。

3.2钢筋强度设计值的比较

对于我国现阶段的普通钢筋混凝土构件采用的HRB335,HRB4O()和RRB400级受力钢筋,两种规范中的y,取值都在1.10左右,根据同样的材料强度标准值与设计值之间的换算公式大,因此其材料设计值基本相同,只有HRB335钢筋在水利工程中的取值采用310N/mmZ,而建筑工程中是30()N/mmZ。

四、受弯构件承载力计算

4.1受弯构件正截面承载力计算比较

建筑工程与水利工程尽管各自承受荷载的性质、所处环境以及要求的设计使用年限等不同,但是关于受弯构件正截面承载能力计算中所采用的基本假定和计算方法却基本相同,其主要不同之处有以下两个方面。

(l)最小配筋率的取值不同。在建筑工程中,最小配筋率p。lin取0•2%和0•45关伏两者中的较大值,而在水利工程中最小配筋率pmin的取值是0.20%(I级钢筋),0.15%(11,111级钢筋)。

(2)对混凝土强度等级影响的考虑。从规范公式可知,两本规范中关于受弯承载力的计算公式类似,只是符号表示有所不同。在建筑工程中考虑了混凝土强度等级对承载力的影响,需考虑系数a,(受压区混凝土矩形应力图的应力值与混凝土轴心抗压强度设计值的比值)和系数月,(矩形应力图受压区高度x与中和轴高度xC的比值),对于不超过CSO的混凝土,a,都取1.0,月,都取0.8,而C50以上的混凝土,这两个系数取值都会随混凝土强度等级的提高而减少。这种处理能适用混凝土强度进一步提高的要求,也是多数国家规范采用的方法。而水利工程中则没有考虑系数a,和刀。的取值随混凝土强度等级的提高而变化。

4.2受弯构件斜截面受剪承载力计算比较

建筑工程与水利工程的受弯构件斜截面受剪承载力计算公式比较如下。

建筑工程:

水利工程:

从公式的比较可以看出,两种规范采用的公式主要区别如下:

(l)建筑工程的斜截面受剪计算公式里把混凝土的轴心抗压强度设计值fc改成了轴心抗拉强度设计值关,以适应采用高强度等级混凝土构件斜截面计算的安全性;而水利工程的公式还是沿用建筑工程老规范的规定,采用混凝土轴心抗压强度设计值,这对高强混凝土构件计算偏不安全。

(2)建筑工程对集中荷载作用下的受弯构件抗剪承载力计算公式适应范围有所扩大,不再仅限于矩形截面独立梁,而是适用于矩形、T形和I形截面的独立梁,且箍筋项系数取为1.0;而水利工程对集中荷载作用下的受弯构件抗剪承载力计算公式还是只适用于矩形截面独立梁,与其对应的箍筋项系数仍取1.25。

(3)建筑工程对弯起钢筋的受剪承载力乘以0.8的系数,考虑了弯起钢筋受剪承载力的折减,也就是考虑到弯起钢筋与斜裂缝相交时,有可能已接近受压区,钢筋强度在斜截面受剪破坏时不可能全部发挥作用;而水利工程中则没有考虑弯起钢筋的受剪承载力系数。

(4)建筑工程采用的最小配箍率公式为O•24关伏v,考虑了混凝土的强度等级的影响,而水利工程的最小配箍率仅考虑与钢筋级别有关,对于I级钢筋取0.12%,11级钢筋取0.08%。以采用C20混凝土为例,建筑工程对I,n级钢筋计算出来的热、,mi。分别为0.126%和0.088%,基本接近于水利工程中的最小配箍率;但当混凝土强度等级分别取C25,C3o,C35时其对应的I,11级钢筋计算出来的几v,。i,,分别为0.145%和0.010%,0.163%和0.011%,0.179%和0.013%。由此可见,随着混凝土强度等级的提高,其最小配箍率的要求也得逐渐提高。

综合上述原因,建筑工程的Vu值比水利工程计算出的砚值小20%左右,但由于水利工程中需要把剪力设计值乘以7。的系数,也就是把剪力设计值提高了20%,实际上二者的安全可靠性也就非常接近。

五、结论