美章网 精品范文 电力通信论文范文

电力通信论文范文

电力通信论文

电力通信论文范文第1篇

论文摘要:随着社会信息化程度的提高,网络已成为人们生活中不可缺少的一部分。网络接入带宽迅速提升,以适应大容量、高速率的数据、视频、语音等高质量的信息传输与服务。目前常用的宽带接入方式有电话拨号(即XDSL)方式、有线电视线路(CableModem)方式、双绞线以太网方式,随着科技的迅速发展,电力线通信已成为一种新型的宽带接入技术,并且有着良好的发展前景。

电力线通信简称PLC(PowerLineCommunication0)是利用配电网低压线路传输多媒体信号的一种通信方式。在发送时利用GMSK(高斯滤波最小频移键控)或OFDM(正交频分多路复用)调制技术将用户数据进行调制,把载有高频信息的高频加载于电流,然后再电力线上传输,在接收端先经过滤波器将调制信号取出,再经过解调,就可得到原通信信号,并传送到计算机或电话,实现信息传递。类似的电力线通技术信早已有所应用,电力系统中在中高压输电网(35千伏以上)上通过电力载波机利用较低的频率以较低速率传送远动数据或话音,就是电力线通信技术应用的主要形式之一,已经有几十年历史。

PLC接入设备分局段设备和用户端PLC调制解调器。局段负责与内部PLC调制解调器的通信和与外部网络连接。在通信时来自用户的数据进入调制解调器后,通过用户配电线路传输到局端设备,局端设备将信号解调出来,再转到外部的Internet。该技术不需要重新布线,在现有低压配电线路上实现数据、语音、和视频业务的承载。终端用户只需插上电源插座即可实现因特网接入,电视接收、打电话等。同样电力线通信技术也可应用于其他相关领域,对于重要场所的监控和保护,一直需要投入大量的人力和财力,现在只需利用电源线,用极低的代价更新原有监控设备即可实现实时远程监控。目前电力系统抄表,基本上主要依靠人工抄表完成。人工抄表的准确性、同步性难以保证。同时由于抄表地点分散,表记数量众多,所以抄表的工作量巨大。基于电力线路载波(PLC)通信方式的自动抄表装置,由于不需要重铺设通信信道,节省了施工及线路费用,成为现代电力通讯的首选方式,使得抄表的工作量大大减少。近年来居民小区及大楼朝智能化发展,现在的智能化建筑已经实现了5A。但是这些不同的系统自动化需要不同的网络支持;给建设和维护网络系统带来了巨大的压力。借助电力线通信技术,无论是监控、消防、楼宇还是办公或者通信自动化都可以利用电力线实现,便于管理和扩展。

电力线通信主要优势:

电力线通信有无可比拟的网络覆盖优势,我国拥有全世界排名第二的电力输电线路,拥有用电用户超过10亿,居民家里谁都离不开电力线;显然连接这10亿用户的既存电力线是提供上网服务的巨大物质基础。在广阔的农村地区,特别是那些电话网络不太发达的地区,PLC更有用武之地,毕竟电力网规模之大是任何网都不可比拟的。虽然这些地区上网短期需求量并不大,市场发展成熟较慢,但会存在电力线上网先入为主的局面,对PLC的长远发展和扩展非常有利。

电力线通信可充分利用现有低压配电网络基础设施,不需要任何新的线路铺设,随意接入,简单方便的安装设备及使用方式,节约了资源和费用,无需挖沟和穿墙打洞,避免了对建筑物和公共设施的破坏,同时也节省了人力,共享互联网络连接,高通讯速率可达141Mbps(将未通过升级设备可达200Mbps)。PLC调制解调器放置在用户家中,局端设备放置在楼宇配电室内,随着上游芯片厂商14M产品技术相对成熟。PLC设备整体投入不断下降,据调查当前14M的PLCModem产品其成本已降到普通的ADSL接入猫相仿的水平,而局端设备则更便宜。由于一般一个局端拖带PLC调制解调器的规模为20-30台,因此随着用户的增长,局端设备可以随时动态增加,这一点对于运营商来说,不必在设备采购初期投入巨大的资金。因此也有宽带网络接入最后一公里最具竞争力的解决方案之称。

电力线通信的缺点

传输带宽的问题。PLC与电话线上网从本质上讲并没有区别,都是利用铜线作为传输媒质,铜线上网的最大问题是不能解决传输带宽问题。虽然14M的产品已经成熟,但电力线上网是共享带宽,若同一地区多个用户同时上网则数据传输速度将会相应降低,如何保证用户能够获得足够带宽成为挑战噪声安全性问题。由于电力网使用的大多是非屏蔽线,用它来传输数据不可避免的会形成电磁辐射,从而会对其它无线通信,如公安部门或军事部门的通信造成干扰;再次电力线上网存在不稳定的问题,家用电器产生的电磁波对通信产生干扰,时常会发生一些不可预知的错误。与信号洁净特性恒定的Ethernet电缆相比,电力线上接入了很多电器,这些电器任何时候都可以插入或拆开,并机或关闭电源。因而导致电力线的特性不断变化,影响网速。

电力通信论文范文第2篇

PLC接入设备分局段设备和用户端PLC调制解调器。局段负责与内部PLC调制解调器的通信和与外部网络连接。在通信时来自用户的数据进入调制解调器后,通过用户配电线路传输到局端设备,局端设备将信号解调出来,再转到外部的Internet。该技术不需要重新布线,在现有低压配电线路上实现数据、语音、和视频业务的承载。终端用户只需插上电源插座即可实现因特网接入,电视接收、打电话等。同样电力线通信技术也可应用于其他相关领域,对于重要场所的监控和保护,一直需要投入大量的人力和财力,现在只需利用电源线,用极低的代价更新原有监控设备即可实现实时远程监控。目前电力系统抄表,基本上主要依靠人工抄表完成。人工抄表的准确性、同步性难以保证。同时由于抄表地点分散,表记数量众多,所以抄表的工作量巨大。基于电力线路载波(PLC)通信方式的自动抄表装置,由于不需要重铺设通信信道,节省了施工及线路费用,成为现代电力通讯的首选方式,使得抄表的工作量大大减少。近年来居民小区及大楼朝智能化发展,现在的智能化建筑已经实现了5A。但是这些不同的系统自动化需要不同的网络支持;给建设和维护网络系统带来了巨大的压力。借助电力线通信技术,无论是监控、消防、楼宇还是办公或者通信自动化都可以利用电力线实现,便于管理和扩展。

电力线通信主要优势:

电力线通信有无可比拟的网络覆盖优势,我国拥有全世界排名第二的电力输电线路,拥有用电用户超过10亿,居民家里谁都离不开电力线;显然连接这10亿用户的既存电力线是提供上网服务的巨大物质基础。在广阔的农村地区,特别是那些电话网络不太发达的地区,PLC更有用武之地,毕竟电力网规模之大是任何网都不可比拟的。虽然这些地区上网短期需求量并不大,市场发展成熟较慢,但会存在电力线上网先入为主的局面,对PLC的长远发展和扩展非常有利。

电力线通信可充分利用现有低压配电网络基础设施,不需要任何新的线路铺设,随意接入,简单方便的安装设备及使用方式,节约了资源和费用,无需挖沟和穿墙打洞,避免了对建筑物和公共设施的破坏,同时也节省了人力,共享互联网络连接,高通讯速率可达141Mbps(将未通过升级设备可达200Mbps)。PLC调制解调器放置在用户家中,局端设备放置在楼宇配电室内,随着上游芯片厂商14M产品技术相对成熟。PLC设备整体投入不断下降,据调查当前14M的PLCModem产品其成本已降到普通的ADSL接入猫相仿的水平,而局端设备则更便宜。由于一般一个局端拖带PLC调制解调器的规模为20-30台,因此随着用户的增长,局端设备可以随时动态增加,这一点对于运营商来说,不必在设备采购初期投入巨大的资金。因此也有宽带网络接入最后一公里最具竞争力的解决方案之称。

电力线通信的缺点

传输带宽的问题。PLC与电话线上网从本质上讲并没有区别,都是利用铜线作为传输媒质,铜线上网的最大问题是不能解决传输带宽问题。虽然14M的产品已经成熟,但电力线上网是共享带宽,若同一地区多个用户同时上网则数据传输速度将会相应降低,如何保证用户能够获得足够带宽成为挑战噪声安全性问题。由于电力网使用的大多是非屏蔽线,用它来传输数据不可避免的会形成电磁辐射,从而会对其它无线通信,如公安部门或军事部门的通信造成干扰;再次电力线上网存在不稳定的问题,家用电器产生的电磁波对通信产生干扰,时常会发生一些不可预知的错误。与信号洁净特性恒定的Ethernet电缆相比,电力线上接入了很多电器,这些电器任何时候都可以插入或拆开,并机或关闭电源。因而导致电力线的特性不断变化,影响网速。

衰减问题。与以太网接入或者ADSL接入不同,尽管PLC接入可以选择家庭内任意电力插座联接到Internet,但是就目前而言,由于衰减因素仍然存在,不同接入点的带宽是不一样的,如果家庭比较大,那么在最远处接入,带宽衰减将非常明显。其次大部分情况下,PLC数据需要通过电表传输,带宽往往在这里产生非常大的衰减,这成为PLC的技术瓶颈之一,有专家表示主要问题在于电表的设计,而不是PLC自身的技术因素,但由于电表是既有产品,不可能对其大规模换用,所以只能通过PLC产品自身技术来克服PLC衰减问题。

目前我国在沈阳及北京多个小区开通了多个PLC接入试验网络,主要以2M和14M带宽接入为主。由于法律、服务、技术指标等影响,还没有大规模的商用PLC系统投入使用。随着科技的进一步发展,相关技术将逐步得到有效解决。最近国电科技推出的200Mb/sPLC接入方案具有布线简单,电磁辐射低,价格便宜等优点,在接入带宽及稳定性方面有了重大突破,具有强大的市场竞争力和广泛的市场前景。电力线通信技术毕将得到广泛应用发展。

电力通信论文范文第3篇

PBS表示主基站(PrimaryBaseStation),通过光缆可以将各类监测数据、感知数据、计量数据等业务数据传输到变电站内的各种应用系统子站,也可以根据需要将数据通过电力骨干网络(SDH等)传输到省电力公司内的系统主站,CBS表示认知基站(CognitiveBaseStation),通过光缆与主基站连接进行信息交互,通过无线方式与次用户通信,PU表示主用户即授权用户(PrimaryUser),SU表示次用户即认知用户(SecondaryUser),这里的用户在实际应用场景中泛指各种无线通信终端,本文为与认知无线电的各种概念保存一致,也称为用户,各类业务数据通过授权用户或次用户将数据传输到基站,SB表示频谱经纪人(SpectrumBroker),通过光缆或者网线形式与认知基站进行信息交互。认知基站负责认知用户的控制和管理,主要包括对认知用户的感知结果进行融合、空闲信道资源分配、接入及切换管理。频谱使用区域分授权频段区域和非授权频段区域,在授权频段区域,认知基站与主基站进行信息交互,降低感知目标频段的盲目性,认知用户根据认知基站的交互信息,感知授权用户的授权频段的空闲情况并利用。在非授权频段区域,认知用户感知非授权频段的使用情况并进行竞争利用,能够及时规避干扰频段,使用动态分配的频谱资源,在该区域中频谱经纪人充当协调者角色,负责不同认知网络之间的频谱资源协调管理。为提高频谱感知效率,缩短系统接入时间,提升频谱切换性能,本文设计两张用于认知基站内维护的信息表,一张是可用频率资源列表,一张是交互信息列表。“频带范围”表示认知用户可以使用的频段的范围,“频带历史使用信息”表示该段空闲频段的历史使用情况,包括数据传输平均占用时长和空闲率,由此可以计算频段的大致可用时长;“频带带宽”表示可用的频带宽度;“干扰水平”表示历史干扰水平和当前干扰水平,干扰水平是指空闲频谱所遭受的干扰程度和强度,包括无线环境下的路径损耗等干扰和电力设施运行时的电磁干扰,以功率形式量化,结合相关系数,可以计算信道最大容量;“可用状态”表示频率资源的利用方式,包括共享式和独享式,共享式是指认知用户与授权用户共享频率资源,但不会对授权用户造成干扰,或者是由多个认知用户之间进行共享使用空闲授权频率资源或空闲非授权频率资源,独享式是指空闲频率资源无其他用户使用,由单个认知用户单独享用。综合以上信息,认知基站能够根据认知用户的需求情况快速找到匹配资源进行分配,提高了分配效率、缩短了分配时间,根据业务特性,有选择地选取特定频谱实现与业务需求的匹配。

2频率分配方法

本文假设频谱感知由物理层来完成,而且能够获得准确的感知结果,MAC层在获取感知结果的基础上主要负责频谱资源的动态管理。其中频谱分配和频谱干扰规避是频谱资源管理的重要部分,也是电力行业应用下需要解决的重要问题。在分配阶段,提出基于迫切性和公平性的频谱资源分配方法,不仅考虑认知用户的接入的迫切程度,同时也需考虑用户接入的公平性。迫切性和公平性是影响资源分配的重要参考内容,影响迫切性主要参数包括:业务优先级、等待时间,影响公平性主要参数包括:用户不良信用记录、用户接入成功率,其中,业务优先级是指业务的重要程度,等待时间是指用户数据的有效期,超过一定时间,数据的传输就无意义,在电力行业下,这一参数尤其重要,用户不良信用记录是指用户分配到频率资源但没有利用的信用记录,接入成功率是指用户请求分配且获得分配的概率,为公平起见,接入成功率越低的用户分配的可能性就越大。

3频率切换方法

由于认知用户使用授权用户暂时未使用的授权频段,一旦授权用户出现,认知用户需要立即采取相应措施以免对授权用户的使用造成干扰,或者当认知用户使用的非授权频段的频谱环境恶化,也需采取措施来防止业务受到重大影响,另外,电力系统中复杂的电磁干扰进一步加剧了无线环境的复杂度,带来了更大的干扰,影响频谱资源的使用,在此条件下,除共享频率之外,频率切换也是有效解决措施之一,设计合理的目标频段切换机制对切换性能有着十分重要的影响。本文在此基础上提出一种基于加权的多参量目标频段切换算法,认知基站根据认知用户的业务特性和需求进行计算选取目标切换频段并分配,这样就有利于进一步降低认知用户的复杂度,综合考虑多种选择因素,弥补单一属性选择的不足。

4结束语

电力通信论文范文第4篇

目前,关于广域保护系统结构国内外学者提出不同的见解,一般可分为分布式、区域集中式、变电站集中式以及分层集中式。其中,在分布式广域保护系统中,广域保护算法内置于每个装设在变电站内部的保护IED中,分布式广域保护系统的广域保护决策过程完全在单个保护IED中实现,这使得分布式广域保护系统更适合于实现广域继电保护的功能。区域集中式广域保护系统其功能包括实现传统继电保护功能、通过通信网络与广域保护决策中心设备交换信息等。变电站集中式广域保护系统主要是利用收集到的信息实现广域保护算法,并向站内相应保护IED发送控制命令。分层集中式广域保护系统继承了区域集中式和变电站集中式广域保护系统的优势,而且它既能够与上层区域广域保护决策中心设备通信又能够与下层的保护IED通信,同时也能够弥补变电站集中式存在的一些缺点。

2电力系统信息综合传输调度算法研究

电力系统不同于其他系统的运行,尤其是顺利实现其信息的综合传输不可避免的需要解决诸多潜在的问题,尤其是信息业务综合传输过程中存在的流量冲突问题,特别需要注意的是不仅要保证实时信息业务的服务质量,同时也不可忽视各类非实时信息服务质量,这些非实时信息也是传输过程中重要的组成部分。实现基于IP技术和区分服务体系结构模型的网络通信模式的关键技术包括队列调度法,本文主要对队列调度算法进行深入讨论,使其在对电力系统信息综合传输的服务质量问题进行解决时能够发挥出关键的作用。WFQ算法的分组服务顺序与GPS模型有很大差异,它是一种模拟通用处理器共享模型的队列调度算法,本文在WFQ算法基础上提出了WF2Q+算法,并通过将“虚拟延迟时间”引入WF2Q+算法解决了该算法在推迟传输高优先级信息业务分组的问题,进而提出了提出以基于IWF2Q+算法的区分服务体系结构模型实现电力系统信息综合传输。

2.1WF2Q+算法介绍及分析WF2Q+算法是一种基于GPS模型的分组公平队列调度算法。在实际的信息业务传输过程中,分组到达各列队头部的时间会存在一定的微小差别,致使根据GPS模型得到的各队列头部分组服务顺序也出现微小差别,从而也会影响到WF2Q+调度器先为高优先级队列内分组提供服务,还是为低优先级队列提供服务。观察图1我们可以发现,优先级较高的信息业务在电力系统分组传输过程中不能保证其实时性,关键在于优先级较高的信息业务分组到达时间较晚,从而使得优先级较低的信息业务“捷足先登”,到达时间稍快,影响了电力系统高优先级信息业务分组传输的实时性。

2.2改进的WF2Q+算法——IWF2Q基于上述问题,为了保证电力系统信息综合传输中高优先级信息业务分组的实时性,本文采用了PQ调度算法,并用PQ算法原理对WF2Q+算法进行改进,按照这种方式获得的算法非常有可能将高优先级分组推迟传输问题轻而易举地解决,同时也能保持良好的公平性。具体操作如下:将优先级最高队列中传输个分组所需时间的倍定义为队列的“虚拟延迟时间。IWF2Q+算法与WF2Q+算法都采用SEFF分组选择策略,此时,不得大于系统虚拟时间,并且越小的队列中的分组越优先获得调度器的服务,通过这种方式高优先级队列中所转发分组的延时得到了降低。

3仿真分析

本文首先仿真对比电网发生故障时WFQ算法、WF2Q+算法和IWF2Q+算法情况下IEEE14母线系统各变电站与控制中心站之间变换信息时4类信息业务分组的平均延时,结果如图2所示。观察图2可知,WF2Q+算法与WFQ算法在保证信息业务实时性方面的性能不相上下,而WF2Q+算法推迟传输高优先级信息业务分组的问题可通过IWF2Q+算法解决,并且能够减小高优先级信息业务分组延时,同时也会导致低优先级信息业务分组延时变大。其次仿真对比电网发生故障时PQ算法、WF2Q+算法和IWF2Q+算法情况下得到的系统中各变电站与控制中心站之间传输四类信息业务的平均服务速率,如图3所示。该结果说明基于WF2Q+算法和IWF2Q+算法的区分服务体系结构模型能够较好地协调不同优先级信息业务获得的服务效率,达到了各类信息业务传输的公平性,且性能相当。

4课题研究结论及展望

电力通信论文范文第5篇

对于一般的电磁兼容问题分析的基本模型如图1所示。

图1电磁兼容分析模型

对于宽带PLC系统来说,干扰源要整体考虑,不仅包括PLC设备,而且要考虑当信号加到电力线上时,由于电力线是一种非屏蔽的线路,有可能作为发射天线对无线通信和广播产生的不利影响。此外还要考虑多种PLC设备间的相互影响。PLC的耦合途径是非常复杂的,是不同的途径相互作用的结果,总体上分为两种,一种是空间的辐射,对应的扰设备是无线通信和广播信号;另一种是沿电力线的传导骚扰,主要造成对电能质量的影响。因此宽带PLC系统的电磁兼容问题涉及多个PLC系统的共存,以及与无线网络的共存。

1.2宽带PLC系统电磁干扰产生的机理

电力线最主要是用来传输电能的,其特性和结构也是按照输送电能的损失最小并保证安全可靠地传输低频(50Hz)电流来设计的,不具备电信网的对称性(构成回路的两根绝缘芯线对地是对称的)、均匀性(在线路的全部长度上传输导线横截面形状及大小、使用材料、导体间的间隔和导体周围的介质都保持均匀不变),因而基本上不具备通信网所必须具备的通信线路电气特性。而宽带PLC系统所产生的电磁干扰问题正是由于电力线的这种对地不对称性产生的。

宽带PLC系统产生两种电磁场,传导波和辐射波。它们都是由共模电流引起的。

电磁干扰源的一般模型如图2所示。

图2电磁干扰的一般模型

根据这个模型,一般认为EMI是由两种电流注入网络引起的,一种是共模电流(Ic),一种是差模电流(Id)。差模电流信号流入的上行方向(设备到网络)产生了一个磁场,而另一个差模电流以同样的强度和领域与第一个在相反的方向上(网络到设备)上产生第二个电磁场。由于两个电磁场对称且方向相反,彼此产生的电磁干扰相互抵消。与差模方式相反,共模电流在同一个方向上,所以产生的电磁场是不对称的,因此总的电磁辐射是两个电磁场的叠加。所以PLC网络的干扰主要是由共模电流引起的。

PLC对无线通信的影响

理论证明,在原有的几百kHz频带内是无法实现Mbit/s级的高数据传输速率的,因此高速PLC技术所采用频带远远超过了低速PLC所规定的频带范围。

目前高速PLC技术所采用的频带也没有统一标准。国际上的实际应用一般集中在1MHz~30MHz。从高速PLC技术的应用模式来看,国际上主要分为两种不同的应用,欧洲的PLC技术主要应用于Internet接入,欧洲电信标准委员会ETSI(theEuropeanTele—communicationsStandardsInstitute)在其技术规范“TS101867”中将1.6MHz~9.4MHz规定为接入应用频带,将11MHz~30MHz规定为室内应用频带。另一种应用方式主要集中在北美,北美的高速PLC技术主要应用在室内联网。

与低速PLC所占的专用频带不同,高速PLC所采用的lMHz~30MHz频带已被分配给其他无线电应用了,如固定业务、移动业务(水上移动、陆地移动、航空移动)、无线电定位、无线电导航、标准频率和时间信号、短波无线电广播、业余无线电业务、卫星业余业务、射电天文和气象辅助等业务。

对PLC而言,首先要考虑是否存在尚没有分配给其他应用的频带:在德国,lMHz~30MHz频带范围内没有分配的频带大约有7.5MHz,但频带不连续,因此对信号的调制技术就会有选择性。OFDM采用多载波技术,因此OFDM可以适应这种频带不连续的情况。对于已经分配的频带,如果PLC系统需要使用,就必须考虑在这些频带范围内的电磁辐射问题,这是因为PLC系统的载波信号能量可能辐射到周围空间,对该频带内的无线电业务造成影响。由于这种干扰来自PLC系统的有用信号,因此PLC干扰源的性质可以定位为有意干扰源。在这种情况下,只能考虑在这个频带内对PLC系统的电磁骚扰进行限制,以保护在这个频带内的无线电业务。就电力分布线和发送线产生的磁场而言,会随着时间变化而改变,与电流大小成正比。PLC在应用频带内的电磁辐射对无线电业务的潜在影响也是目前对PLC应用的主要争议。

测试结果

为了评估PLC室内局域网系统以及PLC接入系统的电磁辐射水平,许多组织及研究机构对PLC的辐射场进行了大量测试[3,4,]。

ET.SIPLT工作组的研究小组进行了如下测试:在传导干扰基本满足CISPR22B类设备规定的最大限值的情况下,测试不同频率、不同距离时电力线的辐射场强,研究是否存在干扰合法短波无线电用户使用的可能性。测试结果如下:

(1)辐射场的场强随距离的增加而快速衰减。测试结果表明,衰减的幅度为距离每增加10倍衰减为31dB~36dB。

(2)在城市内,满足CISPR22的PLC系统产生的辐射场强低于典型的大气和宇宙噪声,不会对其他无线业务产生干扰。但在人烟稀少的农村,在12m~14m的范围内有可能对无线电接收机产生影响。

(3)12m~14m之外,在任何地区,满足CISPR22的PLC系统产生的辐射电平低于典型的大气和宇宙噪声,不会干扰无线电接收机的工作。

也有许多专家对大量PLC系统同时使用时的电磁辐射累积效应进行了研究和测试,其目的在于分析大量PLC系统同时使用时对无线GSM网络,特别是具有高接收灵敏度的GSM中心站的影响。在所测试区域,有一个GSM中心管理站,1433个基站(每个基站的容量为200个用户),终端用户容量为28600个。在该网络覆盖区域内共安装了19个PLC网络。测试结果表明多用户同时使用时,如每个PLC终端注入到低压配电网的信号功率谱密度达10mW/Hz(远高于PLC系统实际注入的功率谱密度),在离PLC网络1500m处,即使是在没有建筑物阻挡的开阔地带,多个PLC系统产生的电磁辐射值也低于大气及宇宙噪声,对环境噪声的增值远小于0.1dB。

对宽带电力线等非无线电设备管理的一些建议

通过对宽带电力线对无线广播通信频率干扰的分析,我们对宽带电力线干扰的机理和防治方法有了较深入的了解。

如何加强对辐射无线电波的非无线电发射设备的管理,特别是像宽带电力线通信这类辐射无线电波的非无线电发射设备的管理,是无线电管理部门需要考虑的问题。

在信息化社会里,无线电频谱作为一种重要的资源,它的作用日益重要。无线电业务已经普及到社会生活的方方面面,各行各业对无线频谱的依赖性越来越强。随着技术的不断发展,各类电子设备等非无线电通信设备广泛应用于社会生活当中,其产生的电磁辐射是无线电通信业务的潜在干扰源。由于这类干扰日益增多,对管理提出了新的挑战。目前对这类干扰查处的主要依据是《中华人民共和国无线电管理条例》第六章和第八章对非无线电设备的无线电波辐射的规定,但力度不够。

对于这些问题,建议在制度方面出台一些具体的规章制度,以便处理问题时有章可循,有法可依。在技术方面应逐步加强对该类设备检测监测技术的研究,在管理方面须加强与不同部门的沟通和协调,实现对这类产品生产、销售使用的有效监管。

结束语

宽带电力线通信的载波频段与其他无线电通信业务共用,而且电力线是一种非屏蔽的通信线路,因此宽带电力线通信在实际工作中不可避免地存在电磁干扰的问题。

随着通信技术的发展、新的调制方式和组网技术的出现,电磁干扰问题将会不断得到改善。基于这种情况,无线电管理者应该坚持科学的态度,既要保证现有的重要无线电业务不要受到干扰,同时要为新技术的发展留出空间,使新旧技术在同一片天空下和谐发展。

河北省无线电管理局廊坊分局张力波

华北电力大学电气与电子工程学院柴守亮

参考文献

[1]李祥珍,刘家亮,赵丙镇,王丽平.电力线高速数据通信系统电磁辐射及应用性能的研究[j].电力系统通信,2003,(4):17—21.

[2]孙辛茹,王乔晨.电力线高速通信技术的现状及发展[J].电力系统通信,2004,(4):3—6

电力通信论文范文第6篇

论文摘要:随着社会信息化程度的提高,网络已成为人们生活中不可缺少的一部分。网络接入带宽迅速提升,以适应大容量、高速率的数据、视频、语音等高质量的信息传输与服务。目前常用的宽带接入方式有电话拨号(即XDSL)方式、有线电视线路(CableModem)方式、双绞线以太网方式,随着科技的迅速发展,电力线通信已成为一种新型的宽带接入技术,并且有着良好的发展前景。

电力线通信简称PLC(PowerLineCommunication0)是利用配电网低压线路传输多媒体信号的一种通信方式。在发送时利用GMSK(高斯滤波最小频移键控)或OFDM(正交频分多路复用)调制技术将用户数据进行调制,把载有高频信息的高频加载于电流,然后再电力线上传输,在接收端先经过滤波器将调制信号取出,再经过解调,就可得到原通信信号,并传送到计算机或电话,实现信息传递。类似的电力线通技术信早已有所应用,电力系统中在中高压输电网(35千伏以上)上通过电力载波机利用较低的频率以较低速率传送远动数据或话音,就是电力线通信技术应用的主要形式之一,已经有几十年历史。

PLC接入设备分局段设备和用户端PLC调制解调器。局段负责与内部PLC调制解调器的通信和与外部网络连接。在通信时来自用户的数据进入调制解调器后,通过用户配电线路传输到局端设备,局端设备将信号解调出来,再转到外部的Internet。该技术不需要重新布线,在现有低压配电线路上实现数据、语音、和视频业务的承载。终端用户只需插上电源插座即可实现因特网接入,电视接收、打电话等。同样电力线通信技术也可应用于其他相关领域,对于重要场所的监控和保护,一直需要投入大量的人力和财力,现在只需利用电源线,用极低的代价更新原有监控设备即可实现实时远程监控。目前电力系统抄表,基本上主要依靠人工抄表完成。人工抄表的准确性、同步性难以保证。同时由于抄表地点分散,表记数量众多,所以抄表的工作量巨大。基于电力线路载波(PLC)通信方式的自动抄表装置,由于不需要重铺设通信信道,节省了施工及线路费用,成为现代电力通讯的首选方式,使得抄表的工作量大大减少。近年来居民小区及大楼朝智能化发展,现在的智能化建筑已经实现了5A。但是这些不同的系统自动化需要不同的网络支持;给建设和维护网络系统带来了巨大的压力。借助电力线通信技术,无论是监控、消防、楼宇还是办公或者通信自动化都可以利用电力线实现,便于管理和扩展。

电力线通信主要优势:

电力线通信有无可比拟的网络覆盖优势,我国拥有全世界排名第二的电力输电线路,拥有用电用户超过10亿,居民家里谁都离不开电力线;显然连接这10亿用户的既存电力线是提供上网服务的巨大物质基础。在广阔的农村地区,特别是那些电话网络不太发达的地区,PLC更有用武之地,毕竟电力网规模之大是任何网都不可比拟的。虽然这些地区上网短期需求量并不大,市场发展成熟较慢,但会存在电力线上网先入为主的局面,对PLC的长远发展和扩展非常有利。

电力线通信可充分利用现有低压配电网络基础设施,不需要任何新的线路铺设,随意接入,简单方便的安装设备及使用方式,节约了资源和费用,无需挖沟和穿墙打洞,避免了对建筑物和公共设施的破坏,同时也节省了人力,共享互联网络连接,高通讯速率可达141Mbps(将未通过升级设备可达200Mbps)。PLC调制解调器放置在用户家中,局端设备放置在楼宇配电室内,随着上游芯片厂商14M产品技术相对成熟。PLC设备整体投入不断下降,据调查当前14M的PLCModem产品其成本已降到普通的ADSL接入猫相仿的水平,而局端设备则更便宜。由于一般一个局端拖带PLC调制解调器的规模为20-30台,因此随着用户的增长,局端设备可以随时动态增加,这一点对于运营商来说,不必在设备采购初期投入巨大的资金。因此也有宽带网络接入最后一公里最具竞争力的解决方案之称。

电力线通信的缺点

传输带宽的问题。PLC与电话线上网从本质上讲并没有区别,都是利用铜线作为传输媒质,铜线上网的最大问题是不能解决传输带宽问题。虽然14M的产品已经成熟,但电力线上网是共享带宽,若同一地区多个用户同时上网则数据传输速度将会相应降低,如何保证用户能够获得足够带宽成为挑战噪声安全性问题。由于电力网使用的大多是非屏蔽线,用它来传输数据不可避免的会形成电磁辐射,从而会对其它无线通信,如公安部门或军事部门的通信造成干扰;再次电力线上网存在不稳定的问题,家用电器产生的电磁波对通信产生干扰,时常会发生一些不可预知的错误。与信号洁净特性恒定的Ethernet电缆相比,电力线上接入了很多电器,这些电器任何时候都可以插入或拆开,并机或关闭电源。因而导致电力线的特性不断变化,影响网速。

电力通信论文范文第7篇

近年来,电力线通信(PowerLineCommunications,PLC)技术发展非常迅速,现在已经进入初步应用阶段。PLC系统充分利用电力系统的广泛线路资源,通过OFDM(OrthogonalFrequencyDivisionMultiplexing,正交频分复用)等技术可以在同一电力线不同带宽的信道上传输数据。但是由于电网中传输的是强电,而且电网的稳定性比传统的通信网差得多,使得电力线通信线路的电磁环境极为复杂。这就给电力线通信系统提出了更高的电磁兼容要求,电磁兼容技术也成了实现电力线通信所需的关键技术之一。

2各国际标准化组织对PLC的研究情况

在世界范围内,IEC的CISPR/I分会以及ITU-T等国际组织对PLC的电磁兼容相关标准做了大量研究并讨论了相应技术要求。欧洲从2000年起开始研究PLC系统的技术框架和技术标准,目前已经取得了一定的进展。主要相关的国际组织有CENELEC和ETSI,前者侧重电磁兼容问题,后者侧重通信技术方面的统一标准。

2.1IEC/CISPRI分会

PLC设备属于信息技术设备,应符合IEC/CISPR22《信息技术设备的无线电干扰限值和测量方法》的要求。但是由于PLC设备特殊的工作模式,其传导干扰无法满足现行标准的要求。在2002年的IEC会议上曾有代表建议对CISPR22进行针对PLC的修改(会议文件编号:CISPR/I/44/CD),增加一个专门针对PLC设备的“多用途端口”,其定义为:连接到低压分布式网络,支持数据的传输和通信,结合了电信端口和电源端口功能的端口。

对于PLC设备,该文件建议要求它的传导干扰既满足现有标准电源端口的限值,也满足电信端口的限值。这样多用途端口的干扰测试就要进行两次:

(1)作为电源端口(关闭它的通信功能),用通常的V型网络(AMN)进行测试,要求满足CISPR22中表1和表2的限值。

(2)作为电信端口,用新型的T型网络进行测试,要求满足CISPR22中表3和表4的限值。

这种测试方法基于以下原理:

(1)消费类产品的电源是非对称干扰源,它所产生的干扰用V型网络(AMN)来进行测试是非常合适的。

(2)与之相反,采用共模信号进行通信的电信端口,它所产生的干扰要比差模信号所产生的干扰小得多。T型网络很适合用于共模干扰的测量,因为适当的网络参数可以提供从差模信号到共模信号转换所需要的纵向转换损耗(LCL)。

针对以上的理论,该文件建议对CISPR22进行较大的修改,增加大量有关多用途端口的内容,以及相关的测试设备要求、试验布置要求和测试方法等。但是,这项建议没能获得最终的通过。参加会议的各个会员对这项建议的意见分歧很大,主要有:

(1)一部分CISPR会员认为PLC的相关内容应该转由CISPR/A分会负责,一部分会员对此表示反对,认为PLC的研究还是应该留在I分会中。

(2)有些会员对CISPR/I/44/CD提出的测试方法能否彻底避免PLC设备对其他设备造成的不良影响表示怀疑。

(3)有些会员认为这一测试方法违背了CISPR22中“被测设备应该工作在最大发射状态下”的原则。

(4)有些会员认为世界各地的电网状况不尽相同,确定一个合适的LCL值是很困难的。

随后,在2005年的CISPR会议上,CISPR/I成立了一个特别工作组(PLTTASKFORCE)来负责PLC相关标准的研究工作。该工作组将负责继续研究对CISPR22的相关修改,包括定义、限值、测试条件和测试方法等内容。特别组共准备发表7份相关技术文件。

2006年3月该组织发表了第一份文件,介绍安装PLT设备的电网结构。主要阐述如下内容:

1、电网拓扑结构,尤其是低压电网拓扑结构。当PLT系统工作时,接入终端的传输信道就是低压电力线。对于既有电力线不可能为了PLT系统进行大规模改造,因此必须充分了解低压电力线拓扑结构,特别是农村、市区,居住环境、商业环境、办公环境的拓扑结构。才能进行PLT网络规划设计。

2、PLT接入关键设备EMC特性:电网接入设备是PLT系统正常运行的关键之一。由于传统高压、中压、低压电网都是针对工频电力信号设计,所有设备的高频特性研究是十分艰巨的。特别是低压电网设备产生的各种高频骚扰有可能直接通过电网与PLT通信信号相互叠加,影响PLC网络运行。

其他技术文件会陆续发表。

2.2ITU-T

在ITU-T目前的EMC建议中,电力线通信网络和设备应符合K.60《电信网络电磁干扰限值和测量方法》的要求。K.60规定了从9kHz到3GHz频段通信网络的电磁辐射干扰限值,给出了9kHz到400GHz频段的测量方法,还提供了在通信网络中定位和寻找无线电干扰源的程序和一些解决干扰的措施。

目前ITU-T第五研究组正在加紧研究关于针对PLC修订K.60的问题。欧洲EuropeanBroadcastingUnion等机构的代表递交文稿建议加严K.60的限值,从而防止PLC对其他广播和通信业务造成干扰,也有代表对此表示反对。各国代表目前正在积极地研究和搜集素材,以便为合理地管制PLC的电磁干扰提供依据。

K.60并没有规定电源端口传导干扰方面的限值,因此对于PLC网络和设备,符合K.60要求并不困难,只要在设计制造时适当采取控制电磁辐射干扰的措施即可。

2.3CENELEC

CENELEC的TC205/SC205A/WG10(家用及建筑物电子系统技术委员会/电源信号产品标准分委员会/高频发射与抗干扰工作组)和TC210/SC210A(通用EMC标准技术委员会/信息技术设备EMC标准分委员会)负责PLC电磁兼容标准研究工作。其中,SC205A研究物理和MAC层。该工作组的研究发现,当考虑接入网络和室内网络共存的情况时,OSI的传统分层结构将不能满足需求。

特别值得关注的是,CENELEC和ETSI两个标准化组织5个专业机构联合组成了电信网络EMC标准联合工作组(CLC/ETSIJWG)。

2.4ETSI

ETSI专门成立了PLC研究工作组EPPLC,从2000年开始陆续公开了两个PLC技术规范和9个技术报告。EPPLC主要致力于制定PLC产品和系统的技术规范,已列入ETSI工作计划且与电磁兼容相关的共有如下几项:

TR102258(2003-09)LCL回顾与统计分析;

TR102259(2003-09)EMI回顾与统计分析;

TR102270(2003-12)基本低压分布网络(LVDN)测量数据;

TR102324(2004-05)电力线通信系统辐射发射特性与测量方法技术水平;

TR102370(2004-11)3MHz~100MHzLVDN基础测量数据。

3各国对PLC标准的研究

目前定义了1~30MHz范围内电信网络辐射干扰限值的技术标准共有4个:德国的NB30、英国的MPTl570、美国的FCCPart15以及国际电信联盟于2003年7月推出的ITU-TK.60。其中,由各个国家制定的相关标准如下。

3.1美国FCC

高速PLC系统符合FCCpart15定义的载波电流系统。PLC系统通过电力线以传导的方式传输信号,可认为是无意发射源,因此47CFR§15.205的要求对PLC不适用。

通常来讲满足辐射限值的系统可以保护正常工作的系统不受干扰。但是FCC不仅仅强调辐射限值的制定,考虑到不同的测量方法和测量过程存在测量不确定度,FCC认为一致性检验过程的制定也同样重要。FCCpart15规定的PLC辐射限值见表1。

表1FCCpart15规定的PLC辐射限值

用途频率(MHz)场强

(dBμV/m)

测量距离

(m)

测量带宽(kHz)检波器

载波电流系统1.705-30.029.5309Quasi-peak

ClassA30-8839.110120Quasi-peak

ClassB30-88403120Quasi-peak

3.2德国RegTP

德国RegTP(TheRegulatingAdministrationforTelecommunicationsandPostsofGermany)于1999年1月制定了NB30标准。规定了9kHz~3GHz通信系统辐射干扰限值,包括有线电视、xDSL、PLC等系统。NB30标准的辐射限值见表2。

表2德国NB30标准规定的辐射限值

频率范围(MHz)场强(dBμV/m)测量距离(m)测量带宽检波器

>1~3040–8.8*lg10f(MHz)39kHzPeak

>30~1000273待定Peak

3.3英国

英国于2003年1月针对PLC系统制定了MPT1570规范,规定了9kHz~1.6MHz磁场辐射限值,见表3。该标准规定使用满足IECCISPR16-1的环天线和接收机进行测量。主要目的是保护广泛使用的广播接收机。

表3英国MPT1570规范规定的辐射限值

频率范围场强(dBμA/m)测量距离(m)测量带宽检波器

9~150kHz49-20lgf(kHz)3200HzPeak

150kHz~1.6MHz-1.5-20lgf(MHz)19kHzPeak

3.4.其他国家技术要求

部分其他国家技术要求见表4。

表4部分其他国家技术要求

澳大利亚ACA不对525kHz以上频段进行要求

奥地利政府部门已经停止PLC试验计划,结论表明PLC在2~30MHz时引起的干扰不能减小到可接受的程度

芬兰FICORA年报(2001)根据测量结果,决定只有在PLC技术解决干扰和安全问题后才能商用。在欧洲标准出台前,采用NB30限值

日本MPHPT决定不给PLC系统增配许可频率。建议继续进行研究如何减小干扰问题

由于FCC对PLC辐射限值制定较松,从而使PLC系统在美国得到迅速发展;欧盟一些国家持谨慎发展态度,欧洲各国正在等待欧盟标准的最终制定;BBC等传统广播通信系统出于自我保护的考虑,对PLC系统提出较苛刻的限制要求。

4结论

PLC技术的标准化工作至今仍在缓步进行,对传导干扰进行定义及限值制定等问题至今很难达成一致认识,但是作为一种资源广泛的通信网络技术,电力线通信的市场需求仍然存在,只有各方共同努力,才能使PLC系统更好地服务于广大用户。

电力通信论文范文第8篇

关键词:电网智能化;电力通信;应用;计算机论文

中图分类号:TN915 文献标识码:A 

1 何谓电力通信和智能电网  

1.1 智能电网 

电网智能化可以看做和智能电网是一个概念,它的建立基础是高科技智能系统、庞大的集成网络以及高速双向的通信网络。智能电网可以有效的保证电力系统安全高效的运行,同时还可以更好地保证在安全的环境中,电力系统可以长期而高速的运行下去。智能电网主要具有以下四个方面的优点:首先是形式方面的优点,电网智能化对各个不同的发电形式之间产生的矛盾具有良好的缓解作用,不同的发电形式都可以同时的存在于智能电网之中;二是在用户需求方面的优势,电力通信系统在电网智能化的支持下更加的稳定而高效,同时也保证了其安全性,这些都和用户对于优质电能的需求是完全符合的,所以很受到用户欢迎;三是运营方面的优势,之后智能电网的建立打破了以往的电力市场和结构,为这种长期以来一成不变的格局带来了新的变化,通过市场中形成的良性竞争,来提高电力市场在运行方面的效率;四是能源利用率方面的优势,智能电网对于电力的损耗更低,这就相当于是提高了能源的使用率,对于环境造成的污染和影响自然也会更低。 

电网的智能化为供电系统的自动化带来了可能性,通过有效的实时监控供电的各个环节,对于发电厂的电流传输有稳定作用,从而保证了用户端电器的信息,同时电网智能化可以在第一时间将用户端电器上的信息以及电流反馈出来,这样就更便于进行电网资源的配置,达到了优化资源使用率的目的,对于远距离或者大规模电能输送中的障碍也得到了有效地解决。所以综合来说我国的电网智能化建设对于资源的节约以及能源结构的改良都是具有积极的意义的。 

2 电力通信技术在新形势下的发展 

2.1 即时信息系统 

即时信息系统的英文缩写为RIS,主要作用是处理和分析电网中的运行数据,即时信息系统离不开互联网技术的支持,其辅助工具是国家的电力数据网络,然后将电力信息通过即时通信系统在社会上进行公开,这样可以更好的实现对保障信息的隔离以及安全防护工作。 

2.2 EMS系统 

EMS系统的主要作用是对信息数据进行集合分类,首先通过电网的采集系统以及监控系统来获得那些数据并保证其准确性和实时性,然后再将这些数据按照紧急程度和使用程度来进行分类处理,优先把紧急数据传输给即时信息系统,不同的传输接口自身的信息传输速度也是不同的,这样就可以保证实时数据的传输处理工作足够及时,不会发生冗余数据干扰紧急数据处理过程这种情况。 

2.3 电能计量系统 

智能电网在电能计量系统方面的要求是十分高的,除了保证具有常规的测量功能以外,还要求可以对电能的计量系统可以做到分时段的双向计量以及累计储存,对于电费的计算和电能的控制来说,这两个功能意义都是十分重大的。除此之外电能计量系统还需要具备一系列其他功能,比如自动采集、对数据进行远距离传输以及存储、预先作出处理以及最后统计分析等,只有实现了这些功能,才能更好地做好智能电网的建设工作以及新的能源网并网。 

2.4 需求端管理 

如今电能用户和智能电网都是采用无线公网的通信系统来进行信息交流的,所以说终端用户的数量会比较多,换句话说就是电网节点过多但是业务量却并不多。如果我们采用CDMA技术或者GPRS技术来进行二者之间的信息交流,在掌握用电户情况的时候可以更加的及时并且有效,这也正是目前电网智能化的发展趋势。 

3 电力通信技术在智能电网各领域中的应用 

3.1 在用电领域的应用 

在用电领域范围应用的通信技术具体可以表现在三个方面,输电及用电的信息采集、高级计量管理以及互动营销管理。根据这些情况我们可以得知选择通信方式的形式上要保证正确,这也是应用电力通信的重点所在,在进行通信网络构建的时候要运用正确的选择,保证信息采集、电网以及用户三方面都可以实现良好并且高效的互动。 

3.2 在输电领域的应用 

智能电网实现了电力传输的远距离、大容量以及低损耗,使得电网对于清洁能源的消化能力更加提升,从而保证电力资源可以实现跨省区进行优化配置,对于我国电力工业布局的优化具有非常重要的作用。我国在建设电网智能化的过程中对输电线路也有一定的技术要求,即挖掘其输送能力和状态监控。这里所说的状态监控包括很多方面,比如基础信息环境信息、智能输电线路系统、运行管理信息、灾害预警信息等多个方面。对于不同机构、不同装置以及不同单位都可以采用合理的通信方式,选择灵活的接入系统来实时监测信息数据,从而做到数据的统一和融合。 

3.3 在变电领域的运用 

变电站的可视化和自动化运行是在变电领域应用通信技术的重点内容,尤其是目前我国的智能变电站已经逐渐普及,在每个地区都有智能变电站的出现,所以变电站的可视化和自动化运行就成为了电网智能化建设中的核心内容。不仅可以提供严谨的数据信息和控制对象给智能电网,同时还可以采用不同的控制保护技术以及通信技术的来将其在智能变电站中得到有效应用。 

3.4 在配电领域的应用 

智能配电网作为智能电网的重要组成部分,其基础是安全性能和可靠性能都十分高的通信网络,以及灵活、可靠而高效的配电网网架结构,可以灵活地对故障进行处理甚至自愈,可以满足诸多的要求,比如说提高电能质量、高渗透的储能元件及分布式电源接入等。智能电网技术将很多现代技术比如现代通信、计算机、测控以及高级传感等进行了集成和融合,对于配电系统的集成、自愈、互动、兼容以及优化等方面的要求都可以完美实现。 

3.5 在安全领域的应用 

由于电网智能化的过程中将信息流、业务流以及电力流都高度的融合在了一起,所以必须保障信息的安全性,避免对电网运行安全造成影响。在将来的智能电网信息安全中我们需要更多的关注智能设备的数据安全、二三区业务融合的运用安全以及用户双向互动的网络安全。作为信息安全基础传输平台,电力通信网络对于智能电网稳定安全运行有着重要的意义和作用,可以采用横向隔离、纵向加密、病毒防御以及网络防护等措施来保障电力通信网络的信息安全。 

电力通信论文范文第9篇

电力线通信技术目前发展非常迅速,现在已经进入初步应用阶段。PLC系统充分利用电力系统的广泛线路资源,通过OFDM等技术可以在同一电力线不同带宽的信道上传输数据。但是由于电力线传输的无屏蔽性,电网的稳定性比传统的通信网差得多,使得电力线通信线路的电磁环境极为复杂,这就给电力线通信系统提出了更高的电磁兼容要求,电磁兼容技术也成了实现电力线通信所需的关键技术之一。本文在深入分析了电力线通信系统产生电磁干扰的主要原因的基础上,对EMI滤波电路进行了设计研究,并通过实验验证了该滤波网络对于抑制电力线载波通信EMI的可行性。

l电力线载波通信电磁兼容问题分析

1.1电磁兼容分析模型

一个电子系统如果能与其他电子系统相兼容的工作,也就是不产生干扰又能忍受外界的干扰则称为该电子系统与区环境电磁兼容。对于一般的电磁兼容问题的基本分析模型如图1所示。

对于PLC系统来说,干扰源要整体考虑。不仅包括PLC设备,而且要考虑当信号加到电力线上时,由于电力线是一种非屏蔽的线路,有可能作为发射天线对无线通信和广播产生不利影响。此外还要考虑多种PLC设备间的相互影响。PLC的耦合途径是非常复杂的,是不同的途径相互作用的结果。总体上分为两种,一种是空间的辐射,对应的扰设备是无线通信和广播信号;另一种是沿电力线的传导骚扰,主要造成对电能质量的影响。因此PLC系统的电磁兼容问题涉及多个PLC系统的共存,以及与无线网络的共存等。

1.2PLC系统电磁干扰产生机理

由于电力线的特性和结构是按照输送电能的损失最小并保证安全可靠地传输低频(50Hz)电流来设计的,不具备电信网的对称性、均匀性,因而基本上不具备通信网所必须具备的通信线路电气特性。而PLC系统所产生的电磁干扰问题正是由于电力线的这种对地不对称性产生的。

电力线产生干扰的机理有两种(如图2),一种是电力线中的信号电流Id(差模电流)回路产生的差模干扰,另一种是电力线上的共模电流Ic产生的共模干扰。差模电流大小相等方向相反,因此一般近似认为由其产生的电磁场相互抵消。而共模电流的方向是一致的,其产生的电磁场相互叠加,所以电力线的干扰主要来自共模干扰。

1.3改善PLC系统电磁兼容性的主要措施

(1)充分利用或改善PLC系统电力线的对称性

PLC系统的辐射强度取决于PLC网络或其电缆的对称性。高度对称线路的特征是异模电流与共模电流的比值很大,故辐射非常小。可以选择对称性好的导线,例如4芯电缆,但此法不适用于室内网络,而且成本较高。

(2)减小PLC系统中高频信号的功率谱密度

减小PLC信号的功率谱密度(PSD)能降低辐射电平,但不影响总的发送功率。因此,PLC系统适宜采用宽带调制技术,但其扩频效率受电力线低通特性的限制。

(3)合理选择调制技术

OFDM是一种高效的调制技术,其基本原理是将发送的数据流分散到许多个子载波上,使各子载波的信号速率大为降低,从而提高抗多径和抗衰落能力。

(4)合理设计EMI滤波网络

将滤波器安装在紧邻变压器和紧邻家庭用户的连接点上,或者直接在电力线调制解调器内部引入滤波器。这样既可以保持PLC信号的异模传播,又可以阻止PLC信号进入辐射效率高的导线或其他附接设备。本文将主要对EMI滤波网络进行研究设计。

2滤波电路设计

基于以上对于电力线通信电磁兼容性的分析,可以在电力线通信系统的收端接一个EMI滤波器,用以抑制系统所产生的共模干扰。由于两根电力线不可能完全重合,也就是说差模电流所产生的电磁场不能完全抵消,所以在设计滤波电路时,也应考虑到差模干扰的抑制。

EMI滤波电路基本网络结构如图3所示。

图3中,差模抑制电容为Cl和C2,共模抑制电容为C3和C4,共模电感为L,并将共模电感缠绕在铁氧体磁芯圆环上,构成共模扼流圈。共模扼流圈对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。由于干扰信号有差模和共模两种,因此滤波器要对这两种干扰都具有衰减作用。其基本原理为:

(1)利用电容通高频隔低频的特性,将电源正极,电源负极高频干扰电流导入地线(共模),或将电源正极高频干扰电流导入电源负极(差模)。

(2)利用电感线圈的阻抗特性,将高频干扰电流反射回干扰源。

3实验结果

在图3滤波电路中取差模电容C1,C2为7000pF,共模电容C3,C4为0.015μF,共模扼流圈磁芯采用锰一锌铁氧体,每路绕30匝,电感量为3.7mH。

3.1EMI滤波网络滤波性能仿真

图4为干扰噪声随频率关系的模拟仿真,由此可见干扰信号的频率越高,则干扰信号通过该滤波网络后衰减越大。共模干扰的频率一般在2MHz以上,所以说该滤波电路能对共模干扰起到良好的抑制作用。

3.2EMI滤波网络输出结果分析

当采用输入为24V,输出为12V,功率为25W的开关电源模拟输入信号时,用带宽为20MHz的示波器测得滤波前后信号纹波分别为50mV和5mV。由此可见该滤波网络对干扰信号衰减了20dB,良好地抑制了电路中所产生的干扰噪声。

电力通信论文范文第10篇

随着时代的发展,在较大程度上完善了通讯方式,用户要想获得各类信息,可以随时随地的获得,借助于信息网络的生产方式和工作方式,可以促使信息化社会体系得到构建。如今电网系统拥有更强的竞争力,将语音、视频和数据的应用给大部分融合了过来,促使电力企业员工统一服务的需求得到满足,并且可以有效应用到先行网络环境中。

(1)可以促使员工的工作效率得到有效提升

电力企业的规模在不断扩大,电力企业要将为人民服务的原则给贯彻下去,通过电力通讯,来对员工更好的服务,并且促使员工的工作需求得到随时随地的满足,以便更加快捷的开展工作,并且通过融合电力信息和电力通讯,将多样化的服务提供给员工,促使员工的工作效率得到提升。

(2)多样化的工作方式

通过融合网络,我国现代化电子商务的需求和移动办公需要能够得到满足,融合网络数据,可以应用企业信息通讯,员工可以更加灵活的工作,操作可以随时随地进行,并且将电脑以及手机等通讯工具应用过来,促使现代信息化操作功能得到实现。

2电力信息和通讯技术融合的技术环境分析

电力企业在网络技术日趋成熟和广泛应用的大环境下,将会越来越广泛的用于因特网的信息化业务管理内容。通过不断引入新型技术,统一应用多种业务和技术,电网将会朝着这个方向发展。通过有效融合电力信息和电力通讯,同时将一些先进技术应用过来;具体来讲,包括这些方面的内容:

(1)融合核心网技术

借助于IP/MPLS技术,来对核心网络进行构建,促使网络的可靠性、拓展性以及低延时性得到提高,带宽的利用率得到提升,同时,借助于先进的信息技术,以便更好地服务于员工。

(2)融合接入网技术

如今,接入网技术获得了较快的发展,有着更加广泛的应用范围,但是还没有完善全网宽带化。通过有效融合电力信息和电力通讯,借助于一系列的通讯条件,如因特网和WLAN等,介入多元化的宽带。就目前的情况来讲,要想促使发展需求得到满足,就需要充分重视光纤接入网和无源光网。

3电力信息和电力通信技术的融合策略

(1)对企业工作流程进行优化,统一整合

在企业发展的过程中,需要对信息通信调度室进行统一构建,这样调度人员就可以统一监控调度信息通信,分开调度室和机房,以便连通通信和信息,对统一的通信信息调度运行平台进行构建。借助于通信调度,信息工作许可就可以得到实现,向通信调度反馈信息的监控结果,这样就可以对信息传输状态及时了解。要想促使通信系统运行的统一调度、统一运行目的得到实现,就需要对通信信息的运行、维护管理工作等进行强化,对信息监控系统进行全方位的构建,对各个通信站的通信运作进行实时监测,并且监督反馈工作需要及时进行。

(2)将基础技术作为技术融合的立足点

电力通信论文范文第11篇

1.1电力通信的主要方式

电力通信的主要方式主要就是以下这几个方面。首先是通过电力线载波来进行通信,这种通信方式主要就是用来输送工频电流,在通信的过程中,通过将各种信息用载波机来转换成高频的弱电流,然后在利用相应的电力线路来进行传输,这种通过电力线载波的通信方式的传输通道一般可靠性比较高,并且性价比也要高,同时这种电力通信方式还能够与电网建设同步,因此这是目前的一种主要电力通信方式。其次就是光纤通信,这种通信方式是一种新型的通信方式,但因为这种通信方式的各种优点,使得这种通信技术在诞生之后,就受到了电力部门的广泛应用,并且取得了巨大的发展。最后还有其它的一些传统通信方式,比如说明线电话以及音频电缆等,这些都是电力通信中的主要方式。

1.2电力通信网的特点

电力通信网的主要特点就是,电力通信网与其它的公用网相比有更高的可靠性与灵活性,因为电力通信网一般都是比较先进的通信技术,所以电力通信网相对于其他的一些电力通信系统而言具有需要优点,比如说电力通信网能够传输更多的信息、同时传输的种类也相当要复杂,通过电力通信网在传输信息的过程中还能够保持很强的时效性。同时电力通信网还具有很强的耐“冲击”性,通过电力通信还能够传输更为广泛的范围。

2.光纤通信技术在电力通信中应用的必要性

2.1电力通信系统的网络结构相对复杂

在整个电力通信系统,需要用到许多不同种类的通信设备,而设备与设备之间连接方式以及信息的转换方式也不一样,从而造成了整个电力通信系统的网络结构非常的复杂。比如说电力通信系统中的中继线传输、用户线的延伸等线路,还有载波设备与微波设备之间的转接等设备之间的信息转换,同时整个电力通信系统中的通信手段也非常的多。因此在这样的一种情况下,就使得整个电力通信系统的网络构成要非常的复杂。所以利用光纤通信技术应用到电力通信中非一项非常有必要的举措。

2.2电力通信系统中的信息传输量小

电力通信系统在运行的过程中,电力通信系统的传输信息量相对较少,但同时要求要有非常强的时效性。在电力通信系统中,传输信息的过程中需要继电保护信号以及话音信号,并且电力通信系统要有电力负荷监测信息,包括各种图像信息与数字信息等,虽然在整个电力通信系统中,这些信息的量不是很大,但失效性却越好保证,因此同样需要应用光纤通信技术[3]。

2.3电力通信系统要求具备更高的可靠性

与灵活性如今随着社会经济的发展,人们对电力系统的依赖性越来越高,并且电力系统也已经成为了人们生活与工作的基础,这就要求电力供应系统拥有更高的稳定性。因此同时也就要求电力通信系统在工作的过程中,不容许出现各种间断或者是突变的现象,这就要求整个电力通信系统要具备更高的灵活性以及可靠性,同时因为光纤通信技术就具备了非常高的灵活性与可靠性,所以在电力通信系统中应用光纤通信技术有很高的必要性。

2.4电力通信系统要求具备更高的抗冲击性

对于整个电力通信系统而言,要想让电力通信保持长期稳定的工作,电力通信系统还需要具备另外一个要求,那就是电力通信系统要求具备更高的抗冲击能力。因为正电力通信系统的联系非常的紧密,因此一旦某一个地方出现了突发性的故障,就会对对很大范围内的通信造成影响,从而对整个通信造成很大的压力并造成很大的损失。因此在这样的一种情况下,电力通信系统一定要具备更高的抗冲击能力,而光纤通信技术就具备了非常高的抗冲击能力,所以说在电力通信系统中应用光纤通信技术是非常有必要的。

3.光纤通信技术在电力通信中的应用

光纤通信技术作为一种新型的通信技术,却能够在非常短的时间内得到广泛的应用,其主要的原因就是应为光纤通信技术所具备的优点,光纤通信技术具有非常强的抗电磁干扰能力也就是抗冲击能力,同时光纤通信技术还具有传输容量大与传输衰耗小等多种优点,因此这种技术在诞生之后就在电力通信系统中得到了广泛的应用,并迅速取得了巨大的发展。如今在电力通信系统中,除了普通光纤之外,还诞生了许多特种光纤,各种性能的光纤在电力通信系统中都得到了广泛的应用。比如说光纤复合底线(OPGW)、光纤复合相线(OPPC)以及全介质乘光缆(ADSS)等多种光纤,下面将主要介绍我国目前在电力通信系统中应用最多的几种光纤[4]。

3.1光纤复合地线

光纤复合地线(OPGW)是我国目前在电力通信系统中应用最为广泛的一种光纤,这种光纤复合地线也可以叫做地线复合光缆或者是光纤架空地线等,这种光纤通信技术是在电力传输线路的地线中包含了通信所使用的光纤单元,也就是光纤。这种光纤通信技术在电力通信系统的使用过程中,可靠性非常的高,基本上不需要去维护,但这种光纤通信技术的投入成本非常的高,因此这种光纤通信最好是在新建线路或者是旧线路中需要更换底线的使用最合适。采用这种光纤通信的主要功能有两个方面,第一个方面是使用这种光纤通信技术能够作为整个输电线路中的防雷线,对输电导线有很好的保护作用,能够提高其抗冲击性能。第二个方面就是能够通过复合在地线中的光纤来实现所有的信息传输,这种光纤复合地线能够将架空地线以及光缆综合起来[5]。光纤复合地线除了了具备各种光学性能之外,对架空地线的机械与电气性能也能够满足,因此这种光纤通信技术也就能够在所有的架空地线中使用,同时在工作运行的过程中,光纤单元还被放在了保护管内,对光纤有一个很好的保护作用,因此也就提高了整个电力通信过程中可靠性以及安全性,并且这种光纤复合地线在安装的过程中也不需要特殊安装工具。一般常见的光纤复合地线主要有三种结构,分别是铝管型、铝骨架型以及钢管性。光纤复合地线的发展对我国的电力通信通信系统而言有非常重要的意义,因为在电力通信系统中采用这种电力通信系统能够将电力系统中输电容量进一步提高,同时还能够让我国的架空线实现超高压化以及高自动化。尤其是对于我国目前的电力系统现状,因为我国的地域非常的辽阔,因此也就导致了我国的电力传输路线非常的广,需要大量的使用超高压架空线来输送电力,因此这种光纤通信技术在将来一定能够得到更大应用发展。

3.2光纤复合相线

在我国的电力通信系统中,有些地方可能不需要架空地线,但是在电力通信系统中的相线是一定要的,因此在传统的相线结构中加入相应的光纤,就能够将光纤通信技术应用到电力通信系统中去,从而形成了光纤复合相线,这种光纤复合相线与光纤复合地线虽然在结构上有些相似,但是这两种光纤通信技术在原则上却完全不一样。光纤复合相线主要是利用电力通信系统本身的线路资源,从而让整个电力通信系统中的频率资源、线路以及电磁兼容性等各个方面都保持协调,这中光纤通信技术也是如今的一种新型通信光缆。光纤复合相线一开始是在一些发达国家使用的,主要是将光纤复合相线用在150KV的电力系统中,如今这种光纤通信技术已经能够在更高的电压系统中开始应用了。如今在我国的电力通信系统中,35KV以下的线路中一般都是用三相电力系统来进行传输,而通信方式则一般还是采用传统的方式来进行传输,而将光纤通信技术应用进来之后,一般都是将光纤复合相线来代替三相电力系统的一相,让光纤复合相线与其它的两相来组成三相电力系统,这样在整个电力通信系统中,就不需要在另外架设通信线路了,并且能够大大提升电力通信系统的传输质量与数量[6]。光纤复合相线在设计的过程中,主要就是参照了光纤复合地线与三相电力系统来进行设计的,而在光纤复合相线在具体的施工过程中,需要将相线中的光纤单元单独的分离出来,其中主要运用了光纤的接续技术以及光电子的分离技术,因此就要求光纤复合相线在施工的过程中要有一个独特的接线盒,目前我国在这一方面已经取得了一定的进展。

3.3全介质自承光缆

全介质自承光缆(ADDS)在我国的电力通信系统也已经得到了非常广泛的使用,这中光纤通信技术一般是在220KV、110KV以及35KV的电压输电线进行使用的,而且这种光纤通信技术一般是在一些已经建设好的线路上进行使用的。这种光纤通信技术的出现,能够让我国的电力部门实现直接的高压输电线杆搭建自己的通信网络,这种光纤通信技术能够在各种环境下实现架空敷设。这种光纤通信的出现,大大的推动了我国电力通信系统的发展。如今是一个数据通信发展非常迅速的时代,电力部门在应用了这项光纤通信技术之后,不仅能够满足自身的通信需求,而且还能够开设出新的通信业务。其主要的原因就是因为这种全介质自承光缆具有非常高的光纤传输性能以及光缆机械性能,并且这种全介质自承光缆还具有很好的环境性能,在施工的时候还能够与其它的高压电力传输线路一起进行铺设,主要是因为这种光纤通信技术在传输强电场环境中,光缆的传输信号不会受到任何的干扰,抗干扰的能力特别强,因此这就成为了电力通信中的一种非常有效且方便的传输方式。全介质自承光缆之所以会有这些优点,其组成的材料一般都是非金属材料,并且这种光缆的外套也是由聚乙烯或者是耐电痕的外套组成的,全介质自承光缆在设计的过程中,充分的考虑了我国电力线路的实际情况,因此能够在各种高压输电线路中使用,并且在具体的应用中,也要根据具体的情况来选择合适的外护套,比如说在10KV与35KV的输电线路中,就需要采用聚乙烯外护套。同时在光缆设计的过程中,还考虑了各种外界环境的变化对光缆的影响,比如说风速、温度以及雨雪等因素,因此这种光纤通信技术还具有很强的抗冲击性能,并且在施工的过程中也非常的方便。

4.电力光纤通信网的组网技术

4.1波分复用技术

在电力系统中应用光纤通信技术是我国电力通信行业在时展中需要,而电力光纤通信网的组网技术其中一项非常中的技术,其中波分复用技术就是一种典型的电力光纤通信网的组网技术。这种技术主要是将许多不同波长的光信号复合到同一根光纤上,也是一种再传输技术,这种技术主要是根据光波的波长将光纤的低损耗窗口进行划分,然后将光波当成是信号的载波,就能够将不同波长的信号合并在一起,在一根光纤中同时进行传输,然后在信号的接受端,将合并起来的波长进行分开,这样就能够在一根光纤中实现多种信号的传输,而将两个方向相反的信号在不同的波长中进行传输,就能够在同一根光纤中实现双向传输。同时波分复用技术也可以根据波峰之间的间隔不同,而形成密集波分复用技术以及粗波分复用技术。

4.2同步数字技术

同步数字技术组成的同步数字体系是一种有集复接、交换以及线路传输为一体的信息传输网络。在同步数字信号中,主要是为数字信息提供一定的等级,然后通过相应的技术将低等级的同步数字技术转换成高等级的同步数字技术。在将各种信息传输实现同步的时候,就能够大大的提升网络的传输速度,从而增加网络的利用率。在同步数字技术中,主要的特点就是将光纤通信技术中的复接以及分接技术进行了简化,这样就能够提升网络的灵活性以及可靠性,而且在整个同步数字体系中,还带有一套自我保护的体系,这就使得这种同步数字技术在所使用的过程中,能够达到很高的可靠性。因此同步数字技术不仅能够将电力通信的传输能力提升上去,而且还能够将为整个电力通信系统提供很高的安全性。

5.结语

电力通信论文范文第12篇

1.1故障分析法

①全方位故障检测法:全方位故障检测法的方法属于SDH传输设备查找和定位故障的最有效的方法。全方位故障检测法,就是通过对整个线路运行通道进行的一种全方位检测,然后依照定位来确切具体地查处所存在的问题。全方位故障检测法比较实用,可以多次是使用这个方法解决多处存在的问题。在进行全方位故障检测时,通常采取以下步骤:首先要对整个通道进行采样,也就是从多个有故障或存在问题的站点中选出其中一个站点,然后在这个站点的多个可能有问题的通道中选出一个,经过分析后画出这个业务一个方向上的路径图,标出业务源和所经过的一些站点等信息,最后采用逐段检测的方法就可以定位出故障的站点和单板。②信号指示信息分析方法:信号指示信息分析法就是在网络管理的总站取到相关设备的相关信息,包括了性能参数、运行工况和设备的网络运行状况等,根据相关信息对设备进行维护和故障排除工作。具体的实施方案:首先通过网管来获取一些重要的指示信息和性能的信息,综合有效汇总之后,进行故障定位工作,以便于迅速、有效地解决存在的故障。同时能够全面的了解全网设备历史的或当前的与设备有关的重要信息,这对以后有效预防此类故障有重要意义。③等效部件代换方案:等效部件代换方案就是在SDH传输设备在运行过程中出现问题时,使用一个工作正常的物体去替换一个工作有问题的物体,如果替换后,设备工作重新恢复正常,那么问题就在此处。此方法能够达到迅速、准确定位故障的效果、排除设备故障的目的。等效部件代换的方法以其快捷、简便,被广泛应用。

1.2故障处理手段

在SDH设备运行时,如果出现问题,要根据分析故障的原则和各种故障定位分析法,对故障进行准确定位,然后采用有效的、有针对性的方法进行故障处理。在处理过程中,要根据实际情况,进行确切的分析和研究,通过查阅相关资料,找到合适的解决方案。在处理故障过程中,要不断发掘问题的本原,抓住问题的关键,这样才能处理好以后可能出现的各类问题。

二、电力系统通信光纤设备的有效维护

2.1维护内容

在电力系统的实际运行过程中要对设备进行维护的主要内容有针对光缆设备、配线架和电源等设备的维护。以下是详细的设备维护内容:①保证系统设备运行:在电力系统通信光纤的实际运用过程中,相应的通信设备要保障时刻处于一个正常工作的运行环境中。例如:可以把电力系统中的供电和传输设备的工作直流电压要求控制在-48V±20%,使其允许的详细电压保持在-38.4到-57.6V的对应范围内;SDH网管监控系统和电力系统的本地维护终端所使用的计算机都是相对应的设备,在运行使用过程中,禁止用在其他地方,进行有效阻拦病毒的侵害。②故障排除:要求在实际的系统维护中进行有效地故障分析和处理,确切地说,就是要依照具体的故障信息和告警指示信息,经过排查后定位设备的故障位置,合理及时找出相应的设备故障原因,尽量在短时间内完成设备故障解决,确保电力系统通信光纤设备的正常运行。③集中维护:电力系统通信光纤设备在进行有效维护的时候,普遍使用的维护方法是集中法,就是需要相应部门要建立个系统运行维护中心,把设备运行维护所需要的主要监控、维护仪器和设备运维人员集中在一个站点上,对人员减少配置。

2.2设备的环境要求

为了让SDH光传输设备能有一个干净整洁的工作环境可以很好的工作,工作人员必须清理好机房的卫生环境,要求工作人员定期进行清洁和整理。比如,工作人员要定期清扫室内垃圾或定期清除设备上的灰尘。维护好设备的环境,使设备能够更好地工作,而且也会使设备延长使用寿命。同时,要确保设备有良好的工作条件和保持室内的温湿度。首先要保证传输设备的工作在直流电压-48-20%~-48+20%,电压的范围保证在-38.4~-57.6。最后要确保设备机房内的温湿度保持在最佳状态。

2.3设备和网管的巡视查看

定期对设备和网管进行有效率的巡视查看,有助于及时发现故障并对故障进行处理,这是很重要的,及时发现问题的同时也能够减少各类损失。

三、总结

电力通信论文范文第13篇

1.1是SDR技术

所谓SDR就是软件无线电技术,这种技术在电力信息通信中比较常见,之所以被广泛应用是因为此种技术拥有以下几种优势:

1.1.1A/D与D/A转换技术

此种技术在近年来取得了较大的进步,因为它能够实现高速信号的转换,在实现高速通信的同时能够最大程度上的减少了无线转换器原件的使用量,为制作数字元器件提供方便,可以说是一举多得。

1.1.2短距无线电技术能够通过铺设更为广泛的宽带实现无线通路

这样一来其机动性就有了很大程度上的提高,机动性提高的另一方面的体现就是此种技术能够支持不同的频段,这样一来使得技术的应用范围就更为广泛。

1.2.3此种技术具有很强的可拓展性

对于软件无线电技术来说它的模式并不是固定的,而是可以通过软件的升级开发出更多的服务与技能,重要的是这种升级能够适应复杂的实际操作要求,开放性使其具有无限的升级可能,这也是其被广泛应用并被认可的最为主要的原因。还有就是,软件本身能够通过实践发现问题并改进技术,很多时候这种改变是根据不通使用条件下的用户的要求而改变的,可以说,这种技术更“亲民”更为用户着想,在客户满意度方面有着很大的优势。

1.2就是DSP也就是数字信号处理技术

这项技术是近代以来电力系统不断完善升级的结果,可以说它代表了当今电力通信技术的最前沿的技术,此项技术实现的前提是无线数据通信的飞速发展,21世纪是通信技术的时代很可能在未来的很长一段时间都是,因为通信技术能够给所有社会人带来前所未有的便捷,所以近年来可以用飞速来形容此项技术的发展,当然这也就为DSP技术的发展提供了机会,可靠、准确、快捷和安全不仅仅是普通人的要求更符合电力系统对电力通信技术的要求,前文我们已经提到,我国的幅员辽阔电网覆盖的地域广泛,地质条件,气候条件,人文条件极为复杂,如何通过及时的、准确的通信来保证电力传输的安全稳定成为每一个电力人应该思考的问题,电力信息的体量十分巨大,编码译码又要求速度,VLIW技术应运而生,这项技术能够实现在不加快时钟速度的前提下完成极大体量的数字信号处理工作。

1.3就是智能天线技术

此项技术与其他技术相比优势比较明显,因为智能天线技术能够实现移动通信在较高的频段复用和较大体量的系统容量需求情况下进行无阻碍的工作,因为现代技术的进步频段的使用存在高度的复用率,如果没有稳定的信号很容易出现断开连接或者连接不畅的现象,此项技术在很大程度上避免了这种现象的出现。

1.4就是更为先进的全光网络通信技术

这种技术最大的优势就是速度和效率,因为所有的传输与交流都是以光的形式完成的,这中间不需要进行一般技术需要的光电转换,从而大大提高了传输的速率和效率队,电力信息传输来说这是最为重要的,但是作为最快的传输技术也存在着一个致命的缺点———成本,光纤传输的成本往往高出其他技术的几倍甚至更多,单纯的从经济角度来说目前实现全光网络传输不太现实,还有待于科技的研究和发展,可喜的是我们已经有了一些成果如光纤与电缆混合即HCF模式等。

1.5就是我们现在最常听到的一个词4G

中国的通信网络近年来用一年一样来说一点都不为过,先是3G网络的全覆盖进而4G,中国这几年走过的是其他国家几十年走过的路程,而4G技术也能够在电力信息通信技术领域广泛的应用并成为主流技术。第六就是Femtocell技术,此项技术也叫飞蜂窝技术,形象一点说就是超小移动基站应用,这种技术的最大特点就是具有很大的灵活性,投资少功耗低,相对其他技术来说投入的成本要低很多,而且此项技术能够实现即插即用,对室内通信网络可以实现真正意义上的无缝覆盖,因而在一些领域广泛应用,但是此项技术有两个问题需要解决,一个就是飞蜂窝基站之间难免产生的互相干扰的问题还有就是在无缝覆盖的同时实现准确切换的功能。

2电力信息通信的新需求

随着社会经济的不断的发展,信息化进程的不断加深,21世纪计算机与网络已经更为深刻的影响到了人类的方方面面,对电力系统的影响就是整个系统更趋于自动化,智能化,对现代电力控制来说,高精尖技术的引进是必然的,这就产生了第四代电力自动化系统,第四代系统技术含量更高也更为复杂但是更加可控准确,统一的平台,高度的集成化,使得整个系统更方便管理。提升电力控制系统的智能化是现代电力发展的必然要求,电力网络的日益发达必然对电力系统本身的协调控制提出更高的要求,而实现这种高度协调与控制就必须依靠强有力的通信系统,通信系统是电力系统正常运转的保障,智能电力的最终目标就是通信系统与电力系统的完美结合,并且能够深入到每一个使用电力的用户家中,能够更好的为他们服务,确保电力系统安全正常的运转。

3当前电力通信所面临的形势

我国是电力大国,拥有世界上最大规模的电力使用体量,电力基础设施的建设也一直是我国经济基础建设的重要工作,时至今日我们可喜的看到,我国的电力通信网络规模已经十分巨大,并且有着多种方式,技术,架构日趋稳健,技术也逐步成熟,为电力系统的自动化做出了有益的探索,但是庞大的电力通信技术体量也存在着一些问题,如网络覆盖的不够,通信资源分配不到位,用户与输送环节基本脱节,网络快速准确的优点发挥不明显等等。

4结束语

电力通信论文范文第14篇

(1)卫星接入技术。这种通信接入技术被广泛应用于房地产、金融以及教育领域,主要是由于其技术可以有效地实现高速度的互联网连接以及高速度的数据包发放。同时还由于此种接入技术的实施方法比较稳定,所以在各个领域被广泛应用。

(2)红外光通信接入。这种通信接入技术由于其传输速率相对比较高,它的速度频率大约在3MB/s-621MB/s之间,这样就可以有效的促进数据之间的高速度传播。同时此技术的传输距离可以高达100米左右,并且以红外光为主要的工作波段,这样既不需要对其进行频率波段的申请,也不会影响其他通信系统的运行情况。

(3)微波宽带接入技术。这种技术适应的频率段主要是在28GHz的周围,并且采用的是蜂窝方式的网络布局,这样就可以有效地降低因为传输距离比较长而造成的损失和能源消耗。同时还可以有效地减少无线通信发射的功率,由此可知,这种通信接入技术比较应用于双向数据和图像传输。

2无线通信技术在电力系统的应用

2.1无线通信技术在电力输配电系统中的应用

在电力系统中,有关状态信息的搜集和控制命令的发送主要是将输变电无线与光纤集成通信系统放置在网络通信层;变电站的中心站主要是通过电力特种光缆与部署在输电线路杆塔上的远端单元进行相互的连接,其中中心站还可以通过链式自组网的模式来有效地实现它们之间的通信,并且可以通过利用输变电中心站设备和远端单元有效连接的无线与光纤集成通信系统,这样就可以实现底层终端信息的汇总和采集。此外,还可以利用远距离传输的方式将信息进行汇集到输变电系统主站中。在电力系统中运用输变电的时候,可以有效地采用分布式中心站与链式组网两者相互相结合的方式,这样就可以更加充分地利用输电线路光缆资源,从而就可以有效地实现光纤与无线组合网络之间的通信。由于在电力系统中应用配用电的时候,它需求不同,这样就需要促使系统具备智能化的链路传输能力,并且系统还需要具备流量实时监测技术,从而就可以有效地实现系统性能的动态感知。除此之外,在对系统进行实际的监控和测量的时候,要对流量控制技术进行具体的分析和研究,从而才能使链路传输能够有效地适应网络系统的变化。在配用电应用的过程中,需要很大的终端数量,同时由于基站系统承受的压力比较大。所以系统在运行的过程中就需要具备海量终端,并且还要有一定的接入能力。除此之外,在利用调度算法对基站系统进行运算中还需要对终端用户进行数据传输的监测。

2.2无线通信技术电力系统内部管理中的应用

在发电企业,内部管理工作是非常重要的,首先无线通信技术可以有效地实现远距离延伸,其中有一些管理人员在异地出差,这样就不能连接电厂设备的实际情况,他们可以通过利用SIM卡和GPRS网络掌握电厂大型设备,例如:高压变频器等的运行参数,这样就可以方便电厂内部的管理,也有效地解决了距离远的问题,同时也为电厂节约了资源和成本。然后电厂设备如果在运行的过程中,发生了以外的事故,可以起到应急的作用,保证电厂通信网络正常的运行。可以实现小范围的覆盖,对于电厂、变电站等区域,应该考虑采用无线通信系统进行语音网、数据网的无线覆盖,在业务流量需要不是特别大的地方应用这种方式,这样就减少了电厂线路的布局,从而也方便管理人员对电厂内部进行管理。

2.3无线通信技术在电力通信系统中的应用

无线通信网络的研究对象在电力系统中的发电、送电、变电、用电等等一切与电相关的信息和环节,而无线通信技术就是对这些环节的整合,从而保证发电行业的自动化发电和电力生产、输送都更加安全经济。同时无线通信技术可以采用高压骨干网架进行远距离、大容量以及低损耗输送,这样就促进了电力系统的可持续发展。除此之外还可以有效地实现不同单位、机构以及装置的实时监测。

2.4无线通信系统在电力终端系统中的应用

电力通信论文范文第15篇

随着经济的发展,电力企业也在不断的发展、壮大。这就要求通信网络设施也要随之发展。高速化和准确化进程的加快使得大型新设备的投产成为可能,从此情形看也预示着通信专业检修工作量在逐步地增加和提高。如今,在国家电网公司智能化部署战略中,通信信息平台在电力系统的应用越来越得到重视,新技术、新工艺、新设备越来越得到更加广泛的应用,通信设备运行检修工作的难度也越来越大。相关的工作者需要重视以下两个方面的工作:一方面,合理的安排检验项目和周期、准确地进行状态评价,通过这样的方式可以减少电力设备的损耗,提高通信设备可用系数,延长其使用寿命,从而节约设备的维护费用;另一方面,运用状态检修数据的储备和分析,能够科学的规划网络设置,提高电力生产的检修效率和工作效率,进而能够提高资源的利用效率,促进国家电网不断优化健康地发展。

2通信设备状态检修的要点

(1)落实状态检修需要祥光的电力工作者的管理观念,夯实管理基础。“修不如换”不是简单的更换设备,而是要充分的考虑投入和产出的预算,维护好设备转变到使用好资产,对于难以检修或多次检修依然不能使用的设备要进行更换,更换的设备要优于之前的设备。要实现状态检修的常态化就要不断的引进新科技。利用科技手段进行科学的分析。

(2)实施状态检修必须高度重视数据积累。改变传统的单一数据单一应用的方式,要进行整体的统筹和规划,将得到的各项数据进行汇总、归纳,并将其梳理形成系统,从时间、指标等多纬度、多角度对比联系,实现数据的共享,充分发挥其作用,更有利于使用系统分析的方法进行状态评价和检修决策。

(3)状态检修通常是采用比较先进的在线检测和辅助诊断技术。从目前发展方向上看,设备在线监测要从告警向预警方向发展,对可表征设备状态的重要工况量进行监测。人工智能的介入能够有效的对设备数据进行处理、分析和决策,降低主观人为的干预性。通信技术的应用使得智能电网的建设步伐不断加快。

(4)贯彻资产全寿命管理理念,更好地发挥通信设备的效益,需要电力企业内部多个部门的密切配合才能得以实现。

3通信设备状态检修的方略

现在大多数电力公司都是按照国家电网公司的相关要求和标准进行建设工作部署,对状态检修进行全面的推广,尤其是要加强二次电路及通信专业的管理,加强状态检修标准化的力度,具体来谈需要做好下面几个方面的工作。

3.1加强组织领导

推动工作扎实有条不紊地开展要对公司状态检修整体规划进行掌控,同时建立相应的电力调度通信中心工作小组,明确相关的责任人,建立了二次设备状态检修常态机制,这样就分别从管理、技术、资料信息、执行、宣贯与培训等方面进行工作。由专家组和专业技术人员组成专家组,对实际的工作进行分析,召开专题研讨会议,协调各方力量,推进工作进程。按照集团公司统一部署,各供电公司积极构建公司、车间、班组三级管理体系,对状态检修进行细化分级开展,落实相关岗位的分配,明确岗位职责,规范信息收集与评价、检修策略、绩效评估的原则和流程,逐步推进全方位状态检修的进程。

3.2健全技术体系

为状态检修提供保障可以借鉴一次设备状态检修的经验,可以根据区域发展的实际情况制定电力设备相关状态检验准则。结合通信专业的特点,细化通信设备状态检相关的技术标准和信息收集规范,拟定相应的电力企业通信设备状态检修工作流程书,将可能出现的故障和危险提前进行预估,并在现场灵活的进行运用,从而使有关技术标准更加贴近实际,作业流程更加安全完善。

3.3加强资料与信息收集

制定相应的专业管理技术标准建立检修巡检和运行巡视的信息收集机制,拟定通信设备巡检的相关指导流程,并将其时间到实际的电力设备检修工作中,按照周期进行设备巡检。规范专业资料的收集整理。依托生产运行标准化来建设,按照“5s”标准对所有图纸资料按专业、资料类别分别定置、编号,实现图纸资料的定置管理,并开发资料电子查询系统,方便随时查阅与更新。

4成效与收获

(1)进一步提高设备管理的科学性、专业性。同时还要重视检修策略的指导作用,对于”正常状态”的设备要进行定期的检查以延长其使用寿命。对于被评价为“异常状态”或“严重状态”的设备,限期检修或立即检修,并缩短其检验周期。

(2)进一步完善丰富设备状态信息的获取方法和手段。

(3)不断完善设备检验方法和评价标准。要根据实际的情况进行设备的周期检测,并及时的进行调整。

5结束语