美章网 精品范文 检测系统论文范文

检测系统论文范文

检测系统论文

检测系统论文范文第1篇

针对垛储机采棉温湿度采集点多,数据传输距离远的特点,提出了以电子技术和微控制技术为核心技术的机采棉温湿度自动检测系统方案。该系统由温度传感器、湿度传感器、变送器、主从单片机、RS485总线、显示及键盘等部分组成。图1为垛储机采棉温湿度检测系统框图。工作时,安装在探头上传感器采集该处机采棉的温湿度值,通过变送器和转换器将该处的各点温湿度数据信号送至该处的从机;从机将采集来的信号进行归一化处理,取加权平均值,再将加权平均值通过RS485总线送至主机,通过键盘输入机采棉霉变预警的温湿度阈值;主机将传输来的数据和预警阈值相比较,判断是否达到预警条件,如果达到预警条件,发出命令,控制预警装置发出警报,并且显示出霉变或有霉变趋势的机采棉位置。

2系统设计

2.1硬件部分

本设计的主机所要实现汇总从机发来的信息和预先设定的霉变阈值相比较,判断每个从机位置的机采棉情况。如果出现异常,主机控制警报系统工作,显示屏可以利用键盘控制其翻页功能,实时显示出每个从机位置的机采棉情况。从机主要负责将采集来的温湿度信息,经处理后,送入主机。鉴于以上因素,主、从机都选用单片机STC89C516RD+。该款单片机具有加密性强、低功耗、速度快和精度高等特点,其核内有64kB的flash,1280B的RAM,16kB的ROM,可以满足控制的需要。每个从机位置的温湿度信息检测,采用探头检测,在每个探头的不同位置,均匀分布4个温度传感器和4个湿度传感器,分别构成该从机的温度传感器组和湿度传感器组。湿度传感器选用HM1500,模拟量输出,在5V供电条件下,输出0~4V范围的电压对应相对湿度值0~100%;因为是线性输出,所以可以直接和单片机相连,为了检测信号的稳定性,可以将湿度传感器的输出量经过同相跟随器将信号稳定后送入单片机。温度传感器选用AD590为模拟信号输出需要驱动电路驱动后才能使温度信号经A/D转换送入单片机;可测量范围-55~150℃,供电范围宽,4~30V;图2为温度传感器AD590的驱动电路图。显示模块要求实时显示各个从机控制的检测探头位置的温湿度以及每个探头所在位置的坐标值,通过键盘的上下键控制显示屏的翻页和刷新。所以,采用液晶显示器LCD1602两行显示,就可以达到系统设计要求。键盘模块是向主机输入预设的参考值以及控制显示屏的翻页与刷新,基于以上功能采用4×4的行列式键盘。

2.2软件部分

首先,根据设计目标,细化软件每一部分的功能,统筹设计各部分功能之间的逻辑关系。垛储机采棉温湿度检测系统的软件设计采用keiluvision2编程环境,编程实现主从机的功能。keilC51是一个比较主流的单片机研发设计的开发工具,主从机的程序编写采用模块化编程。其调试程序、完成各部分编程后,将程序的.hex工程文件烧录至Proteus软件下的仿真电路图,仿真效果达到最佳时,记录电路设计的优化参数;根据此优化参数,设计垛储机采棉温湿度自动检测系统的实物硬件。垛储机采棉温湿度自动检测系统的主机程序流程图,如图3所示。

3试验结果分析

系统的软硬件调试完成后,在南口农场进行测试试验。系统测试了垛储机采棉的温湿度值。表1为垛储机采棉温湿度检测系统测试的温湿度数据。从表1中可以看出,本文设计的检测系统检测出的机采棉温湿度值和人工测量的实际值近似相符。试验结果表明:该系统能够精确、实时地检测垛储机采棉的温湿度,达到了垛储机采棉储存情况的安全控制。

4结论

检测系统论文范文第2篇

万航昨日告诉记者,学校11月初通知,全校研究生学位论文申请答辩前必须提交研究生处学位办检测。

今年4月起,武汉大学、华中科技大学、中南财经政法大学、武汉理工大学、华中师范大学、中国地质大学(武汉)、武汉工程大学也引进了这一检测系统。

万航回忆说,当时着实有些紧张,提交前反复修改了几次。她所在的文法与经济学院同年入学的两年制硕士生纷纷庆幸:他们上半年已完成学位论文答辩。

和她一起参加检测的十几名硕士生,除她和另外一人复制率低于1%外,其他在3%至百分之十几不等。

负责工作的武科大研究生处学位办郝春艳老师介绍,学校600多名2010届毕业研究生中,已有100多名硕士生和5名博士生提交了学位论文供检测,检测系统生成的检测报告返还了学生所在的学院和导师,由学院和导师作相应处理,学位办也备案1份,但报告中的“复制率”信息不便透露。

检测系统论文范文第3篇

防潮是粮食储存过程中一项重要内容,对粮食的储存质量有很重要的作用。它直接影响到储备物资的使用寿命和工作可靠性。为保证日常工作的顺利进行,首要问题是加强仓库内温度与湿度的监测工作。但传统的方法是用扦样式玻璃温度计,人工判读等最原始的测温方法,工作量大,难以控制,滞后严重,做好日常的粮情检查工作,可以发现问题,及时处理,以保证储粮的安全。本论文侧重介绍“单片机温度检测系统”的软、硬件设计及相关内容。论文的主要内容包括:采样、LED显示,单片机89C51的开发以及系统应用软件开发等。作为控制系统中的一个典型实验设计,单片机温度检测系统综合运用了单片机技术、模拟电子技术、通信技术、数码显示技术等诸多方面的知识。

2粮仓湿度检测系统硬件设计

粮情测控系统是计算机硬件与软件的结合体,实现了计算机对储粮的检测与预警。系统硬件由控制部分和信号检测部分组成,其中,控制部分包含五个模块:控制器模块、手动按键、显示模块、通信模块和报警模块;信号检测部分包含一个模块:湿度检测模块。

2.1核心单元电路

综合考虑系统的方便性,可靠性,性价比等因素,系统主机芯片采用AT89C51。AT89C51是控制系统常用的单片机,应用在很多领域,利用它完成的报警系统很多。使用AT89C51单片机构成的计算机系统能够实现准确的采样煤气浓度,能够达到题目的设计要求,而且AT89C51单片机相对于其它型号的单片机,更加易于学习和掌握,性能也相对比较好。

2.2检测传感器和检测电路

湿度检测采用的是湿度传感器HS1101。在粮情测控系统中主要是检测室内与室外的湿度,一般一个粮仓有两个湿度检测点,且精度要求不高。

2.3显示电路设计

系统显示模块采用数码管动态显示原理,清晰的显示实时湿度值

3软件设计

整个系统软件设计分为两个部分,作为主控的上位机的软件设计及作为数据采样的单片机终端节点的软件设计。系统采用模块化编程,将各部分功能分别实现,主要的功能子程序有:数据采集、标度变换、线性校正、数制转换、数值显示、发送、接收和部分中断子程序。

4系统调试

本次设计采用的是模块化电路和模块化程序,因此在联调时只需要把各模块进行正确的连接就可以实现仿真,其模块与电路图在前面已经介绍这里只是给出总体调试的效果,把软件调试的.HEX文件烧入其中的AT89C51中就可以运行了。

5结语

检测系统论文范文第4篇

①谐波会使公用电网中的电力设备产生附加的损耗,降低了发电、输电及用电设备的效率。大量三次谐波流过中线会使线路过热,严重的甚至可能引发火灾。

②谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等故障,变压器局部严重过热,电容器、电缆等设备过热,绝缘部分老化、变质,设备寿命缩减,直至最终损坏。

③谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。

④谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。

⑤谐波会使电气测量仪表计量不准确,产生计量误差,给供电部门或电力用户带来直接的经济损失。

⑥谐波会对设备附近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。

⑦谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或死机。

⑧谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。

二、谐波检测方法

1.模拟电路

消除谐波的方法很多,即有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为先进的是采用有源电力滤波器。但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波幅值误差很难控制在10%以内,严重影响了有源滤波器的控制性能。近年来,人工神经网络的研究取得了较大进展,由于神经元有自适应和自学习能力,且结构简单,输入输出关系明了,因此可用神经元替代自适应滤波器,再用一对与基波频率相同,相位相差90度的正弦向量作为神经元的输入。由神经元先得到基波电流,然后检测出应补偿的电流,从而完成谐波电流的检测。但人工神经网络的硬件目前还是一个比较薄弱的环节,限制了其应用范围。

2.傅立叶变换

利用傅立叶变换可在数字域进行谐波检测,电力系统的谐波分析,目前大都是通过该方法实现的,离散傅立叶变换所需要处理的是经过采样和A/D转换得到的数字信号,设待测信号为x(t),采样间隔为t秒,采样频率=1/t满足采样定理,即大于信号最高频率分量的2倍,则采样信号为x(nt),并且采样信号总是有限长度的,即n=0,1……N-1。这相当于对无限长的信号做了截断,因而造成了傅立叶变换的泄露现象,产生误差。此外,对于离散傅立叶变换来说,如果不是整数周期采样,那么即使信号只含有单一频率,离散傅立叶变换也不可能求出信号的准确参数,因而出现栅栏效应。通过加窗可以减小泄露现象的影响。

3.小波变换

小波变换已广泛应用于信号分析、语音识别与合成、自动控制、图象处理与分析等领域。电力谐波是由各种频率成分合成的、随机的、出现和消失都非常突然的信号,在应用离散傅立叶变换进行处理受到局限的情况下,可充分发挥小波变换的优势。即对谐波采样离散后,利用小波变换对数字信号进行处理,从而实现对谐波的精确测定。小波可以看作是一个双窗函数,对一信号进行小波变换相当于从这一时频窗内的信息提取信号。对于检测高频信息,时窗变窄,可对信号的高频分量做细致的观测;对于分析低频信息,这时时窗自动变宽,可对信号的低频分量做概貌分析。所以小波变换具有自动“调焦”性。其次,小波变换是按频带而不是按频点的方式处理频域信息,因此信号频率的微小波动不会对处理产生很大的影响,并不要求对信号进行整周期采样。另外,由小波变换的时间局部可知,在信号的局部发生波动时,不会象傅立叶变换那样把影响扩散到整个频谱,而只改变当时一小段时间的频谱分布,因此,采用小波变换可以跟踪时变和暂态信号。三、电力系统谐波治理

限于篇幅问题,本文在此只介绍基于改造谐波源本身的谐波抑制方法,基于改造谐波源本身的谐波抑制方法一般有以下几种。

(1)增加整流变压器二次侧整流的相数

对于带有整流元件的设备,尽量增加整流的相数或脉动数,可以较好地消除低次特征谐波,该措施可减少谐波源产生的谐波含量,一般在工程设计中予以考虑。因为整流器是供电系统中的主要谐波源之一,其在交流侧所产生的高次谐波为tK1次谐波,即整流装置从6脉动谐波次数为n=6K1,如果增加到12脉动时,其谐波次数为n=12K1(其中K为正整数),这样就可以消除5、7等次谐波,因此增加整流的相数或脉动数,可有效地抑制低次谐波。不过,这种方法虽然在理论上可以实现,但是在实际应用中的投资过大,在技术上对消除谐波并不十分有效,该方法多用于大容量的整流装置负载。

(2)整流变压器采用Y/或/Y接线

该方法可抑制3的倍数次的高次谐波,以整流变压器采用/Y接线形式为例说明其原理,当高次谐波电流从晶闸管反串到变压器副边绕组内时,其中3的倍数次高次谐波电流无路可通,所以自然就被抑制而不存在。但将导致铁心内出现3的倍数次高次谐波磁通(三相相位一致),而该磁通将在变压器原边绕组内产生3的倍数次高次谐波电动势,从而产生3的倍数次的高次谐波电流。因为它们相位一致,只能在形绕组内产生环流,将能量消耗在绕组的电阻中,故原边绕组端子上不会出现3的倍数次的高次谐波电动势。从以上分析可以看出,三相晶闸管整流装置的整流变压器采用这种接线形式时,谐波源产生的3n(n是正整数)次谐波激磁电流在接线绕组内形成环流,不致使谐波注入公共电网。这种接线形式的优点是可以自然消除3的整数倍次的谐波,是抑制高次谐波的最基本方法,该方法也多用于大容量的整流装置负载。

(3)尽量选用高功率因数的整流器

采用整流器的多重化来减少谐波是一种传统方法,用该方法构成的整流器还不足以称之为高功率因数整流器。高功率因数整流器是一种通过对整流器本身进行改造,使其尽量不产生谐波,其电流和电压同相位的组合装置,这种整流器可以被称为单位功率因数变流器(UPFC)。该方法只能在设备设计过程中加以注意,从而得到实践中的谐波抑制效果。

(4)整流电路的多重化

整流电路的多重化,即将多个方波叠加,以消除次数较低的谐波,从而得到接近正弦波的阶梯波。重数越多,波形越接近正弦波,但其电路也越复杂,因此该方法一般只用于大容量场合。另外,该方法不仅可以减少交流输入电流的谐波,同时也可以减少直流输出电压中的谐波幅值,并提高纹波频率。如果把上述方法与PWM技术配合使用,则会产生很好的谐波抑制效果。该方法用于桥式整流电路中,以减少输入电流的谐波。

当然,除了基于改造谐波源本身的谐波抑制方法,还有基于谐波补偿装置功能的谐波抑制方法,它包括加装无源滤波器、加装有源滤波器、装设静止无功补偿装置(SVC)等等,在此就不再详细论述。

随着现代信息技术,计算机技术和电子技术的发展,电能质量问题已越来越引起用户和供电部门的重视。应用先进的电能质量测试仪器不仅能大大提高电能质量的监测与治理水平,同时还可建立先进可靠的电能质量监测网络,及时分析和反映电网的电能质量水平,找出电网中造成电能质量谐波及故障的原因,采取相应的措施,为保证电网的安全、稳定、经济运行提供重要的保障。

参考文献:

[1]电能质量-公用电网谐波GB/T14549-1993[J]

检测系统论文范文第5篇

论文关键词:PH检测及控制系统的发展

 

PH工业在线检测及控制系统应用非常广泛,如食品、制药、化工、表面处理、水处理行业等,由于系统的检测实时性、网络稳定性及其操控性能都非常优良,所以已被越来越多的行业所采用。萃取生产现场的PH检测及控制有许多实际操作上的难点,诸如现场采集点比较多,操作及检测不方便造成检测失准及寿命缩短等等。

选择合适的电极,是整个系统中较为关键的因素,因为一般的PH电极的探头都是一种玻璃类膜状物质制成的,里面注入有参比溶液,工作时参比液从玻璃膜中渗出,有机酯类会堵塞探头造成电极的损坏。

特征

萃取工艺目前PH检测探现场采集点比较多,PH检测不准,操作复杂科技论文格式,其运行不稳定。笔者通过长期的实践,将PH自动控制系统不断的改进为:系统结构简单,操作简便,检测质量高,控制反应快的一套系统。这里将我个人的一些方案和体会同大家一起分享一下,请大家多多指教。

方案

笔者通过不断的摸索发现通过下述技术方案可以得以很大的改进:

萃取工艺现场在线PH检测及控制系统,萃取工艺现场在线PH检测及控制系统,包括至少一个PH检测器,以及与PH检测器连接的控制系统,其特征在于,所述控制系统包括主机、以及与主机连接有至少一个PH控制器。PH检测器用以检测待测物的PH离子浓度,测量变送器将信号转化、传递回控制系统。PH控制器控制模拟量输出,以此输出模拟量控制PH值调节。

所述的PH检测器包括测量变送器,且测量变送器与控制系统连接。

所述测量变送器连接有PH测量探头,测量变送器通过测量电缆与PH测量探头连接,PH测量探头设置有PH电极。所述的PH电极为E+H电极。

所述的主机为PC机或者PLC控制器。

所述PC主机,PC主机连接有RS232主线, RS232主线连接有RS232转RS485转换模块,RS232转RS485转换模块连接到RS485主线。

PLC控制器直接与RS485主线连接。

所述的PH控制器主要包含模拟量控制模块,模拟量控制模块主要由CPU、以及模拟量输出单元、以及扩展I/O单元组成。模拟量输出单元包括连接单元、设置输出量程、模拟量输出接线、以及梯形编程架构的CPU。模拟量控制模块通过RS485主线连接与主机连接。

模拟量控制模块连接有电控球阀。

所述的电控球阀并联有手动球阀,且所述的电控球阀与反应釜连接。

测量原理:PH值测量的PH值,用于度量单位的酸度或碱度的液体介质,玻璃PH电极提供具有电化学的潜力,这种潜力取决于介质的PH值论文格式。而这种潜力将生成的H 正离子通过外层膜的离子选择性渗透。在一点形成一个具有潜力的电化学边界层。以一个集成的Ag或AgCl参考系统作为参比电极。PH检测器将相应的PH值转换为能斯特方程测量的电压。

将PH测量探头探伸到反应釜中,PH电极将选择性的渗透外层膜的离子,从而形成电化学边界层,采用集成的Ag或AgCl参考系统作为参比电极。PH检测器应用能斯特方程测量出电压科技论文格式,从而将电压转换为电压数字信号。该电压数字信号将被传输到控制系统进行处理与应用。

模拟量控制模块内置有根据能斯特方程编写的编码程序、以及模拟量输出单元。编码程序将存放于梯形编程架构CPU中,模拟量输出单元将输入的数字量转换为模拟量,模拟信号的输出范围如下所述,其中横轴为十六进制数;纵轴为模拟量。

如图5所示,模拟量为:–10 到10 V 。

十六进制数F448到0BB8对应–10到10 V的电压范围,完整的输出范围是–11到11V。使用补码来指示负电压。

如图6所示,模拟量为:0 到 10 V 。

十六进制数0000到1770对应0到10 V的电压范围,完整的输出范围是–0.5到10.5V。使用补码来指示负电压。

如图7所示,模拟量为:1到 5 V 。

十六进制数0000到1770对应1到5 V的电压范围,完整的输出范围是0.8到5.2V。

如图8所示,模拟量为:0 到20 mA 。

十六进制数0000到1770对应0到20mA的电流范围,完整的输出范围是0到21mA。

如图9所示,模拟量为:4到20 mA 。

十六进制数0000到1770对应4到20mA的电流范围,完整的输出范围是3.2到20.8mA。

控制系统将根据电压数字信号做出对应的模拟量控制信号。模拟量控制信号通过模拟量控制模块的输出端输出信号,输出端输出信号为预先设置好的配置参数,该输出信号被传递到电控球阀,如果某站PH值偏离了设定点,则通过控制加药的流量来调整PH值。流量通过控制加药管路中电控球阀的开闭程度来进行控制,可以使球阀开闭在任意位置。通过模拟量控制模块来控制待测溶液的入料溶液的流量,以调整溶液的PH值。一般采用DA041作为模拟量控制模块。

基于现场采集点多而分散的情况,系统采用分站采集,集中检测与控制的方法,以利于现场管理与系统维护。

采集点向用户提供工业控制中通用的RS485通讯接口。通讯协议采用MODBUS标准通讯协议,每个采集点的PH控制器可以作为从机与具有相同通讯接口并采用相同通讯协议的上位机,如PLC控制器、PC机通讯,实现对现场PH值的集中监控,另外用户也可以通过RS485主线连接数台PH控制器作为从机。以实现PH控制器的多机联动。通过该通讯口可以连接远程控制键盘。可实现用户对PH控制器的远程操作。

改进后系统的MODBUS通讯协议支持两种传送方式:RTU方式和ASCII方式,用户可以根据情况选择其中的一种方式通讯。

笔者发现如果做如上改进以后与现有技术相比科技论文格式,具有如下的优点和有益效果:系统结构简单,操作简便,检测质量高,控制反应快。

附图说明

图1为本发明控制系统示意图。

图2为本发明PH检测多级连接示意图。

图3为本发明PH检测单级连接示意图。

图4为本发明的PH检测器示意图。

附图中标记及相应的零部件名称:1、PH检测器;2、反应釜;3、有机相;4、水相;5、搅拌器;6、电控球阀;7、手动球阀;8、水相出路;9、有机相进路10测量变送器;11、测量电缆;12、PH电极;13、PH测量探头;14、药剂。

具体实施方式

下面结合实施例对本发明作进一步的详细说明。

实施例一

如图1、2、3、4所示,萃取工艺现场在线PH检测及控制系统,包括至少一个PH检测器1,以及与PH检测器1连接的控制系统,其特征在于,所述控制系统包括主机、以及与主机的至少一个PH控制器。

所述的PH检测器1包括测量变送器10,且测量变送器10与控制系统连接。

测量变送器10通过测量电缆11与PH测量探头13连接,PH测量探头13设置有PH电极12论文格式。

PH电极12为E+H电极。

如图1所示,当主机为PC机时,PC机连接的RS232主线, RS232主线连接RS232转RS485转换模块, RS232转RS485转换模块连接RS485主线。

PH控制器与连接RS485主线。

主机PC机与RS232主线连接后,信号通过RS232转RS485转换模块联通到RS485主线,其做出的应答反应传递到PH控制器。PH控制器内包含模拟量控制模块,模拟量控制模块内置有相应的根据能斯特方程写的编码程序,其通讯方式为:RTU方式和ASCII方式,用户可以根据情况选择其中的一种方式通讯。

当主机为PLC控制器时,主机直接连接到RS485主线进行通信,以实现控制器的多机联动。

如图2所示,PH检测多级连接,反应釜2中的有机相3与前一反应釜2中的有机相3联通,反应釜2中的水相4与前一反应釜2中的水相4联通。

PH检测器1的PH测量探头13置于反应釜2中,PH测量探头13检测反应釜2中的离子粒度,将PH检测信号通过测量电缆11以及测量变送器10发回控制系统。控制系统根据PH检测信号做出相应的应答控制信号。应答控制信号通过线路传输到PH控制器科技论文格式,PH控制器的模拟量控制模块根据编码程序做出应答反应。应答反应信号被传递到与模拟量控制模块连接的电控球阀6,电控球阀6的开闭程度来进行控制待测溶液的入料溶液的流量,以调整溶液的PH值。当电控球阀6不启用时,可以启用手动球阀7。测溶液的入料溶液入口可为图2中所示的有机相进路9,反应釜2中内置有有机相3和水相4以及搅拌器5,水相4联通水相4出路8。

如图3所示,PH检测单级连接,反应釜2单独设置,之间不联通。PH检测器1的PH测量探头13置于反应釜2中,PH测量探头13检测反应釜2中的离子粒度,将PH检测信号通过测量电缆11以及测量变送器10发回控制系统。控制系统根据PH检测信号做出相应的应答控制信号。应答控制信号通过线路传输到PH控制器,PH控制器的模拟量控制模块根据编码程序做出应答反应。应答反应信号被传递到与模拟量控制模块连接的电控球阀6,电控球阀6的开闭程度来进行控制待测溶液的入料溶液的流量,以调整溶液的PH值。当电控球阀6不启用时,可以启用手动球阀7。测溶液的入料溶液可为药剂14。

检测系统论文范文第6篇

论文关键词:PH检测及控制系统的发展

 

PH工业在线检测及控制系统应用非常广泛,如食品、制药、化工、表面处理、水处理行业等,由于系统的检测实时性、网络稳定性及其操控性能都非常优良,所以已被越来越多的行业所采用。萃取生产现场的PH检测及控制有许多实际操作上的难点,诸如现场采集点比较多,操作及检测不方便造成检测失准及寿命缩短等等。

选择合适的电极,是整个系统中较为关键的因素,因为一般的PH电极的探头都是一种玻璃类膜状物质制成的,里面注入有参比溶液,工作时参比液从玻璃膜中渗出,有机酯类会堵塞探头造成电极的损坏。

特征

萃取工艺目前PH检测探现场采集点比较多,PH检测不准,操作复杂科技论文格式,其运行不稳定。笔者通过长期的实践,将PH自动控制系统不断的改进为:系统结构简单,操作简便,检测质量高,控制反应快的一套系统。这里将我个人的一些方案和体会同大家一起分享一下,请大家多多指教。

方案

笔者通过不断的摸索发现通过下述技术方案可以得以很大的改进:

萃取工艺现场在线PH检测及控制系统,萃取工艺现场在线PH检测及控制系统,包括至少一个PH检测器,以及与PH检测器连接的控制系统,其特征在于,所述控制系统包括主机、以及与主机连接有至少一个PH控制器。PH检测器用以检测待测物的PH离子浓度,测量变送器将信号转化、传递回控制系统。PH控制器控制模拟量输出,以此输出模拟量控制PH值调节。

所述的PH检测器包括测量变送器,且测量变送器与控制系统连接。

所述测量变送器连接有PH测量探头,测量变送器通过测量电缆与PH测量探头连接,PH测量探头设置有PH电极。所述的PH电极为E+H电极。

所述的主机为PC机或者PLC控制器。

所述PC主机,PC主机连接有RS232主线, RS232主线连接有RS232转RS485转换模块,RS232转RS485转换模块连接到RS485主线。

PLC控制器直接与RS485主线连接。

所述的PH控制器主要包含模拟量控制模块,模拟量控制模块主要由CPU、以及模拟量输出单元、以及扩展I/O单元组成。模拟量输出单元包括连接单元、设置输出量程、模拟量输出接线、以及梯形编程架构的CPU。模拟量控制模块通过RS485主线连接与主机连接。

模拟量控制模块连接有电控球阀。

所述的电控球阀并联有手动球阀,且所述的电控球阀与反应釜连接。

测量原理:PH值测量的PH值,用于度量单位的酸度或碱度的液体介质,玻璃PH电极提供具有电化学的潜力,这种潜力取决于介质的PH值论文格式。而这种潜力将生成的H 正离子通过外层膜的离子选择性渗透。在一点形成一个具有潜力的电化学边界层。以一个集成的Ag或AgCl参考系统作为参比电极。PH检测器将相应的PH值转换为能斯特方程测量的电压。

将PH测量探头探伸到反应釜中,PH电极将选择性的渗透外层膜的离子,从而形成电化学边界层,采用集成的Ag或AgCl参考系统作为参比电极。PH检测器应用能斯特方程测量出电压科技论文格式,从而将电压转换为电压数字信号。该电压数字信号将被传输到控制系统进行处理与应用。

模拟量控制模块内置有根据能斯特方程编写的编码程序、以及模拟量输出单元。编码程序将存放于梯形编程架构CPU中,模拟量输出单元将输入的数字量转换为模拟量,模拟信号的输出范围如下所述,其中横轴为十六进制数;纵轴为模拟量。

如图5所示,模拟量为:–10 到10 V 。

十六进制数F448到0BB8对应–10到10 V的电压范围,完整的输出范围是–11到11V。使用补码来指示负电压。

如图6所示,模拟量为:0 到 10 V 。

十六进制数0000到1770对应0到10 V的电压范围,完整的输出范围是–0.5到10.5V。使用补码来指示负电压。

如图7所示,模拟量为:1到 5 V 。

十六进制数0000到1770对应1到5 V的电压范围,完整的输出范围是0.8到5.2V。

如图8所示,模拟量为:0 到20 mA 。

十六进制数0000到1770对应0到20mA的电流范围,完整的输出范围是0到21mA。

如图9所示,模拟量为:4到20 mA 。

十六进制数0000到1770对应4到20mA的电流范围,完整的输出范围是3.2到20.8mA。

控制系统将根据电压数字信号做出对应的模拟量控制信号。模拟量控制信号通过模拟量控制模块的输出端输出信号,输出端输出信号为预先设置好的配置参数,该输出信号被传递到电控球阀,如果某站PH值偏离了设定点,则通过控制加药的流量来调整PH值。流量通过控制加药管路中电控球阀的开闭程度来进行控制,可以使球阀开闭在任意位置。通过模拟量控制模块来控制待测溶液的入料溶液的流量,以调整溶液的PH值。一般采用DA041作为模拟量控制模块。

基于现场采集点多而分散的情况,系统采用分站采集,集中检测与控制的方法,以利于现场管理与系统维护。

采集点向用户提供工业控制中通用的RS485通讯接口。通讯协议采用MODBUS标准通讯协议,每个采集点的PH控制器可以作为从机与具有相同通讯接口并采用相同通讯协议的上位机,如PLC控制器、PC机通讯,实现对现场PH值的集中监控,另外用户也可以通过RS485主线连接数台PH控制器作为从机。以实现PH控制器的多机联动。通过该通讯口可以连接远程控制键盘。可实现用户对PH控制器的远程操作。

改进后系统的MODBUS通讯协议支持两种传送方式:RTU方式和ASCII方式,用户可以根据情况选择其中的一种方式通讯。

笔者发现如果做如上改进以后与现有技术相比科技论文格式,具有如下的优点和有益效果:系统结构简单,操作简便,检测质量高,控制反应快。

附图说明

图1为本发明控制系统示意图。

图2为本发明PH检测多级连接示意图。

图3为本发明PH检测单级连接示意图。

图4为本发明的PH检测器示意图。

附图中标记及相应的零部件名称:1、PH检测器;2、反应釜;3、有机相;4、水相;5、搅拌器;6、电控球阀;7、手动球阀;8、水相出路;9、有机相进路10测量变送器;11、测量电缆;12、PH电极;13、PH测量探头;14、药剂。

具体实施方式

下面结合实施例对本发明作进一步的详细说明。

实施例一

如图1、2、3、4所示,萃取工艺现场在线PH检测及控制系统,包括至少一个PH检测器1,以及与PH检测器1连接的控制系统,其特征在于,所述控制系统包括主机、以及与主机的至少一个PH控制器。

所述的PH检测器1包括测量变送器10,且测量变送器10与控制系统连接。

测量变送器10通过测量电缆11与PH测量探头13连接,PH测量探头13设置有PH电极12论文格式。

PH电极12为E+H电极。

如图1所示,当主机为PC机时,PC机连接的RS232主线, RS232主线连接RS232转RS485转换模块, RS232转RS485转换模块连接RS485主线。

PH控制器与连接RS485主线。

主机PC机与RS232主线连接后,信号通过RS232转RS485转换模块联通到RS485主线,其做出的应答反应传递到PH控制器。PH控制器内包含模拟量控制模块,模拟量控制模块内置有相应的根据能斯特方程写的编码程序,其通讯方式为:RTU方式和ASCII方式,用户可以根据情况选择其中的一种方式通讯。

当主机为PLC控制器时,主机直接连接到RS485主线进行通信,以实现控制器的多机联动。

如图2所示,PH检测多级连接,反应釜2中的有机相3与前一反应釜2中的有机相3联通,反应釜2中的水相4与前一反应釜2中的水相4联通。

PH检测器1的PH测量探头13置于反应釜2中,PH测量探头13检测反应釜2中的离子粒度,将PH检测信号通过测量电缆11以及测量变送器10发回控制系统。控制系统根据PH检测信号做出相应的应答控制信号。应答控制信号通过线路传输到PH控制器科技论文格式,PH控制器的模拟量控制模块根据编码程序做出应答反应。应答反应信号被传递到与模拟量控制模块连接的电控球阀6,电控球阀6的开闭程度来进行控制待测溶液的入料溶液的流量,以调整溶液的PH值。当电控球阀6不启用时,可以启用手动球阀7。测溶液的入料溶液入口可为图2中所示的有机相进路9,反应釜2中内置有有机相3和水相4以及搅拌器5,水相4联通水相4出路8。

如图3所示,PH检测单级连接,反应釜2单独设置,之间不联通。PH检测器1的PH测量探头13置于反应釜2中,PH测量探头13检测反应釜2中的离子粒度,将PH检测信号通过测量电缆11以及测量变送器10发回控制系统。控制系统根据PH检测信号做出相应的应答控制信号。应答控制信号通过线路传输到PH控制器,PH控制器的模拟量控制模块根据编码程序做出应答反应。应答反应信号被传递到与模拟量控制模块连接的电控球阀6,电控球阀6的开闭程度来进行控制待测溶液的入料溶液的流量,以调整溶液的PH值。当电控球阀6不启用时,可以启用手动球阀7。测溶液的入料溶液可为药剂14。

检测系统论文范文第7篇

(1)地球站的安全问题地球站作为卫星通信网络地面应用系统的重要组成部分,是负责发送和接收通信信息的地面终端,地球站的数据和发送的信令是用户行为的直接体现。作为卫星通信网络中的节点,地球站的正常运行直接关系到整个卫星通信网络通信的质量高低和安全性。地球站异常包括很多方面,除了地球站本身的故障之外,还包括地球站被仿冒、丢失,被非法用户使用或者被敌方缴获等。在非安全的环境下,敌方可以通过监听网络、控制信道,分析网络管理信息的模式、格式和内容,获得通信网的大量信息,这些信息包括网内地球站成员及其入退网事件,通信流量和多个地球站之间的通信频率。同时,也可以直接伪造、篡改网控中心信息、对地球站设置非法参数、干扰地球站的通信流程、使地球站之间的通信失败、使合法用户异常退网。敌方还可以侵入地球站,干扰网管主机、窃取网络配置信息、篡改网络运行参数等。造成地球站异常的这些原因中,由于用户的非法操作和非法用户的入侵行为引起的异常,对卫星网的安全威胁更大,造成的损失更严重。因此,通过卫星网络检测到地球站的行为异常,对整个卫星通信网的安全运行具有重要的意义。(2)地球站的工作网管中心相当于管理器,主要完成网络管理与控制功能,是全网的核心控制单元(ControlUnit,CU),其信令在卫星网中担负网络管理协议的作用。网络管理与控制功能可以是集中式或分散式,对于星上透明转发卫星通信系统,卫星不具有星上处理能力,只完成放大、转发的功能,由地面的主站集中进行网络管理与控制。卫星网管作为一个资源管理控制系统,它对全网的信道资源、地球站配置资源、用户号码资源进行控制;同时它作为操作员对全网的通信进行控制、检测和干预,向用户提供配置资源管理查看的接口以及资源状态显示和统计接口,并将当前通信系统中的异常情况向用户进行报告;它还具备用户设备操作权限管理、网控中心其它设备管理等功能。

2卫星通信网入侵检测系统的实现

2.1入侵检测系统的体系结构

入侵检测是检测计算机网络和系统以发现违反安全策略事件的过程。如图2所示,作为入侵检测系统至少应该包括三个功能模块:提供事件记录的信息源、发现入侵迹象的分析引擎和基于分析引擎的响应部件。CIDF阐述了一个入侵检测系统的通用模型,即入侵检测系统可以分为4个组件:事件产生器、事件分析器、响应单元、事件数据库。

2.2入侵检测系统的功能

卫星通信网络采用的是分布式的入侵检测系统,其主要功能模块包括:(1)数据采集模块。收集卫星发送来的各种数据信息以及地面站提供的一些数据,分为日志采集模块、数据报采集模块和其他信息源采集模块。(2)数据分析模块。对应于数据采集模块,也有三种类型的数据分析模块:日志分析模块、数据报分析模块和其他信息源分析模块。(3)告警统计及管理模块。该模块负责对数据分析模块产生的告警进行汇总,这样能更好地检测分布式入侵。(4)决策模块。决策模块对告警统计上报的告警做出决策,根据入侵的不同情况选择不同的响应策略,并判断是否需要向上级节点发出警告。(5)响应模块。响应模块根据决策模块送出的策略,采取相应的响应措施。其主要措施有:忽略、向管理员报警、终止连接等响应。(6)数据存储模块。数据存储模块用于存储入侵特征、入侵事件等数据,留待进一步分析。(7)管理平台。管理平台是管理员与入侵检测系统交互的管理界面。管理员通过这个平台可以手动处理响应,做出最终的决策,完成对系统的配置、权限管理,对入侵特征库的手动维护工作。

2.3数据挖掘技术

入侵检测系统中需要用到数据挖掘技术。数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。将数据挖掘技术应用于入侵检测系统的主要优点:(1)自适应能力强。专家根据现有的攻击从而分析、建立出它们的特征模型作为传统入侵检测系统规则库。但是如果一种攻击跨越较长一段时间,那么原有的入侵检测系统规则库很难得到及时更新,并且为了一种新的攻击去更换整个系统的成本将大大提升。因为应用数据挖掘技术的异常检测与信号匹配模式是不一样的,它不是对每一个信号一一检测,所以新的攻击可以得到有效的检测,表现出较强实时性。(2)误警率低。因为现有系统的检测原理主要是依靠单纯的信号匹配,这种生硬的方式,使得它的报警率与实际情况不一致。数据挖掘技术与入侵检测技术相结合的系统是从等报发生的序列中发现隐含在其中的规律,可以过滤出正常行为的信号,从而降低了系统的误警率。(3)智能性强。应用了数据挖掘的入侵检测系统可以在人很少参与的情况下自动地从大量的网络数据中提取人们不易发现的行为模式,也提高了系统检测的准确性。

3结束语

检测系统论文范文第8篇

BY-150型种子包衣机是一种智能化的种子精细加工包衣处理设备,主要由种子定量供给组件、定量加液组件、定量加粉组件及电气控制系统等部分组成。精确控制供种量、进液量和进粉量三者的比例是包衣流程的关键。设备开启时对种子进行质量设定,然后打开进料门,将种子加入称重桶内;在称重操作完成后,打开下料门,种子进入混合桶中;加液管依次打开液阀、气阀,将药液定量注入到混合桶内,同时包衣药粉在推进螺杆机构的控制下进行定量加粉;经过一定时间的搅拌混合后,打开出料门,将处理后的种子送出,完成整个包衣流程。在整个包衣流程中,通过称重桶内的高精度称重传感器对供种量进行检测;通过加液管内的液位传感器对进液量进行检测。各传感器在测点处输出的信号量可作为包衣流程中各动作开启和完成的标志,保证包衣流程的有序进行。通过定时器控制匀速旋转的加粉电机,即可实现药粉投放的定量控制。

2检测控制系统硬件设计

2.1系统总体结构

综合包衣机的工作流程,整个检测控制系统主要由包衣机控制主板、多传感器信号检测板、执行器控制板和液晶触摸屏构成

。多传感器信号检测板实现对称重传感器和液位传感器信号的采集;执行器控制板可实现对电机设备启停的开关量控制;用户通过液晶触摸屏进行包衣参数设置、包衣过程启停、包衣状态显示等操作。包衣机控制主板采用RS-485方式与多传感器信号检测板和执行器控制板进行通讯,采用RS-232方式与液晶触摸屏进行通讯。

2.2包衣机控制主板

包衣机控制主板选用RealARM6410开发板。该开发板以ARM11内核的S3C6410芯片作为控制核心,包含电源模块、晶振模块、复位电路、485通信模块和232通信模块等外部设备,可以装载和运行LINUX操作系统,具有处理运算能力强、耗电低、扩展性强等特点。将RealARM6410开发板作为包衣机的控制主板,可以很好地保证系统在包衣过程中的可靠性和稳定性。

2.3多传感器信号检测板

多传感器信号检测板选用意法半导体公司出产的32位高性能STM32F103C6T6作为微控制器。该微控制器的核心是ARMCortex-M3处理器,最高CPU时钟为72MHz,具有良好的精密性、可靠性和运算速度。本设计中针对供种量和进液量两种参数信息,分为两个检测模块进行硬件开发。

2.3.1供种量检测模块

供种量检测模块包含2路称重传感器信号放大电路用以检测称重桶中种子的质量,原理如图3所示。本设计中采用上海大和衡器有限公司出产的UH-53型称重传感器,该传感器具有准确度高、抗偏载能力强和长期稳定性好等优点。为了增加检测模块的抗干扰性,保证种子质量的检测精度,采用AnalogDe-vices公司具有低噪声、低失调电压和高共模抑制比特点的AD8608型CMOS精密运算放大器构成两级差分放大电路。放大电路第一级由两个同相输入运算放大器电路并联,第二级串联一个差分输入的运算放大器。这样的连接方式可以很好地抑制输入电压中的共模成分。参照称重传感器的额定输出,可以取放大倍数为500倍。为了减少第二级运放共模误差造成的影响,第一级运放的增益要尽可能高。因此,将第一级放大倍数设定为500。经过取值和计算。放大电路的输出端经过一个分压电路后,接入STM32芯片上带有A/D转换通道的I/O接口。

2.3.2进液量检测模块

进液量检测模块包含上液位和下液位传感器检测电路。Uup为上液位传感器信号,Udown为下液位传感器信号。Control1为控制主板发送的补液信号,Control2为控制主板发送的加液信号。动作执行之前Control1、Control2都为低电平,以加液动作为例,当液面高于上液位传感器时,Uup、Udown都为低电平。Uup通过光耦开关电路,在PA3处输出高电平到STM32芯片的I/O接口上;Udown通过光耦开关电路,在PA4处输出低电平到到STM32芯片的I/O接口上。此时Control2发送一个高电平信号,使RS锁存器2输出高电平,经过继电器驱动电路后使加液电机运转;然后使Control2变回低电平,在液面介于上下液位传感器之间时,Uup为高电平、Udown为低电平,PA4处仍为低电平,使RS锁存器2的输出保持之前的高电平状,加液电机保持运转。当液面低于下液位传感器时,Uup、Udown都为高电平,PA4变为高电平,使RS锁存器2输出低电平,加液电机停止;在此过程中补液电机一直保持停止状态,直到单片机通过Control1发送补液信号时再进入补液动作。通过采用主板信号控制动作启动、传感器检测电路直接控制动作结束的方式,可以有效避免药液的过量添加,保证了进液控制的稳定性。

2.4液晶触摸屏

液晶触摸屏采用广州微嵌计算机科技有限公司的WQT系列产品,它由400MHz的ARM9高速CPU、数字LED背光显示和高精度电阻式触摸屏等部分构成,有良好的兼容性和友好的人机操作界面。该液晶屏具备数据显示、数据监控和触摸控制等基本功能,并且采用双口独立通讯,可通过自定义的通讯协议实现与主板之间的信息传输。

2.5执行器控制板

执行器控制板采用与传感器信号采集板相同的STM32F103C6T6微控制器,通过设计继电器驱动电路,实现对加粉、门控等电机启停的开关量控制。开关量控制信号经由一阶RC低通滤波器和线性光电耦合器组成的电路后,可有效地滤除信号中的干扰成分。控制信号通过三极管进行放大,可驱动继电器的开合。

3检测控制系统软件设计

包衣机在开启电源并初始化完成后,通过液晶触摸屏设置包衣流程的总批次、种子质量以及种药混合时间等包衣参数。在包衣机控制主板系统平台上进行软件开发,每隔一定时间在485总线上采用轮询的方式与多传感器信号检测板和执行器控制板进行通信;系统参照用户设定的各项参数以及称重和液位传感器实际检测到的参数信息,发送电机控制命令,进行各批次的种子包衣处理动作;每个动作之间通过适当的延时衔接,可实现包衣机各工作部件的有机组合和包衣流程的有序进行。

4结论

检测系统论文范文第9篇

制冷空调产品检测装置是检测和衡量制冷空调产品的质量的方便易行的手段以及为产品开发研究提供精准的试验数据的无可替代的工具。制冷空调检测控制统是指基于焓差法的试验方法称之为风侧式空调测试和在标准规定中的水测量热计法的标准之下的为水侧测试,对所要检测的空调设备进行综合性能检测以及处理的半智能型控制系统。由于本系统具有优先使用频繁、耗电量相比其他系统要大以及对检测装置的节能设计和人性化要求愈来愈高。制冷空调产品检测装置控制系统水平的高低,检测装置的测量精确度和装置的稳定程度取决于系统的精确控制上,同时也是试验装置技术所代表的先进水平的非常重要的标志之一。本文将就在制冷空调产品过程中可能以及必不可少出现的空气处理装置及空调,不方便进行远程操作的冷水处理机组和在冬天以最优工况运行二十四小时制冷较为困难的问题作优化设计。

2制冷空调产品检测装置控制系统的基本工作原理

2.1系统组成

此检测控制系统由包括空气处理机、空气取样装置以及风量测量装置等在内的测试间一和由仅包括空气处理机和空气取样装置在内的测试间二,加上两个测试间相互连通的水路系统共同组成。在实际测试中根据被测类型选择测试间。

2.2空调检测系统的调控

制冷空调一二分别用于模拟室内环境,为制冷空调工作的室内环境的提供相应的操作条件。制冷空调设备调整室内和室外温度,电加热线圈提供热源,并可自动调整室内和室外的电气环境加热量和加湿量。两试验间室内和室外的温度和湿度的控制,连接两个测试水调节系统是通过冷水机组与电加热装置,恒温箱提供同时提供冷水温度和水箱,从而保证水箱的恒定热源的提供,并通过调控恒温水箱各种加热强度及三通阀开度的大小来控制被检测制冷空调进出水的温度。

2.3检测系统测量和计算

根据GB/T7725-1996的要求,被检测的制冷空调称为单元式风冷空调机,需实时记录室内温度的基本数据,湿度和入口和出口之间的压差试验室。根据国标的规定,如果被检测的制冷空调为风冷式进水流量和水侧出口水温必须由冷水机组、风机盘管机组提供。根据检测数据,通过计算机实时监测得出的被检测制冷空调的电功率和能效比,冷量和热量等检测参数。

3制冷空调检测系统的原理

为了实现机器的温度和入口和出口温度调节灵活,控制方案如下所述:通过可编程逻辑控制器(ProgrammableLogicController,PLC)控制被测机器、空气处理机、风冷冷水机、水泵等设备的开启和停止,然后实时压力,温度采集系统,系统的流量信号,通过计算机实时监测数据和计算与制冷空调试验,冷却能力和设备,操作系统电源状态,设备,能源效率比系统流量测试标准规定值。

4控制系统优化方案

现阶段制冷空调产品性能实验装置测控系统的特点有:控制精度高,自动化程度高,抗干扰能力强,工况稳定性好,性能价格比高。此阶段制冷空调产品性能试验装置的测控系统的各个部分之间已不再是相互独立的,而是通过系统的数据通讯总线互相协助共同完成试验操作。

4.1系统的无干扰切换控制

控制系统优化方案:对控制系统的出厂标准配置的基础上,对系统的远程控制功能增加,和双向操作无扰动切换,为了实现这种设想,在空气处理器的控制系统和冷水机组的标准配置可用于增加远程启停控制点。即将远程设备停止、开启信号引入PLC系统进行控制。

4.2为解决冬季制冷连续运行24h的方案

控制系统优化方案:在寒冷的冬季制冷运行时,由于空气处理机组,风冷冷水机组冷凝温度太低,造成机组停机保护,从而破坏试验条件下的操作。因此,自动监测和冷凝液的温度调节是通过增加操作装置实现的,传感器、压力变送器等。为了实现这一目标,冷凝风机连接到逆变器,在压缩冷凝机组吸气压力加压力变送器的测量点,操作者双手套百分比转换一套冷凝压力值,使用内置的PID调节功能的逆变器,逆变器的输出调整,为了保证冷凝压力值设置范围。

4.3结果与分析

系统无扰动切换控制的实现,节省人员成本,是由机器来完成安装,只需要一个操作者管理可以安全方便的设备操作和维护工作。并且线路简化,设备的运行故障率比较低,线路维护以及检修的工作量大大减少。有时与触摸屏结合使用,不仅可省却按钮、指示灯,节约空间,还具有动态的显示系统流程及主要参数,以及指导操作、记录故障等功能。冷凝温度的自动监测和调控,不仅全面解决寒冷的冬季运行24小时制冷问题,通过变频器的使用,可以在非满负荷运行,节约用电,以达到节能的目的。

5结语

检测系统论文范文第10篇

关键词:校园网络;黑客攻击;入侵技术

1 校园网络安全现状

随着网络应用的普及,电子商务!电子银行和电子政务等网络服务的大力发展,网络在人们日常生活中的应用越来越多重要性越来越大,网络攻击也越来越严重。有一些人专门利用他们掌握的信息技术知识从事破坏活动,入侵他人计算机系统窃取!修改和破坏重要信息,给社会造成了巨大的损。随着攻击手段的变化,传统的以身份验证、加密、防火墙为主的静态安全防护体系已经越来越难以适应日益变化的网络环境,尤其是授权用户的滥用权利行为,几乎只有审计才能发现园网是国内最大的网络实体,如何保证校园网络系统的安全,是摆在我们面前的最重要问题。

因此,校园网对入侵检测系统也有着特别的需求校园网的特点是在线用户比率高、上网时间长、用户流量大、对服务器访问量大,这种情况下,校园网络面临着许多安全方面的威胁:

(1)黑客攻击,特别是假冒源地址的拒绝服务攻击屡有发生攻击者通过一些简单的攻击工具,就可以制造危害严重的网络洪流,耗尽网络资源或使主机系统资源遭到攻击同时,攻击者常常借助伪造源地址的方法,使网络管理员对这种攻击无可奈何。

(2)病毒和蠕虫,在高速大容量的局域网络中,各种病毒和蠕虫,不论新旧都很容易通过有漏洞的系统迅速传播扩散"其中,特别是新出现的网络蠕虫,常常可以在爆发初期的几个小时内就闪电般席卷全校,造成网络阻塞甚至瘫痪。

(3)滥用网络资源,在校园网中总会出现滥用带宽等资源以致影响其他用户甚至整个网络正常使用的行为如各种扫描、广播、访问量过大的视频下载服务等等。入侵检测系统(IntrusionDeteetionSystem,IDS)的出现使得我们可以主动实时地全面防范网络攻击N工DS指从网络系统的若干节点中搜集信息并进行分析,从而发现网络系统中是否有违反安全策略的行为,并做出适当的响应"它既能检测出非授权使用计算机的用户,也能检测出授权用户的滥用行为。

IDS按照功能大致可划分为主机入侵检测(HostIDS,HIDS)网络入侵检测(NetworkIDS,NIDS)分布式入侵检测(DistributedIDS,DIDS)其中,网络入侵检测的特点是成本低,实时地检测和分析,而且可以检测到未成功的攻击企图"从分析方法的角度可分为异常检测(Anomaly DeteCtion)和误用检测(MISuseDeteCtion)其中误用检测是指定义一系列规则,符合规则的被认为是入侵其优点是误报率低、开销小、效率高Snort作为IDS的经典代表,是基于网络和误用检测的入侵检测系统入侵检测技术自20世纪80年代早起提出以来,在早期的入侵检测系统中,大多数是基于主机的,但是在过去的10年间基于网络的入侵检测系统占有主要地位,现在和未来的发展主流将是混合型和分布式形式的入侵检测系统。

2 入侵检测研究现状

国外机构早在20世纪80年代就开展了相关基础理论研究工作。经过20多年的不断发展,从最初的一种有价值的研究想法和单纯的理论模型,迅速发展出种类繁多的各种实际原型系统,并且在近10年内涌现出许多商用入侵检测系统,成为计算机安全防护领域内不可缺少的一种安全防护技术。Anderson在1980年的报告“Computer Seeurity Threat Monitoring and Surveillance”中,提出必须改变现有的系统审计机制,以便为专职系统安全人员提供安全信息,此文被认为是有关入侵检测的最早论述;1984一1986年,Dorothy E.Denning和Peter G.Neumann联合开发了一个实时IDES(Intrusion DeteCtion Expert System),IDES采用统计分析,异常检测和专家系统的混合结构,Delming1986年的论文“An Intrusion Deteetion Modelo”,被公认为是入侵检测领域的另一开山之作"。1987年,Dorothy Denning发表的经典论文AnIntursion Deteetion Modelo中提出了入侵检测的基本模型,并提出了几种可用于入侵检测的统计分析模型。Dnening的论文正式启动了入侵检测领域的研究工作,在发展的早期阶段,入侵检测还仅仅是个有趣的研究领域,还没有获得计算机用户的足够注意,因为,当时的流行做法是将计算机安全的大部分预算投入到预防性的措施上,如:加密、身份验证和访问控制等方面,而将检测和响应等排斥在外。到了1996年后,才逐步出现了大量的商用入侵检测系统。从20世纪90年代到现在,入侵检测系统的研发呈现出百家争鸣的繁荣局面,并在智能化和分布式两个方向取得了长足的进展。其中一种主要的异常检测技术是神经网络技术,此外,如基于贝叶斯网络的异常检测方法,基于模式预测的异常检测方法,基于数据挖掘的异常检测方法以及基于计算机免疫学的检测方法也相继出现,对于误用入侵检测也有多种检测方法,如专家系统(expert system),特征分析(Signature analysis),状态转移分析(State transition analysis)等.

入侵检测系统的典型代表是ISSInc(国际互联网安全系统公司)Rea1Secure产品。较为著名的商用入侵检测产品还有:NAJ公司的CyberCoPMoitor、Axent公司的Netprowler、CISCO公司的Netranger、CA公司的SeSSionwall-3等。目前,普渡大学、加州大学戴维斯分校、洛斯阿拉莫斯国家实验室、哥伦比亚大学、新墨西哥大学等机构在这些方面的研究代表了当前的最高水平。随着计算机系统软、硬件的飞速发展,以及网络技术、分布式计算!系统工程!人工智能等计算机新兴技术与理论的不断发展与完善,入侵检测理论本身也处于发展变化中,但还未形成一个比较完整的理论体系。

在国内,随着上网的关键部门、关键业务越来越多,更需要具有自主版权的入侵检测产品。我国在这方面的研究相对晚,国内的该类产品较少,但发展较快,己有总参北方所、中科网威、启明星辰,H3C等公司推出产品。至今日入侵检测技术仍然改变了以往被动防御的特点,使网络管理员能够主动地实时跟踪各种危害系统安全的入侵行为并做出及时的响应,尤其在抵御网络内部人员的破坏时更有独到的特点,因而成为了防火墙之后的又一道安全防线。

随着互联网的进一步普及和深入,入侵检测技术有着更广泛的发展前途和实际价值。尽管问题尚存,但希望更大,相信目前正在研究的大规模分布式入侵检测系统、基于多传感器的数据融合、基于计算机免疫技术、基于神经网络及基于遗传算法等的新一代入侵检测系统一定能够解决目前面临到种种问题,更好地完成抵御入侵的任务。

3 未来和展望

随着网络规模和复杂程度的不断增长,如何在校园网多校区乃至异构网络环境下收集和处理分布在网络各处的不同格式信息!如何进行管理域间的合作以及保证在局部入侵检测失效的情况下维持系统整体安全等"同时,伴随着大量诸如高速/超高速接入手段的出现,如何实现高速/超高速网络下的实时入侵检测。降低丢包率也成为一个现实的问题,面对G级的网络数据流量,传统的软件结构和算法都需要重新设计;开发和设计适当的专用硬件也成为研究方向之一"时至今日,入侵检测系统的评估测试方面仍然不成熟,如何对入侵检测系统进行评估是一个重要而敏感的话题。

参考文献

[1]董明明,巩青歌.Snort规则集的优化方法.计算机安全.2009.8:35-37

检测系统论文范文第11篇

[关键词]木马检测策略 动态博弈

中图分类号:TM925.07 文献标识码:A 文章编号:1009-914X(2015)05-0282-01

1 引言

近年来, 随着网络应用复杂度的不断提高, 网络攻击方法层出不穷。各种网络攻击方法中, 木马攻击是最具危险的手段之一。一旦计算机系统被种植木马, 就将长期潜伏, 对系统的保密性、可用性造成致命伤害。本文提出了一种在新型木马检测系统中, 基于不完全信息博弈理论的计算机木马检测策略选择方法, 为解决准确检测木马问题提供了新的思路。

2 计算机木马检测系统构成

本文成果应用的计算机木马检测系统由主机信息检测模块、网络信息检测模块和智能决策模块三个模块组成。

主机信息检测模块对主机的文件、进程、网络连接、加载文件等信息结合白名单检测、端口关联等检测方法, 按照检测策略进行检测。网络信息检测模块基于网络协议的分析, 对宿主主机发出的数据包进行层层剥离, 准确获取数据包信息, 同时根据各种信息特征进行统计, 从中发掘可疑网络流量信息。智能决策模块将网络和主机获取的数据根据攻击特征进行逐项分析, 然后对分项结果关联形成检测结论, 最终显示给用户。

3 木马检测与反检测博弈行为分析

3.1 木马反检测的一般方法及分析

木马必须的功能包括隐蔽启动、网络外联。木马反检测方法大体有隐藏进程、隐藏模块、隐藏网络连接、隐藏文件、隐藏服务、隐藏启动项、穿透防火墙。

3.2 木马检测的博弃行为

在木马检测过程中, 自始至终存在着对抗双方检测与反检测的博弈。木马检测系统要制定应对不同等级木马的检测策略。从检测到的可疑程序中将这些正常程序甄别出是系统的重要工作。在计算机被种植木马的环境下, 检测工作是一个双方不完全信息动态博弈的过程, 检测系统必须逐步寻找最优策略, 以达到检出目的。

3.3 不完全信息动态博弃

根据随机博弈的思想, 检测系统的每一个部分检测的结果概括成一种“状态”。双方在该部分的收益取决于各自采用的策略。通常, 一个两方随机博弈用如下七元组描述(S,,, Q,,,β),其中:

一般的木马检测博弈过程如下:在某个检测模块工作的时刻t, 博弈处于状态∈S。,木马从反检测策略集中选择策略, , 系统从检测策略集中选择策略, 然后木马得到一个收益= (,,), 系统得到收益= (,,),然后博弈进入第二个状态∈S。

根据不完全信息动态博弈理论, 当期收益不仅取决于当前状态和这种状态下木马与检测系统选择的策略, 还取决于双方针对对方类型所做的概率分布判断。根据随机博弈理论, 木马的收益应该为= (,,), 假设此时木马对不会被检测出的概率判断为μ, 根据不完全信息博弈理论,其收益为= (,,,μ), 同理, 假设此时检测系统对木马是否判断出被检测出的概率判断为λ, 此状态下其收益为= (,,,λ)。

4 基于动态博弈的木马检测策略选择

木马检测环境下, 针对一个特定的状态, 策略选择过程为:

(1)首先确定检测系统和木马的策略集;

(2)当前状态下, 确定针对检测系统不同的策略, 木马对被检出的概率μ分布;

(3)根据木马实现技术水平的高低确定木马类型, 然后检测系统确定木马类型的概率分布ν,在此基础上根据木马在当前状态下采取不同的策略下, 确定木马判断出被检出的概率分布λ;

(4)确定木马的收益函数。为了长时间牢固控制主机(I), 木马需具备反检测手段(T), 由此确定木马的线性收益函数为:=(I-T)(1-μ)(1)

(5)确定检测系统的收益函数。检测系统的收益函数与木马反检测水平(T),检测系统获取的信息(),木马判断检测系统会采取的检测方式信息()相关, 由此确定检测系统的线性收益函数为:=(γI-T-)(1-γ)(2)

假设检测系统对木马类型的判断概率是,则对n类木马, 系统在该状态下的收益为:

(6)计算纳什均衡解, 确定木马检测策略。要达到纳什均衡解必须满足两个条件:检测系统采取的策略要实现自己的收益最大化;要使木马的收益尽可能高。

成立的策略'为其最优策略,其中表示确定检测系统所有策略下的最大收益,'为选择该策略下的木马的判断概率。

对检测系统而言,使得条件:

成立的策略'为其最优策略,其中'表示系统在木马自防护策略下的最大收益,'为选择该策略下的系统的检出判断概率。

5 示例与仿真

以主机信息检测部分为例,使用简化策略进行仿真分析。

(1) 确定双方策略集

在主机信息检测状态下,检测系统的策略集。

(2) 确定木马对检测系统策略类型评估的概率μ分布

根据木马反检测能力的高低分为三类,高级木马,中级木马,和初级木马,根据经验,木马对检测系统策略评估正确的概率μ分布如表1。

(4)确定木马在当前状态下的收益

根据经验确定控制主机I值,反检测T值表。

(6)计算纳什均衡解

木马的最优策略是;根据式(3)及表3,检测系统的最优策略是。

6 结论

木马检测策略是木马检测系统的关键之一。本文提出了一种基于不完全信息动态博弈的木马检测策略选择的方法,该方法基于对抗的动态性及对抗双方信息不完全的特点,把信息获取和不完全信息动态博弈有机结合,示例与仿真初步验证了模型的有效性。

参考文献

[1] 闫怀志,胡昌振,谭惠民。网络攻防对抗策略选择模糊矩阵博弈方法。武汉大学学报(理学版),2004,50(S1),103-106.

检测系统论文范文第12篇

关键词:人脸识别,安检

 

人脸识别(Face Recognition)一直是计算机视觉与模式识别领域的研究热点,在身份鉴别、自动监控、人机交互系统等方面有着广泛应用。,安检。随着我国民航事业的发展,客流量增多,机场安检工作量加大,传统的低效率人工安检手段已不能满足大型国际机场的需要。如何将人脸识别这种计算机自动验证技术应用于安检系统,并使其成为一种安全、稳定、高效的检测技术,已是当务之急。

人脸识别技术是一种依据人的面部特征(如统计或几何特征等),自动进行身份鉴别[1]的技术。,安检。它综合运用了数字图像、视频处理、模式识别等多种技术。本文针对机场安检的工作要求,提出了一个自动人脸识别仿真系统,并就其主要技术作了详细介绍。

1 系统实现

1.1 基本架构及应用环境

本系统结构框图如图1所示。系统主要由脸部图像预处理,特征提取和人脸识别三个部分组成。,安检。

图1 人脸识别系统结构框图

考虑到安检的工作环境及高检测率需求性等特征,本系统的用户检测环境处于室内正常光照条件下,并以墙壁为背景对人脸进行检测,检测过程中要求人脸与相机的距离变化及相机的方向不宜太大,拍摄角度须接近正面,表情保持自然状态。这样可以很好的解决光照不均、表情差异大等常见的检测问题,降低误测度[2]。

1.2 脸部图像预处理

自动人脸识别系统的首要任务是检测和定位人脸,这一步检测效率的高低将直接影响后续模块的执行效果。本系统采用肤色检测算法中基于彩色信息相似度的人脸定位方法提取面部图像。利用平时常用的色度空间RGB[3],可以很容易排除掉检测结果中在灰度图像中很像人脸,而对应到彩色图像根本不是肤色的区域。

首先将三维RGB(红绿蓝三基色)色度空间降为二维,使肤色区域相对集中。再采用训练方法计算得到人脸分布中心,根据像素离该中心的远近得到相似度分布图,对该分布图二值化以确定人脸区域。

再采用Gamma变换算法将脸部图像进行预处理,提高图像清晰度,使特征明显化。Gamma变换是一种非线性的灰度变换,用式(1)来表示。

即原来的灰度值I用(r>0)或代替。,安检。其中[4]。Gamma变换的光照补偿因图像像素灰度值不同而异,图2给出了不同参数的Gamma变换曲线。,安检。对于图像较暗的地方,光照补偿大,而对于高光部分则较小。,安检。表情图像预处理结果如图3所示。

图2 Gamma变换曲线

检测系统论文范文第13篇

关键词: 混沌理论;车载超声测距系统;应用

超声波法是非接触测距中比较常用的一种,虽然具有很多独特的优点,但它在传播过程中衰减比较大。随着信号处理技术和计算机技术的发展,许多新的理论方法应用于超声波信号的去噪处理,很大程度上使得超声波测距的测量精度和灵敏度有所提高。混沌理论是非线性科学最重要的成就之一,近年来发展迅速,是信息检测技术的一个主要发展方向。

用混沌振子检测理论检测车载噪声环境下的超声回波信号,是混沌理论在微弱信号检测方面的一个应用实例,其研究目的就是论证混沌振子检测理论在实际的超声波测距中的可行性与实用性,并为混沌检测理论用于实际产品开发提供理论指导和实现依据。

1 超声波测距系统硬件设计

超声波测距系统硬件实现总体框图如图1所示。

图1 超声波测距系统硬件实现总体框图

本系统中,控制芯片MCU是实时控制和数据采集的核心器件。本论文中控制芯片需要承担以下任务:设定工作方式,产生40KHz的方波脉冲信号,经功率放大后驱动超声波换能器产生超声波;控制超声波接收的运放增益变化;超声波数据的A/D转换,采集补偿温度与车速,并将转换后的超声波数据和校正数据传送给计算机。本系统综合考虑混沌振子非线性检测对数据采样精度和采样时间的要求、USB数据传输的实现等方面,最终选用Atmel公司的AT32UC3B0128。该型号的MCU是一款高性能、低功耗微控制器,32位RISC处理内核(指令集包含DSP指令序列)、频率高达60MHz、内部128KB flash。在数据转换方面,集成了8通道、最高10位的A/D转换器和7通道16位的PWM;在数据传输方面,集成3个USART接口、400kbit/s I2C总线、SPI总线等。最重要的是它包含OTG协议的全速USB 2.0接口,使得由该芯片构成的数据采集系统可以自由地作为通信的主机或与PC机通信的从机。该款芯片性价比较高,在满足电路需要的前提下,具有实现方便、稳定、耗电量小、体积小等优点。

1.1 数据的A/D转换

A/D转换器就是将模拟信号值编制转换成适合于数字处理的二进制码的编码器。使用时需要参考下述性能指标:A/D转换器的位数、转换速率、A/D转换器量程、偏置极性、满刻度误差等。从采样要求来看,在使用10位转换精度的A/D转换器时,MCU时钟频率为8MHz,最大转换时间为2us,能满足系统设计要求。在实际应用时,还要注意A/D转换器对电源电路的要求。这是因为电源电路除了给MCU供电外,还要给A/D转换器供电,并在使用外部电压做基准时为A/D转换器提供基准电压。根据以上分析,本论文选用了Maxim公司的低压差线性稳压器MAX8875进行稳压,及电压基准芯片MAX6190来提供稳定的2.048V外部参考电压。

1.2 USB数据通信

USB即通用串行总线(Univesral Serial Bus),具有传输速度快、支持热插拔、支持双向和同步、性价比高、对外可提供500mA、主流操作系统普遍支持、协议纠错能力强等优势。本文使用AT32UC3B0128芯片集成的OTG标准的全速USB 2.0 (480Mbps)接口。

1.3 补偿温度获取

温度是影响超声波测距精确的主要因素,所以本文主要考虑超声波测距的温度补偿。本文采用DS18B20来获得补偿温度。该芯片可以实现9~12位的温度读数,相应的测量精度最高可达0.0625℃(12位),12位分辨率时的温度转换时间不超过750ms,测量范围为-55~+125℃,在-10~+85℃范围内误差为0.5℃,且芯片最大的特点是采用单总线方式通信,且每个DSl8B20 具有固定的唯一序号,可以实现将多个DSl8B20存放在同一条单线总线上,满足在不同地方放置温度敏感器件的需要。

1.4 校正车速获取

一般的测速装置主要有脉冲计数装置、编码技术等。本文选用数字编码器来进行校正车速的测量。其测速原理是:数字编码器输出代表速度快慢的脉冲,单位时间内脉冲数越多说明车速越快,将输出的脉冲输入到MCU的一个I/O口,通过MCU的捕捉功能就可以获取校正车速。

2 Duffing振子在超声波测距中的应用实验研究

根据系统设计总统框图,将被检测的信号作为系统内部周期激励的摄动引入Duffing振子系统。假设待测信号的形式为

,其中 为待测信号幅值, 为噪声。则混沌系统方程为:

信号检测时,首先设置系统参数:步长 ,阻尼 ,内驱动力幅值 。为观察混沌振子对微弱信号的检测能力,本文对频率为 的超声波信号进行实验分析,采用减少发射电压和增大探头间距增大的方法来获得较微弱的超声波信号。假定原始信号中,噪声强大看不出明显的超声波信号特征。为了利用间歇混沌来确定待测信号的频率,我们取参考信号频率 略小于超声波信号的频率。系统本质上是一个离散动力系统,选取的步长 不同,因此导出的离散系统也不同。特别是在系统从混沌状态到有序状态转变时,不同的步长值将导致分叉值明显不同。将被测信号输入Duffing振

。若采样频率为 ,那么一周期内的采样点数

,因为在 和 之间必须满足关系(3):

当 时,相变域值 约在0.7附近,这里取参考信号幅值 ,目的在于保证检测过程的可靠性。

图2 振子响应

图2为最后的实验结果。从图中可以看到明显的间歇混沌。根据横轴可知,间歇混沌的周期约为20000步,由于所取步长为0.0248,所以周期为20000*0.0248=560s,即:

可得到:

最终检测到的外界信号频率为:

由于实际信号的频率为40.01KHz,所以相对误差为:

由此可见误差很小,本系统可以准确地检测出强噪声背景中的微弱信号。

接下来我们计算一下本系统所能检测到的最小信噪比。系统 ,能检测到 、噪声均方根值

的微弱信号。当 增加到2.31时,相点基本上仍作周期运动,也会偶尔回到混沌区,但系统本质上是稳定的。当 增加到2.5时,系统的周期运动已经被破坏,由于噪声过大,系统已经不能检测到信号了。因此,得到可检测的最小信噪比为:

3 系统性能参数

经过实验,最终得到利用混沌振子检测超声波的测距系统的性能参数如下:

最大测量距离:30m;

盲区:

测量精度:±0.2%;

分辨率:2mm。

4 小结

目前,超声波测距系统的最大测量距离可以达到20m,测距精度为±1%,最高的也不超过±0.5%。应用混沌振子算法后,这些性能指标都改善很多,而且最小信噪比达到了-64.27dB,可见,混沌振子检测理论可以大大提高超声波测距系统的性能。

参考文献:

[1]尹成群、赵华、尚秋峰等,基于混沌检测理论的车载微波测速测距安全预警系统的研究,Modern Scientific Instruments,2006,2:3-33.

[2]基于Duffing振子的微弱信号检测,长春:吉林大学信号与信息处理专业,2005.

检测系统论文范文第14篇

关键词:入侵检测,计算机网络,分布式

 

1. 入侵检测系统概述入侵检测,就是对网络或者系统的运行状态进行监视,发现各种攻击企图、攻击行为或者攻击结果,以保证系统资源的机密性、完整性和可用性。简单说就是对入侵行为的发觉。入侵检测系统(Intrusion Detection System,简称IDS)是一个能够对网络或计算机系统的活动进行实时监测的系统,它能够发现并报告网络或系统中存在的可疑迹象,为网络安全管理员及时采取对策提供有价值的信息。

2.入侵检测系统的历史研究与现状入侵检测系统从开始研究到目前的商业产品,已经有20多年的历史了。最早研究入侵检测的是James Anderson,他在1980年首先提出了入侵检测的概念,将入侵尝试或威胁定义为:潜在的、有预谋的、未经授权的访问信息、操作信息、致使系统不可靠或无法使用的企图。Anderson提出审计追踪可应用于监视入侵威胁。

国外入侵检测系统已经进入相对成熟期,目前比较成功的商业系统大都是混合使用多种技术,而且很多系统不只是具有入侵检测和响应功能,还具有很强的网络管理和网络通信统计的功能。比如:ISS公司的RealSecure、Axcent公司的Intruder Alert、Cisco公司的Cisco Secure IDS、Network Flight Recorder公司的NID、NetworkIce公司的BlackIce Defender、NAI公司的CyberCop Intrusion Protection等产品。

国内对入侵检测系统的研究起步较晚,无论理论研究还是实践创新都落后于国外,目前处于对国外技术的跟踪研究状态。。近年来有一些单位如:中科院、清华大学、国防科技大学、中联绿盟、金诺网安、启明星辰等都开展了入侵检测系统的理论研究和产品开发研制工作。

3.入侵检测系统的分类随着入侵检测技术的发展,目前已经出现了很多入侵检测系统,不同的入侵检测系统具有不同的特征。根据不同的分类标准,入侵检测系统可分为不同的类别。

1.按照数据来源划分,入侵检测系统分为基于主机的入侵检测系统(HIDS)和基于网络的入侵检测系统(NIDS)。

1)基于主机的入侵检测系统

它检测的目标主要是主机系统和系统本地用户。检测的原理是根据主机的审计数据和系统的日志发现可疑事件,检测系统可以运行在被检测的主机或单独的主机上。此系统依赖于审计数据或系统日志的准确性和完整性以及安全事件的定义。

2)基于网络的入侵检测系统

它通过在共享网段上对通信数据进行侦听,采集数据,分析可疑现象,系统根据网络流量、协议分析、简单网络管理协议信息等检测入侵。

2.按照目前国内外的入侵检测技术IDS主要分为两类:基于异常的入侵检测和基于误用的入侵检测。

1)基于异常的入侵检测

首先总结正常操作应该具有的特征,例如特定用户的操作习惯与某些操作的频率等;在得出正常操作的模型之后,对后续的操作进行监视,一旦发现偏离正常统计学意义上的操作模式,即进行报警。

2)基于误用的入侵检测

收集非正常操作也就是入侵行为的特征,建立相关的特征库;在后续的检测过程中,将收集到的数据与特征库中的特征代码进行比较,得出是否是入侵的结论。当前流行的系统基本上采用了这种模型。

3.按照目前IDS的发展趋势来分,IDS分为集中式和分布式两种。

1)集中式IDS

所谓集中式是指整合基于主机的IDS和基于网络的IDS的各自优点,将HIDS和NIDS这两种检测技术很好地集成起来,提供集成化的攻击签名、检测、报告和事件关联功能。

2)分布式IDS

对分布式而言有两层含义,一是针对分布式网络攻击的检测方法;第二层含义即使用分布式的方法来检测分布式的攻击。这其中的关键技术为检测信息的协同处理与入侵攻击的全局信息的提取。。

4.入侵检测技术的发展方向目前入侵检测系统面临的最主要挑战有两个:一是误警率太高,二是检测速度太慢。针对这些挑战和入侵手段的不断进步,今后的入侵检测技术大致将朝以下几个方向发展。

1.分布式入侵检测与通用入侵检测架构

传统的IDS一般局限于单一的主机或网络架构,对异构系统及大规模的网络的监测明显不足。同时不同的IDS系统之间不能协同工作,为解决这一问题,需要分布式入侵检测技术与通用入侵检测架构。

2.应用层入侵检测

许多入侵的语义只有在应用层才能理解,而目前的IDS仅能检测如WEB之类的通用协议,而不能处理如Lotus Notes、数据库系统等其他的应用系统。许多基于客户、服务器结构与中间件技术及对象技术的大型应用,需要应用层的入侵检测保护。

3.智能化的入侵检测

入侵方法越来越多样化与综合化,已经有模糊技术、神经网络与遗传算法在入侵检测领域的应用研究,这些方法常用于入侵特征的辨识与泛化,需对智能化的IDS做进一步的研究以解决其自学习与自适应能力,来完善系统模型,提高检测的效率和准确性。

4.入侵检测的评测方法

用户需对众多的IDS系统进行评价,设计通用的入侵检测测试与评估方法与平台,实现对多种IDS系统的检测已成为当前IDS的另一重要研究与发展领域。

5.综合性检测系统

与其它的网络安全技术 (包括硬件技术) 相结合, 形成综合的检测系统,解决传统方法检测对象单一、检测攻击形式简单的问题和一些难以解决的问题。

6.宽带高速网络的实时入侵检测技术

大量高速网络技术近年来不断出现,在此背景下的各种宽带接入手段层出不穷,如何实现高速网络环境的入侵检测已成为一个现实问题。这需要考虑两个方面,首先,入侵检测系统的软件结构和算法需要重新设计,以适应高速网络的新环境,重点是提高运行速度和效率。另一方面是,随着高速网络技术的不断进步和成熟,新的高速网络协议的设计也成为未来的一个发展趋势,现有的入侵检测系统如何适应和利用未来新的网络协议结构是一个全新的问题。

从信息安全角度出发,入侵检测理应受到人们的高度重视,从国外入侵检测产品市场的蓬勃发展可以看出这一点。。在国内,随着国家重要部门的关键业务逐渐增多,迫切需要具有自主版权的入侵检测产品。但目前的入侵检测仅停留在研究和实验样品(缺乏升级和服务)阶段,或者是防火墙中集成较为初级的入侵检测模块。可见,入侵检测产品仍具有较大的发展空间,从技术途径来讲,除了完善常规的、传统的技术(模式识别和完整性分析)外,应重点加强统计分析的相关技术研究。

检测系统论文范文第15篇

近年来,中国学术界的学术不端行为广受诟病。且不说某些“聪明”的大学生抄袭论文,有关论文造假的报道已涉及多位专家学者,包括两院院士。学术不端行为已蔓延到学界泰斗。为了有效遏制学术不端行为,中国学术界检查论文重复率的软件(以下简称“软件”)登上了历史舞台,充当起了论文裁判的角色。不知从何时起,高校用软件来判断学生毕业论文是否为抄袭之作,期刊也用软件来评判稿件的真伪和优劣。中国学术界似乎找到了评判论文真伪和质量的“万能钥匙”。

然而,这“万能钥匙”也引起了不少非议。这些软件能查文字的重复率,查不出论文的创新点;能够识别文字描述,不能识别公式、图表;作弊的学生随便用些雕虫小技就能顺利通过检测,等等。虽然不少大学教师包括名牌大学的教师对用软件评判论文很有意见,私下议论时怨声载道,但在痛斥学术不端的大环境与国家支持开发软件来预防学术不端行为的大气候下,加之公众相信软件技术的科学性,于是大家觉得议论软件现存问题很不合时宜,懒得花时间将一堆意见整理成文字。不过还是有一些有识之士发出了心声。沿着他们的足迹,我们也抛砖引玉地呼吁一下:论文应区别对待。只能查文字重复率、不能辨识论文创新点的软件不用于建模类论文为好。

如果软件只能检测文字重复率,不能辨识论文创新点,那么即使它是用计算机语言编写的程序,其科学性也会受到怀疑。创新意味着新事物对旧事物的否定,应该是辩证的否定,而不是形而上学的否定。辩证的否定是新旧事物间联系的环节。新事物是从旧事物脱胎而来,与旧事物间有着必然的内在联系。新事物在否定旧事物根本性质的同时,会保留旧事物中的积极因素与合理成分,将其作为自身生存与发展的基础。形而上学的否定是全盘抛弃,没有保留和继承。用计算机语言编写的程序也是人为的产物,人工智能可以相信但不能迷信。

二、软件使用现状

目前在软件市场上,有几款比较流行的学术不端检测系统。的方法大体相同,简言之,就是将被检论文与已收录在该检测系统数据库中的学位论文、期刊论文和会议论文的字段进行比较,若被检论文的文字部分有连续13个字相同就会被标成红字。最后系统会出具针对被检论文的检测报告单,若被标红文字的复制比占文章总字符数的比例超过论文拟收录单位的容忍度上限,就一律不能通过或者发表。目前这些检测系统或软件主要能检测文字重复率,而对公式、图表等信息还无法实现重复率检测。

正所谓“道高一尺、魔高一丈”。某些学生为了使自己抄袭的文章能通过软件的检测,只需上网输入“论文通关秘籍”,就能搜到上百种对付论文的修改技巧。概括起来大体有以下几类方法:一是调整原文段落与格式法。就是把大段落切分成若干小段落,并对小段落中的每句话进行同义句转换。二是插入空格法。将文章中所有的字间插入空格,然后将空格字间距调到最小。因为的根据是以词为基础的,空格切断了词语,自然可蒙过系统。三是翻译外文文献的办法。四是插入图标网格的办法。五是抄袭未被录入系统数据库的书籍文献的办法。还有其他办法。极具讽刺意味的是,通过灵活运用上述方法,抄袭的文章绝大多数都能顺利通过软件的检测。

再看看那些在网上进行论文重复率检测交易的商家。相关检测系统的账号在网上的销售价格,从1元至几百元不等。买方在付款后就可得到一个登录账号,在指定网站登录后便可自助检测。一些售价较高的检测系统,还会根据结果提出修改意见。不过,由于一次购买只能用一个系统检测一次,很多毕业生为了让他们抄袭的论文经化妆后更加“保险”地通过检测系统,会选择不同检测系统多次。而经学校用这样的检测系统初次检查没能通过的论文,也需要在修改后反复。于是,进行网上论文重复率检测交易的商家在大学生毕业论文写作季里赚得盆满钵满。让人不禁要问:究竟谁是“政策”实施的真正受益者?千万别好心办了坏事,不但没有制止住学术不端行为,反而给学生们增加了经济负担,最后肥了那些别有用心的商贩。

三、学术方面的质疑

就学术本身而言,最重要的一个质疑是:如果软件的人工智能程度还只是停留在机械地检测文字重复率、而察觉不到所研究问题的背景或假设条件已深刻变化,那么,我们今后会不会在学术期刊上更多地看到善于文字游戏的高谈阔论?而那些潜心研究、没有华丽辞藻、追求简练准确、~针见血的表意,根据不同假设条件建立相应数理模型、通过推导论证得出政策建议的真论文是不是只能一次又一次地被软件拒之门外呢?

以经济学中著名的交叠世代模型(简称OLG模型)为例,使用该模型的论文除包括引言、结语等部分外,建模论证部分主要包括以下四步:一是模型建立和设定。可细分为经济环境的假设、个人效用最大化、企业利润最大化、政府预算平衡、资本市场供求平衡等。二是推导动态均衡系统,寻求稳定条件。三是比较静态分析。考察模型中所关注的各政策变量对经济系统里内生变量的影响。四是数值实验。对第三步不能确定影响方向的政策变量通过赋值模拟的方式来考察其对内生变量的影响方向和程度。严格按照上述程序规范创作的论文既条理清晰又高度凝练,能体现数理模型类论文所蕴含的“多一字有余、少一字不足”的简洁之美。然而,若用现有的软件来检测这类论文,在模型的建立、推导、求解、模拟等部分就会出现非常高的文字重复率,被软件判别为抄袭。

建立数理模型研究不同的问题,如同用泡菜坛子泡制不同的蔬菜一样。工具相同、辅料相同、程序相同,重复率虽然很高,但泡制的蔬菜不同,可以是白菜、萝卜、青椒等。用数理模型研究不同的问题,也类似于用卤汤炖肉。工具相同、辅料相同、程序相同,虽然重复率很高,但卤煮的肉不同,可以是猪肉、羊肉、牛肉等。软件的开发者和使用者应该清楚这一点。四、结论

数理模型不过是研究工具。对模型的建立、推导、求解、模拟等过程的描述已经形成了相对规范的程序和简要准确的语句。如果机械地要求文字重复率不得超过百分之多少,那么作者只能将简要准确的语句改成冗长的语句,而且描述还不一定准确。可见,对模型建立、推导、求解、模拟等过程的描述不应简单地采取“软件”方式来评判。