美章网 精品范文 平台设计论文范文

平台设计论文范文

平台设计论文

平台设计论文范文第1篇

从网络上下载最新版本的Moodle平台压缩包(本平台采用Moodle2.2.2.zip),解压文件,将解压得到的Moodle文件夹全部拷贝到EasyPHP安装目录下的WWW文件夹中.重新启动EasyPHP程序,在此之前应该确认80端口是否被IIS或其它程序占用,若是,则需要手动更改Apache端口.找到EasyPHP安装目录下的httpd.conf文件(本平台是D:\ProgramFiles\EasyPHP-12.1\conf_files\httpd.conf),用“记事本”打开,搜索关键字“port:”,找到“Listen127.0.0.1:8887”,确定Apache端口被设置成了8887.如果修改为其它端口号,需要重新启动EasyPHP再进行后面的设置.打开浏览器,输入.php进行Moo-dle平台的安装.

2Moodle平台的数据库设置

在Moodle平台的安装过程中会涉及数据库设置问题,选择数据库驱动类型为“改进的”,数据库主机为,数据库名为,用户名为,密码为空,即完成Moodle平台的数据库设置.

3Moodle课程的相关设置

在Moodle平台安装完成后,还需要对课程进行相关设置:1)添加课程.“课程全称”和“课程简称”是必填项,同时可以根据需要填写“课程编号”和“课程简介”等,设置好课程的其它选项,即可生成一门课程.2)学生用户数据的添加.添加学生用户有多种方式:①教师以管理员身份登录平台手工一个一个地添加;②允许学生自己登录平台注册帐号并设置个人信息;③利用Excel软件批量导入学生数据.在此介绍第三种添加方式:在Excel工作表第一行中输入五个必须字段,一个字段占一个单元格,从表格第二行开始,依次录入所有选课学生的信息.完成后,将此表另存为“CSV(逗号分隔)”格式文件(此格式默认编码方式为),再用editplus文本编辑软件打开后转换成UTF-8编码方式的格式文件,这样做的目的是让中文能够在Moodle平台中正常显示[10].3)Moodle用户的角色指派.用户注册或添加成功后,其默认角色为“已认证用户”,还必须根据课程要求为他们进行角色指派.本Moodle平台版本的角色分为五个层次,分别为网站管理员、系统角色、课程角色、活动角色和首页角色,各自具有不同的权限.在此介绍课程角色的设置方法.课程角色主要负责某个课程的具体实现和使用,属于区域角色,包括管理员、教师、无编辑权教师和学生四种角色类型[11].其指派方法为:选择某个具体课程,在“设置”“课程管理”“用户”“已选课用户”栏目中添加课程用户并设置用户的归属角色.如图2所示4)对选课学生进行分组.Moodle平台提供了群组、大组和小组三种分组方式组织教学活动,分别对应传统教学中的年级、班级和小组教学组织形式.本学习平台针对应用软件设计类课程实施翻转课堂教学模式,以学生“自主、探究、合作”为主,强调学生在自主学习的基础上,通过合作学习小组讨论协商,完成知识传授的提前,因此选课学生控制在一个标准班,人数大概40人左右.课程内所有的资源、讨论、作业、测试等学习活动均以合作学习小组的形式进行组织和管理.①分组策略.通常情况下,合作学习小组由4-6名学生组成,采用“组内异质,组间同质”的策略.“异质”分组是把学习成绩、动手能力、性别甚至性格等方面不同的学生分在一个合作小组内,“同质”分组则相反.组内异质为互助合作奠定了基础,组间同质又为各小组展开公平竞争创造了条件[12].本平台的分组策略在参考了选课学生前一学期的理论考试卷面成绩和实验成绩后,以性别和填写的学习风格调查问卷分析结果为线索,由教师分配完成.②分组方法.Moodle平台学习小组应用模式有三种类型:不分组、分隔小组和可视小组.在同一课程中,分隔小组各自独立,不能查看和参与其他小组活动,而可视小组能组间有限融合,能查看但是不能参与其他小组活动.为了让各小组的活动能参考其他组,促进深入思考和讨论,本平台将合作学习小组设置为可视小组模式.分组方法:“设置”“课程管理”“用户”“小组”.在课程中创建合作学习小组如图3所示.

4课程的设计与实施

为了分解知识内化的难度,增加知识内化的次数,促进学生知识获得,笔者参考教材《3DSMAX2011中文版从入门到精通》的知识组织结构,根据各章内容特点的不同,采用多种教学策略,共设计出十一个学习模块:其中第一个模块为准备模块,最后一个模块为总结与展望模块,其余九个模块均为知识模块,包括普通建模、高级建模、材质与贴图的赋予、灯光模拟、摄像机架设、动画制作、渲染技术等三维动画设计与制作各环节内容.课程首页如图4所示.

4.1学习时间安排

虽然学习平台的最大特点就是没有对学习时间进行限制,学生可以在任何时间段登录学习,但为了统一学习进度,让课堂教学活动开始之前就完成知识传授的提前,每个模块还是设置了开放时间.时间到期后模块不会关闭,学生仍然可以查阅资料、讨论问题,但是作业将无法提交,其它记分活动也将停止.学习时间安排的设计目的是为了敦促学生定时完成学习任务.4.2学习目标描述各模块学习活动开始之前,均有一个学习目标描述,明确告知学生本模块的学习目标,使其内化为学生自己的学习目标,激发学习动机,使学习过程顺利发生,对学习产生责任感.

4.3教学资源

通过Moodle平台,在“打开编辑功能”项显示下,可以将任何类型的教学资源到课程资源页中,包括标签、电子书、文本页、网页、链接到文件或站点、显示一个目录、部署IMS包等.这些资源需要根据该模块的学习目标,采用一定的教学策略,循序渐进地、有选择地组织出来.

4.4教学活动设计

通过Moodle平台,在“打开编辑功能”项显示下,可以添加多种学习活动,包括Wiki、测试、程序教学、词汇表、调查问卷、聊天、讨论区、投票、心得报告、作业上交等.活动的安排要遵循教学组织策略、教学内容传递策略和教学管理策略.

4.5网络互动支持

课程首页设置了新闻讨论区,分别是“最新公告区”,学习期间每日公告,包括活动提醒、作业点评等;“熊剑老师如是说”,教师给所有学生的留言;“班级讨论区:疑难解答、情感交流”,学生的留言.此外,在各模块还有针对该模块学习内容的“交流分享”讨论专区,只允许与主题相关的讨论.

4.6作业布置与管理

Moodle平台允许教师为学生分配作业并记分.学生通过上传任意格式的电子文档(一般不超过2M)至服务器,教师点击查看,并采取“分值+评语”的方式进行批阅.作业提交可以设置时间限制,超过时间则不能上交.

4.7评价机制

Moodle平台有许多评价机制.教师可以给学生的讨论帖或作业评分及评语,对好的作品给予肯定和点赞,对不合要求的作业提出修正意见,设置优秀的帖子为精华帖供所有学生学习和借鉴,在公告栏中对积极参加活动的学生通报表扬等.这不仅是对学生学习过程的一种跟踪,同时也是一种情感上的交流,让学生感受到教师时时刻刻都在关注自己,促进其全面发展[13].

5结束语

平台设计论文范文第2篇

校园是学生学习的地方,要培养出适应社会发展的新人才。校园自身也要与时俱进。当前,计算机网络技术迅猛发展,应用广泛。能够提供资源的共享,节省时间与空间对应的资源。校园发展当然要把计算机网络技术纳入其中,让计算机网络技术发挥作用。缩短师生间的距离,节省人力资源,实现网络化平台的科学管理。从应用角度说,开放性的校园工作平台可以设置多种功能。校园工作功能,使得领导和教师以及行政人员,快速沟通,提高工作效率;考试功能,随时可以根据考试要求,准备考试内容,开放服务器端允许登录,实现各种考试;学习功能:提供多方面交流,作业、讨论、答疑都可在此进行;留言与论坛功能:实现学生间的沟通,获取需要的信息。教务功能:让学生可以了解本学期课程情况,同时有更充裕的时间进行课程选修。

2校园平台应用情况与存在问题研究

在高等院校中,校园网络化平台的搭建工作还是覆盖率较高的。基本上都能够实现校园网络互通,使用如教务平台的网络式平台。能够实现网络选修,网络成绩基于PAGERANK算法的校园平台系统设计研究孙丽丽哈尔滨信息工程学院150028姜海红哈尔滨应用职业技术学院150078查询等基本功能。可以说取得了一定的成绩。但成绩不能让前进的步伐停滞。校园平台还是存在很多问题的。首先,高校使用的网络校园平台,设计开发的企业不同造成水平相差较多。有些网络平台经不住长期使用的考验,同时在设计时没有预留拓展空间,不能满足教育改革进程中的新需要新要求。其次,网络平台中的资源陈旧,不能及时更新。学生找不到适合课程的好的学习资源。校园平台实时性差。

3校园平台开发工具与开发模式

由于校园平台集成功能较多,对于安全性要求相对高。所以服务器端操作系统使用微软系列的2003版本。后台数据库使用成熟的SQLSEVER,作为校园平台的开发,当然是以网站互动的模式呈现给使用者,所以脚本语言不可少,ASP。NET是不错的选择。工作模式选择为浏览器、服务器模式,客户端、服务器端交互模式。

4pagerank算法的体现

精研计算机技术的人员应该熟悉这种算法,此算法在2000年之前就已经提出了,属于网页级算法。作用是通过计算二级、三级等分页的链接数量,判断相应时间,然后进行优先权限的分配工作。在大型网站的建设过程中,这种算法常常应用于搜索功能实现当中。通过分级页数的多少?通过页面被访问数以及重要性来设计算法。这个网页的重要性,经常用一个专有名词。上面就是一个该算法使用排名因子进行计算的典型公式。算法的优点在于它对互联网上的网页给出了一个全局的重要性排序,并且算法的计算过程是可以离线完成的,这样有利于迅速响应用户的请求。不过,其缺点在于主题无关性,没有区分页面内的导航链接、广告链接和功能链接等,容易对广告页面有过高评价;另外,PageRank算法的另一弊端是,旧的页面等级会比新页面高,因为新页面,即使是非常好的页面,也不会有很多链接,除非他是一个站点的子站点。这就是PageRank需要多项算法结合的原因。HITS算法的优点在于它能更好地描述互联网的组织特点,由于它只是对互联网中的很小的一个子集进行分析,所以它需要的迭代次数更少,收敛速度更快,减少了时间复杂度。但HITS算法也存在如下缺点:中心网页之间的相互引用以增加其网页评价,当一个网站上的多篇网页指向一个相同的链接,或者一个网页指向另一个网站上的多个文件时会引起评分的不正常增加,这会导致易受“垃圾链接”的影响;网页中存在自动生成的链接;主题漂移,在邻接图中经常包括一些和搜索主题无关的链接,如果这些链接自身也是中心网页或权威网页就会引起主题漂移:对于每个不同的查询算法都需要重新运行一次来获取结果。这使得它不可能用于实时系统,因为对于上千万次的并发查询这样的开销实在太大。

5结束语

平台设计论文范文第3篇

教学实训平台除了有效辅助教学外,还提供教学研究资源与资料的共享作用。教师主页中,设置了“职业教育研究”“、专业教学标准”“、专业建设资料”等版块内容。(1)职业教育研究。按照专业建设、课程开发、师资队伍建设、实训基地建设、数字化教学资源开发、中高职衔接等进行划分,汇集国家政策、指导文件、专家讲座等各种学习资料。促进教师进行职业教育理论学习,有效把握国家职业教育改革方向。(2)专业教学标准。包括本专业的人才培养方案、教学计划、课程标准、教学设计等,使专业教师了解本专业的教学标准。(3)专业建设资料。汇集本专业建设相关的文件、材料,方便教师了解本专业建设与发展动态。

2企业设计师页面设计

企业设计师通过登录教学实训平台,可以实现设计项目的上传以及与学生互动交流。学生资源库设计。(1)素材库。在教学实训平台中,单击“素材库”链接,可以展开素材库。该模块中汇集了各门课程的设计素材资源。并提供素材的上传与下载功能。(2)试题库。该模块汇集了各门课程的试题资源。教师可进行制定试题和随机试题的抽取及在线测试功能。(3)学案库。该模块汇集了各门课程的学案资源。学生可以进行学案的下载,填写完成后重新上传到平台中。通过学案,加强学生学习的能动性和自主学习能力。

3评价体系的整体设计

教学评价是专业教学中的重要环节。恰当的评价不仅可以让学生明确自身在设计方面的优势和不足,加深对设计的综合认知。而且,作为一种激励手段,将成为学生继续学习的巨大动力。因此,我们希望借助实训平台的开发,积极创新评价模式。(1)评价内容的设定。教学实训平台中,除了对项目作品实施“校企共评”外,还开发了“学生行为表现考核”等模块。在“案例练习”“、学案设计”等版块中也加入了考核功能,通过以上设置,对学生的专业技能、职业素质进行全面测评。(2)评价内容的汇总与管理。在教学实训平台中,设置了“积分榜”版块。系统自动汇总每名学生的得分,实现学生得分的自动排序与检索,同时可查询积分的明细。(3)“积分制”培养实施方案。专业制定了系统的“出校入企、工学结合”人才培养实施方案。根据学生的“积分值”,通过参加企业调研、校本企业实践、校外企业见习等手段,实施分层次培养。

4教学实训平台的建设成效

4.1实现了教学资源的全面整合与统筹管理。利用教学实训平台对各类教学资源进行了全面整合,并通过平台的、检索等功能实现了统筹管理与资源共享。4.2有效辅助并促进了项目化教学模式改革。教学实训平台利用“讲、鉴、练、做、评”五个课程版块,实现了项目准备、项目、素材下载、作品上传、赋分评价等功能。有效辅助了专业教师实施项目化实训教学。4.3创新了“积分制”评价模式,充分调动了学生学习的积极性和主动性“。积分制”以设计能力为主要的评价内容,以学习态度和职业素质作为辅助的评分选项,通过分值测评学生的专业能力,根据专业能力进行各种出校入企、工学结合的实践能力训练。充分调动学生学习的积极性和主动性,促进学生专业能力和职业素质逐步提升。

5体会与思考

平台设计论文范文第4篇

设计管理模块主要分为设计管理策划、设计阶段管理、施工阶段设计管理及设计管理指令等四部分,基本涵括了项目实施过程中需要进行设计管理的所有部分,力争对项目管理过程中的设计管理工作起到了全方位的指导规范作用。2.1设计管理策划

1.1.1设计标准

设计管理工程师在此模块中可以上传项目的设计依据,如设计规范、使用的材料规范、相关行业规范等,同时可以收集上传各分项验收规范以方便项目施工过程中的验收工作。

1.1.2设计进度

总进度控制目标:项目的进度管理工程师需要上传项目的进度计划(project文件),由系统根据上传的文件自动获取其中的文件节点以及相关文字信息,以系统格式体现,并具有编辑、更新及替换功能。此功能作为整个设计管理工作的主线贯穿始终。总投资控制目标:由采购合约工程师上传项目各阶段的投资控制目标,如估算、概算、预算等,系统根据上传的文件自动获取其中的文件信息,以系统格式体现,并具有编辑、更新及替换功能。此功能可以与其他系统模块互相结合交叉显示以进行投资控制工作。

1.1.3设计目标

由设计管理工程师上传项目建议书、设计任务书、可行性研究报告等设计目标至模块,用在各阶段作为设计参考,以审查该阶段图纸是否符合要求。2.2设计阶段管理

1.2.1设计图纸管理

该功能可以批量上传、修改、备注整个项目的图纸,方便项目所有成员查看及下载各阶段的设计图纸。

1.2.2控制内容管理

该控制模块负责记录和汇总在各个设计阶段中需要进行控制的信息,并在进行汇总和记录时,需要选择当前记录的信息是处于何种阶段的,包括:

①进度控制,负责记录和汇总各阶段各类图纸的到位情况、各图纸到位时间等内容,并能根据相关条件进行查询;

②质量控制,负责记录和汇总在各个设计阶段对于质量审查的信息,其中包括:专项审查、施工图审图等,并能根据相关条件进行查询;

③投资控制,负责记录和汇总在各个设计阶段对于投资审查的信息,其中包括:投资预算专题会议纪要、预算审查意见、设计回复等,并能根据相关条件进行查询。

1.2.3流程管理

该模块提供静态页面和链接,对于不同阶段设计流程进行描述,以方便用户按图进行操作。主要提供如设计管理总流程、设计管理工作流程图、设计任务书编制审核流程图、方案设计管理流程等内容链接。

1.3施工阶段设计管理

施工阶段的设计管理包括:图纸会审管理、设计交底管理、技术核定单管理、专题研讨会管理、设计变更管理,系统主要负责记录和汇总在各个设计阶段的信息,如会议纪要、通知单、核定单、设计变更单等内容。在进行图纸汇总和记录时,需要选择当前记录的图纸信息是处于何种阶段的,提供图纸附件上传和查看功能,并可根据上传图纸设定的相关条件进行查询。

1.4设计管理指令

1.4.1联系单

记录和汇总对于在设计过程中不同阶段联系单的信息。在记录联系单之前需要选择联系单所处的设计阶段。模块提供相关信息输入和附件上传功能,并能根据相关条件进行查询。

1.4.2通知单

记录和汇总对于在设计过程中不同阶段通知单的信息。在记录联系单之前需要选择通知单所处的设计阶段。模块提供相关信息输入和附件上传功能,并能根据相关条件进行查询。

2设计管理模块的考核管理

为了提高本项目管理信息平台的使用率,保证信息系统中项目的进度、质量、安全等关键信息能够得到及时、准确以及完整的考核,针对不同的项目管理模块,我们制定了与之相对应的设计管理考核模块。在设计管理工作中,我们主要从以下的关键考核点对项目的设计管理工作进行考核:

①设计任务书:设计任务书是否上传;

②设计阶段设计管理:设计管理进度计划、方案设计阶段图纸审查报告、扩初设计阶段设计图纸审查报告、施工图设计阶段图纸审查报告等内容作为附件上传及审批工作是否完成;

③施工阶段设计管理:图纸会审、设计交底、技术核定单及设计变更等内容是否录入;

④设计管理指令:联系单、指令单等内容是否录入。具体各考核分项指标的打分建议。通过对相应管理模块中必填内容的完整性、及时性以及准确性的评分,同时结合系统使用率的统计,对各项目的设计管理模块部分计算综合得分,作为项目及专业工程师工作的考核的一项指标,提高本项目管理系统的使用程度。

3结语

平台设计论文范文第5篇

校园网信息平台建设目标是建立符合艺术类学院校园信息化服务平台,以信息化建设带动教学工作的现代化,突出学院特色,为全院师生提供方便、优质的信息资源,创建获取信息的多种渠道。校园网络平台体现应用,以网络技术环境为基础,网络教学资源提供为核心的思路进行建设。促进教学手段、教学内容和教学方法的变革,构建更加完善优质的网络教学环境。

2资源库建设

资源库建设是校园网络平台建设的基础。资源库的建设过程分为三步走:首先研究分析使用对象的需求,分析我院的培养目标和发展方向,对现有的信息化环境进行评估,明确硬件条件是否能够满足资源库建设的要求;其次,在明确需求的基础之上,搜集资源库建设中的各项具体目标,包括应用和管理两个方面的内容;再次,做好校园网络平台建设的实施环节步骤。

1)材料准备。

资源库的材料准备是一个复杂的系统工程,需要不断地积累和沉淀,材料的准备可以将有效资料整理后,上传至服务器,方便师生在网络上进行备课、制作课件、教学和电子阅读,同时也有助于学生进行网络自主学习或学习小组协作学习和研究问题。①文档材料。文档材料主要包括电子版的教学案例、图片、照片、装饰图、背景图、按钮等等。针对艺术类专业的培养特点,准备相关文字资料。为教师制作电子教案、备课、教学研究等提供电子化的服务手段。②音频、视频资料。艺术类院校的动画专业、设计专业和影视专业对资源库的音频、视频内容要求较高,在设计网络平台时,要注意硬件支持条件。其中,资源库中要提供大量的经典影视片段、实验、动画、歌曲、特效声音、网络课程等等。为学生选择网络课程的学习提供教学辅助手段,学生可以在课下自主选择感兴趣的课程及内容,不仅提高学生的学习积极性,也丰富了学生的业余时间,为校园文化建设提供支撑。

2)搭建环境。

校园网络平台搭建主要包含两个层次,网络设备硬件及网络技术层面为基础,搭建网络应用平台。网络的硬件平台和技术平台作为组成校园网络平台的基础,要遵循经济性、实用性、先进性和成熟性,可靠性和稳定性等原则,采用校园网络核心层,汇聚层和接入层的三层网络体系结构。采用千兆主干网络,百兆接入网络,使用国内高端网络产品,包含计费系统、防火墙、入侵检测、身份认证等网络安全系统体系,双出口带宽保障网络稳定接入运行。

3)网络应用系统平台。

网络应用系统平台将相关应用系统和信息管理系统统一整合,形成完善高效地管理模式,提高使用频率和应用效果。

①教学资源系统。

建设校园网络教学资源系统平台,是校园信息平台的主要内容之一,教学资源占据校园网络资源的主要地位。网络课程:通过互联网将教学内容复制到网络上,实现辅教学,扩展知识的受众面,搜集优秀课程的教案、课件及相关学习内容,供校园用户使用,也可以将部分课程内容放置到互联网上,方便学生沟通和自主学习。学生作品:为保证教学资源的示范作用,在教学资源库中,搜集学生作品,学生的优秀作品进行定期展示和更新,提高学生的学习热情和积极性,对于艺术类院校的专业特点,学生的作品内容较多,可以采用电子相册等方式,将学生的作品长期保留,为学生后期步入社会提供学习期间的佐证材料。学生论坛:校园内学生在网络环境中进行交流,通过设定不同的主题或模块,引导学生依据兴趣形成学习小组,促进学生的交流,提高学生学习兴趣。学习资源:提供类型丰富的学习相关资源,其中可以包含国内外电影、动画、话剧、服装、美术等其他可搜集的各类型资源,丰富网络平台的资源储备和类型。扩展学生的文化视野,使他们在业余时间有大量的业余文化生活,提高学生对各类文化的了解和兴趣。

②视频点播系统。

视频点播系统主要包含课程内容和非课程内容。课程内容建设主要包含:优秀学校优秀教师的公开课、国家及省级的公共课资源、校内优秀教师教学资源,采用剪辑视频形式,让学生在学习过程中亲临其境,感同身受,与同步现场学习达到基本一致的学习效果。非课程内容建设主要包含:学生课程以外,完成作业时扩展学习内容的相关视频内容。国内外优秀公开课、与专业相关的优秀作品集,社科文类优秀视频等等。此类内容建设涉及面广、内容多,根据学院的专业设置选择部分内容进行建设。

③电子阅览系统。

电子阅览内容以计算机技术和网络通信技术为基础,将电子类型的文献阅览、咨询、培训和服务为一体构建的现代化多功能阅览室。为学生提供统一上网进行资料搜集和学习的地方,其中包含的数据库内容,为学生免费使用,为学生的科学研究提供平台和场所,有助于提高学生的科学研究能力。

3总结

平台设计论文范文第6篇

1.1步进电机驱动电路设计

步进电机驱动电路(见图3)主要由细分电路、驱动控制芯片和光耦隔离电路组成。步进电机转动的角位移和输入的脉冲数目要求严格成正比。如果按照整步的工作方式,会受到步进电机振动大、噪声大等影响;运用细分,不仅可使振动和噪声减小,且可以减小步进电机误动作产生的平台倾斜度偏移,从而减小激光定位的误差;并且,细分数取得越高,在远端产生的偏移量越小。为了使步进电机工作的误差尽可能的小,本设计中驱动电路采用高细分步进电机驱动芯片THB6128。图3中,M1、M2、M3端为细分的设定端,根据这3端所提供的高低电平的不同,有1、1/2、1/4、1/8、1/16、1/32、1/64、1/128多种细分可选,当三端全为高电平时,细分为128。CW/CCW端为电机正反转控制端,CW/CCW为低电平时,电机正转;反之,电机反转。ST/VCC端为低电平时,THB6128进入待机,功耗极低。另外,为了防止对电源或对地短路,该芯片内置温度保护及过流电路。驱动芯片与单片机相连的端口均采用光耦隔离,U8、U10、U11为光耦隔离,防止电机驱动电路与单片机控制电路产生干扰;LED可以直观显示隔离控制的通断。

1.2激光旋转控制电路设计

激光发射电路主要由步进电机驱动电路、激光发射控制电路、光耦隔离电路及细分电路构成,如图4所示。激光发射器控制电路主要完成控制激光发射器发射和转动,保证其发射的激光能实时完成激光接收靶跟踪,使农田平地机被实时控制。由单片机输出的激光发射器发射信号通过光耦隔离电路后输入激光发射器控制电路。其中,JG为单片机P46端口的控制输出端,U17为电路的光耦隔离器。激光发射器的旋转由步进电机驱动电路控制,由单片机输出信号控制THB6128的使能、脉冲及方向端从而控制激光发射器的旋转。

1.3电源电路设计

电路选择采用简单高效电源芯片LM2576,该稳压器是单片集成电路,能实现热关断和电流限制保护,能驱动3A负载。控制核心的电源设计如图5所示。在直流电源输入端加入TVS瞬变电压抑制二极管PK6E22A,该二极管能在收到反向瞬态高能量冲击时,迅速将两极间的高阻抗变为低阻抗,同时吸收高达数千瓦的浪涌功率,有效地保护电子电路中的电子元器件免受浪涌脉冲的破坏[4]。为了防止功率地跟信号地之间的互相干扰,在电源电路设计中,功率地和信号地之间加入了电感L2进行隔离。

2系统软件设计

由于农田平地机激光发射平台调平控制系统的工作环境的恶劣性,易对数据的采集造成干扰,再加上倾角传感器自身存在的温度漂移等,会加大倾角数据采集的误差。因此,对倾角传感器采集的数据时,先采用基于限幅滤波法和递推算术平均值滤波算法相结合的复合滤波法算法对数据进行预处理[5],接着采用角度偏移与温度变化的三次曲线对倾角传感器温度漂移进行补偿,提高数据采集的准确性[6]。另外,由于步进电机的非线性特征,对其非线性参数进行整定较困难,而常规的PID算法由于参数整定过程繁琐,实施起来较复杂,并且在越接近预设的目标值时,越容易产生超调而抖动,影响其控制效果的进一步提高。因此,采用基于RBF神经网络的PID算法控制器对步进电机进行控制,能保证步进电机控制系统的响应性能提升,响应时间缩短,动态性能、自适应性和鲁棒性更佳。系统总体流程图,如图6所示。系统初始化后,首先进行倾角数据采集,系统采集当前的平台的倾角数据后,经过滤波和补偿处理,直接交给单片机进行判断:如果到达调平的预设值,则结束。没到达预设值的话,如果是大于预设值,则电机正转,控制平台支腿进行相应的伸缩调整平台的倾斜度,再重新进行数据采集;如果小于预设值,则电机反转,控制平台支腿进行相应的伸缩调整平台的倾斜度,再重新进行数据采集。如此反复进行平台调整,直至达到预定的平台倾斜度为止。

3试验分析

本文设计的农田平地机激光发射平台调平控制系统主要是为提高农田平地机的双激光源定位系统的精度做准备,在双激光源定位系统中发挥重要的作用。而整个调平过程中,由于倾角传感器和调平电机的特性,此控制系统主要受温度影响。所以,本试验在激光发射器校准完成后,设计了在加入基于RBF神经网络的PID控制方法对电机控制,并在不同温度环境下的试验。将调整平台置于不同的温度环境中,同时让激光器支座处于允许的任意倾斜角度状态,分别测试支座在大倾角(20°~30°)和小倾角(10°左右)状态下系统调整的可靠性。

1)13℃时,大角度调平试验数据如图7所示。

2)13℃时,小角度调平试验数据如图8所示。由图7、图8可知,采用基于RBF神经网络的PID控制调平时,在农平地过程中调平过程的前期,调平速度快,当角度越接近目标角度时,速度明显减慢;若达到调平要求的预设精度值0.03°时,调平停止;而且在调平过程中很少出现超调和振荡,当倾斜角度较小时,调平完成的时间相对较短。

3)25℃,大角度调平试验数据如图9所示。

4)25℃,小角度调平试验数据如图10所示。由图9和10可知,当温度变化时,平台大倾斜角度和小倾斜角度的调平规律与图7和8相似。这说明经过加入基于RBF神经网络的PID控制方法后此系统受温度影响不大。

4结论

平台设计论文范文第7篇

关键词:CAN总线ECNJ1939协议通信平台

引言

随着集成电路和单片机在汽车上的广泛应用,现代汽车上的电子控制器的数量越来越多,常见的有发动机的电子燃油喷射装置、防抱死制动装置(ABS)、安全气囊装置、电动门窗装置、主动悬架等。电控系统的增加虽然提高了轿车的动力性、经济性和舒适性,但随之增加的复杂电路也降低了汽车的可靠性,增加了维修的难度。从布线角度分析,传统的电子气系统大多采用点对点的单一通信方式,相互之间少有联系,这样必然造成宠大的布线系统。因此,一种新的概念——汽车上电子控制器局域网络CAN,也就应运而生。为使不同厂家生产的零部件能在同一辆汽车上协调工作,必须制定标准。按照ISO有关标准,CAN的拓扑结构为总线式,因此称为CAN总线。CAN总线被设计作为汽车环境中的微控制器通信,在车载各电子控制装置ECN之间交换信息,在车载各电子控制装置ECN之间交换信息,形成汽车电子控制网络。

控制器局域网CAN(ControllerAreaNetwork)是一种多主方式的串行通信总线,基本设计规范要求有高的位速率,高抗电磁干扰性,而且能够检测出产生的任何错误。CAN在汽车上的应用,具有很多行业标准或者是国际标准,比如国际标准化组织(ISO)的ISO11992、ISO11783以及汽车工程协会(SocietyofAutomotiveEngigeers)的SAEJ1939。CAN总线已经作为汽车的一种标准设备列入汽车的整车设计中。

图1

1CAN总线特点及其通信协议

1.1CAN总线简介

CAN通信协议规定了4种不同的帧格式,即数据帧、远程帧、错误帧和超载帧。基于以下几条基本规则进行通信协调:总线访问、仲裁、编码/解码、出错标注和超裁标注。CAN遵从OSI模型。按照OSI基准模型只有三层:物理层、数据链路层和哀告层,但应用层尚需用户自己定义。CAN总线作为一种有效支持分布式控制或实时控制的串行通信网络,应用范围遍及从高速网络到低成本的多线路网络。如:CAN在汽车中的发动机控制部件、ABS、抗滑系统等应用中的位速率可高达1Mbps。同时,它可以廉价地用于交通运载工具电器系统中,例如电气窗口、灯光聚束、座椅调节等,以替代所需要的硬件连接。其传输介制裁为双绞线,通信速率最高可达1Mbps/40m,直接传输距离最远可达10km/5kbps,挂接设备数最多可达110个。CAN为多主工作方式,通信方式灵活,无需站地址等节点信息,采用非破坏性总线仲裁技术,满足实时要求。另外,CAN采用短帧结构传输信号,传输时间短,具有较强的抗干扰能力。

CAN总线与其它通信协议的不同之处主要有两方面:一是报文传送不包含目标地址,它是以全网广播为基础,各接收站根据报文中反映数据性质的标识符过滤报文,其特点是可在线上网下网、即插即用和多站接收;另外一个方面就是特别强化了数据安全性,满足控制系统及其它较高数据要求系统的需求。

1.2J1939通信协议

J1939协议是在CAN总线通信协议2.0B(29标识符)之上具体实现了应用层,是SAE为重载卡车和客车制定的通信协议;以CAN2.0B为基础,物理层标准与ISO11898规范兼容并采用符合该规范的CAN控制器及收发器。J1939协议将CAN标识符划分为如下几个部分:优先级(P)、数据页(PGN)、协议数据单元(PDU)格式、PDU特定域(PS)和源地址(SA)。J1939/71应用层文档定义了车辆控制的各种参数及命令的PGN。

由此可见,J1939与CAN通信协议的区别在于29位标识符(ID),数据场相同。J1939将CAN的29位标识符(或称辨识别)进行了详细的物理定义。通过PDU将CAN标准格式封装为J1939协议格式。PDU信息帧又由优先权P、保留位R、数据页DP、协议数据单元PF、扩展单元PS、源地址SA和数据场DATA七个部分组成,即CAN的29位标识符加上数据。

2总体设计

2.1汽车电控网络结构

汽车内ECU之间的数据传输特征主要差别在于数据传输频率,例如发动机高速运行时,进行的是高频数据传输,每隔几ms就传输1次;而在低速运行时,进行的是低频数据传输,每隔几十ms乃至几百ms才传输1次。然而为了满足实时性要求,就要求汽车内每个控制单元尽可能实现汽车公共数据共享,但又由于每个控制单元对实时性的要求是因为数据的更新速率和控制周期不同而不同的。这就要求其数据交换网是基于优先权竞争的模式,且本身具有较高的通信速率。CAN总线正是为满足这些要求而设计的。CAN已有国际标准,即高速场合的ISO11898和用于低速场合的ISO11519-3。

通常的汽车网络结构采用多条不同速率的总线分别连接不同类型的节点,并使用网关服务器来实现整车的信息共享和网络管理。若按照美国汽车工程师协会(SAE)车辆网络委员会标准SAEJ2057,将汽车数据传输网划分为三类。这里可用图1简单说明。其中网关是汽车内部通信的核心,通过它可以实现在CAN总线上信息的共享以及实现汽车内部的网络管理和故障诊断功能;将各个数据总线上的信息反馈到仪表板总成上的显示屏上,驾驶者通过仪表板上的信息就可以知道各个电控装置是否正常工作了。

2.2通信平台硬件设计

在设计中,主控芯片CPU选用51系列的单片机。CAN通信控制器执行完整的CAN协议,完成通信功能,包括信息缓冲和接收滤波,故CAN控制器选用Philips的SJA1000。选用PCA82C250作为CAN总线的收发器,PCA82C250是CAN协议控制器和物理总线之间的接口,在运行环境中具有抗瞬变、抗射频和抗电磁干扰性能,内部的限流电路具有电路短路时对传送输出级进行保护的功能。传输介质采用屏蔽电费,在测控节点与介质之间加入光耦电路,以提高总线接口的抗干扰能力。图2为通信平台硬件框图,图3为控制器与收发器连接接口。

为进一步提高系统的可靠性,需要考虑到系统的冗余设计。由于汽车环境恶劣且干扰因素较多,在CAN_H和CAN_L信号线与地线之间分别并联了两个电容,滤去噪声,使信号传输平稳。双屏蔽电费可设两套,在两套介质上同时进行信息传输。接收方只用一个介质,在冗余和非冗余段的连接临界点进行总线切换。

2.3软件设计

简单地说,本通信平台所要实现的功能就是,使各个节点(ECU)通过CAN总线实现相互通信,发送接收命令、信息等,并实现数据的共享,从而提高各自的控制性能和运行效率。汽车上CAN数据总线的每个节点(ECU)都有自己的地址和名称相对应。ECU地址指出了数据传送的目的地,而其名称则标识了ECN的基本功能。节点连续监视着总线上发出的各种数据。当所收到的数据地址值与自身地址吻合时,该节点就获得令牌。在通信规约中,唯一获得令牌的该节点有权发送数据,以防止两个或两个以上的节点同时传输数据引起混乱。同时每一个节点都有机会得到令牌,完成数据传输。

本软件设计是基于KeilC语言编写的。程序主要由主模块、中断处理模块及数据通信模块等组成,如图4所示。

图4

主模块完成对硬件初始化、寄存器的配置、SJA1000初始化等;中断处理模块包括数据中断的发送、接收、错误处理及报警处理等;数据通信模块完成数据的请求、发送、接收等。

当一个节点A发送数据请求报文(远程帧),向另外一个节点B请求报文(应答帧)时,节点B接收到请求后,经过判别,而后发送数据(应答帧)。由于数据请求没有数据场,所以相对数据帧长度小很多。经分析验证之后与节点B收到的数据相同,请求数据程序得到验证。

平台设计论文范文第8篇

风机吊装平台由浮箱标准箱模块拼组而成。设计时考虑了主吊机与辅助吊机的放置与作业位置、风机部件的存放、辅助器具的放置等。吊装作业时可考虑先进行风机塔筒吊装,再进行机舱与发电机吊装,最后进行轮毂与风机叶片组装及吊装作业。轮毂与风机叶片组装作业时如果空间不够,可在局部加拼浮箱模块对平台进行局部扩展。浮箱风机吊装平台主尺度为75m×40m,由84只浮箱标准箱模块构成;其中主吊装平台是徐工650t履带吊作业平台,由64只浮箱模块构成,承受荷载最大,取其进行结构分析。锚定方式采用投锚固定和锚桩固定相结合。投锚固定采用四爪锚或者犁锚,对平台整移进行基本控制;锚桩固定可以对平台水平位移精确控制,同时桩可以在固桩架中上下移动,适应潮位的变化。

2浮箱模块设计

浮箱模块为全封闭箱形结构,主尺度为:沿通道纵向长2.5m,沿通道横向宽12.5m,模块高度1.8m。浮箱纵向与横向均采用铰接接头连接,每个浮箱重量约为140kN。浮箱由6mm钢板构成主体框架,通过边缘角钢焊接在一起,甲板下和底板上都焊有T型横梁、纵梁、纵肋、横肋;侧板和端板焊有角钢型水平肋、T型竖肋和竖梁。模块内部由横向隔舱板分隔为两个水密舱,一侧模块端板以及横向隔舱板上开设有人孔以便维护与维修;为了提高箱体坐滩承压能力,在模块内部横向设置3道承压桁架;为了纵、横向传力纵总强度需要,模块内部与接头相连的纵、横梁截面设计的较大,其它肋骨设计则以局部强度控制,其截面比纵、横梁的截面小,模块甲板及底板以纵、横梁与肋骨组成正交异性板结构。模块壳板材料为CCSB,内部结构材料为Q345,单双支耳连接件材料为30CrMnTi。

3浮式吊装平台结构分析

利用大型结构分析软件ANSYS对主吊装平台坐滩承压工况和浮游工况进行了仿真分析,为平台的设计提供了理论依据。结构分析时考虑到吊装平台结构庞大,采用了ANSYS结构分析中有限元子结构法,能够较好地模拟拼装式吊装平台这种特殊拼装式结构。吊装平台为临时性结构,以下结构分析中的容许应力均根据《军用桥梁设计准则》(GJB1162—91)选用。

(1)坐滩承压:根据技术参数要求,采用温克勒弹性地基模型,地基承载力为0.02MPa。吊装作业时,考虑吊臂方向和风机、塔筒的重量,经计算得平台承受的最大荷载为8000kN。浮箱模块子结构、吊装平台母结构,吊机的两个履带作用在30号和42号子结构上。经计算分析,最不利的浮箱为30号子结构。浮箱内部各部件的最大应力及最大接头力。内部结构最大应力为104.42MPa,小于Q345的弯曲应力292MPa。平台的最大沉降量为48.59mm。

(2)浮游工况:此工况为生存工况。由于水很浅,总体分析中浮游工况只考虑静力分析,平台承受的最大荷载为8000kN。浮箱模块子结构建模、吊装平台母结构,母结构由64个子结构组成,吊机的两个履带作用在30号和42号单元。经计算分析,最不利的浮箱为42号子结构。浮箱内部各部件的最大应力及最大接头力如表1所示。由表1中知,内部结构最大应力为134.07MPa,小于Q345的弯曲应力292MPa。平台的最大吃水为573.05mm,静载吃水为311.11mm,总吃水884.16mm,则干舷为915.84mm,满足要求。

(3)考虑到施工拼组大面积作业平台需要,浮箱连接纵横向均采用单双耳。为了模拟分析接头的受力情况,采用ANSYSWorkbench软件分析,分析时考虑接头间隙、连接部件之间的接触特性以及弹塑性影响,采用Solidworks分别进行单双支耳的建模,然后装配建立实体模型并导入Workbench中,单支耳模拟结果,双支耳模拟结果,耳孔边缘有应力集中现象,均小于30CrMnTi的屈服应力1176MPa。在销中亦有应力集中,最大等效应力为1301.1MPa,小于30CrMnTi的局部承压应力1412MPa,因此接头的设计是合理的。

4结束语

平台设计论文范文第9篇

网络化信息系统要素全、规模大且结构复杂,同时技术体制不断发展,面临着网络攻防对抗威胁,由此对网络化信息系统试验平台结构提出了新的挑战。网络化信息系统试验平台具有以下功能特征:1)可扩展性:试验平台的硬件能力和试验资源类型可根据试验需求扩展;2)可配置性:试验平台提供的试验资源具有可编程能力,允许用户根据试验任务配置系统架构、应用和协议等试验环境特征;3)安全隔离性:用户的不同试验之间互不影响,且具有威胁性(如蠕虫和病毒等)的试验不会对试验平台硬件基础设施造成不可恢复的破坏;4)可重组性:试验资源通过虚拟化技术逻辑分片后,可根据不同试验任务要求实现资源封装、调度和聚合,在试验完成后可实现对试验资源的释放、净化和回收;5)快速响应性:能够利用试验资源快速构建目标系统和试验环境,实现试验过程自动化,以提高试验效率。上述功能特征中,可扩展性强调试验平台的开放性和兼容性;可配置性和可重组性强调能针对不同试验任务按需生成目标系统的能力;安全隔离性为确保试验平台基础设施(基础网络、计算设备和存储设备等)安全而提出要求;快速响应性从试验组织效率角度提出要求。本文基于虚拟化思想,提出了一种面向网络化信息系统的虚拟化试验平台结构,通过试验虚拟化服务层实现了对复制目标系统的仿真、实物和虚拟化资源(虚拟服务器和虚拟操作系统等基于计算机虚拟化技术形成的试验资源)的统一组织、调度和管理,满足多样化试验任务需求。该结构具有隔离试验平台基础设施和试验目标系统的特点,支持具有破坏性的对抗试验以及网络化信息系统能力评估。

2虚拟化试验平台

2.1分层结构模型根据以上网络化信息系统试验平台设计原则,在参考虚拟化环境基础架构上,提出了如图1所示的试验平台分层结构模型,图中LVS为真实/虚拟/仿真。试验平台分层结构分为试验基础设施层、试验虚拟化服务层和面向任务的试验环境层3部分。面向任务的试验环境层是用户试验的抽象模型,通过一组规范化的语义抽象描述了试验对象的本质属性和生命周期;试验虚拟化服务层是试验服务的提供者,对仿真、实物和虚拟化3种形态的试验资源进行调度、部署和优化分配,通过将试验对象本质特征映射到分配的试验资源上复制目标系统,同时实现对试验的隔离、控制和数据采集等功能;试验基础设施层是试验服务的承载者,屏蔽了底层试验资源的异构性,为试验虚拟化服务层提供抽象的资源池和统一的试验资源访问接口。虚拟化试验平台由试验基础设施、试验虚拟化服务、面向任务的试验环境和试验标准与模型组成,其功能组成如图2所示。试验基础设施主要由试验资源池、试验运行网络和试验管理与控制网络等组成。其中,试验运行网络实现对异构试验资源的网络化组织。试验管理与控制网络连接各试验管理系统,如试验设计、试验驱动和试验评估等系统。前后2个网络之间通过防火墙等安防设备隔离,以确保试验安全。试验虚拟化服务主要由试验任务管理、试验资源管理和试验资源部署等服务组成。整个试验虚拟化服务层是实现第1章试验平台功能特征的核心,可进行试验运行与试验基础设施分离,使得底层试验基础设施层的扩展、故障和运行过程对面向任务的试验环境层完全透明。试验用户仅需将试验任务需求给试验虚拟化服务层,即可开展网络化信息系统能力评估试验。面向任务的试验环境主要完成试验任务的规划和描述,并向试验虚拟化服务提出试验任务请求。另外,试验标准与模型是实现虚拟化试验平台统一的基础,所有试验的设计、组织和管理等均需遵照试验标准和模型实施。试验平台3层结构组成间相互配合完成试验任务,虚拟化试验平台活动视图如图3所示。试验平台试验过程如下:1)试验组织方首先提取试验对象的本质特征,并按照试验标准形成目标系统和试验运行的配置文件。本质特征指试验对象在试验过程中表现出最为重要的组成、结构、功能和行为及其属性。2)面向任务的试验环境根据试验对象的本质特征信息,向试验虚拟化服务发出目标系统复制和试验环境构建请求。目标系统复制和试验环境构建由试验虚拟化服务组织完成。试验虚拟化服务在接收请求后,从试验资源池中分配可用的仿真、实物和虚拟化资源,并完成异构试验资源的属性配置和集成部署,形成满足试验任务要求的目标系统和试验环境。3)完成目标系统部署后,由面向任务的试验环境加载试验激励信息驱动整个目标系统运行,试验基础设施承载试验运行。4)试验虚拟化服务在试验过程中对试验运行数据和事件等进行记录,准备试验评估数据。5)试验结束后,由试验虚拟化服务对试验资源进行净化和回收。

2.2技术实现方法虚拟化试验平台核心是如何实现各种试验资源的虚拟化生成、调度、分配和管理,功能实现主要涉及以下3个方面:1)试验目标系统的基础试验资源生成;2)虚拟化试验平台的安全隔离;3)对仿真、实物和虚拟化3种不同类型资源统一部署和集成。由于网络化信息系统组成要素多样,不同类型系统组成的特征差异较大。故针对不同类型资源本文采用了不同的基础试验资源构建方法,如表1所示。表1中,基于软路由的路由器仿真方法主要是在操作系统容器中(如Linux容器)部署Qugga和Dummynet[6]等网络设备和链路仿真系统,实现大规模的通信网络路由器资源仿真。基于平台虚拟化的硬件环境构建方法主要采用商用的VMwareESX和开源项目OpenVZ等实现计算硬件的虚拟化复制。本文基础试验资源构建方法均采用现有技术实现,不再赘述。虚拟化试验平台应确保生成目标试验环境和试验基础设施的安全隔离,是虚拟化试验平台重要特征。虚拟化试验平台安全隔离需在试验基础设施、试验虚拟化服务和试验数据3方面同时实现,其原理如图4所示,具体如下:1)试验基础设施安全:在威胁性试验过程中,来自目标系统的恶意代码等可能渗透、驻留或攻击试验基础设施。因此,面向任务的试验环境和试验基础设施之间需部署防火墙等隔离设备,对非法访问以及非授权用户等进行隔离。每次试验后,还需对试验资源进行释放、净化、回收和整理,以免影响下一次试验安全。2)试验虚拟化服务安全:用户在虚拟化试验平台上试验时,可能因误操作或非法访问等造成试验基础设施或服务损坏。因此,需在试验运行网络上部署入侵检测设备,监控来自试验虚拟化服务的非法访问。同时通过防火墙、密钥和证书认证等方式,控制用户对试验虚拟化服务的访问,以确保用户严格按照试验方案组织试验。3)试验数据安全:当用户直接从面向任务的试验环境中采集数据时,恶意代码和攻击行为会乘机渗透到试验虚拟化服务和试验基础设施。针对该问题,本文提出了基于的数据采集方式。实现虚拟化试验平台还应将仿真、实物和虚拟化3种形态试验资源进行统一分配、调度、部署和集成。本文提出了基于端口映射和路由重定向的异构试验资源管理方法,试验资源虚拟化管理模型如图5所示,具体如下:1)对于虚拟化和实物资源的统一管理,可采用端口映射方法实现。通过将虚拟计算节点资源的网络接口设置为混杂模式,并将虚拟计算节点资源的所有对外数据交互映射到物理网络接口实现。2)对于仿真和实物资源的统一管理,可采用路由重定向方式实现。通过修改仿真运行结果和数据流输出路径,用户可透明地将仿真数据导入实物资源对外接口,从而实现仿真资源和实物资源的互操作;反之亦可。3)对于仿真和虚拟化资源,由于这2种资源均依托计算硬件设备实现,资源间可直接交互。

3试验分析

根据以上网络化信息系统虚拟化试验平台结构设计,本文基于10台(IBMM3系列服务器)和1套高性能网络,构建了试验平台原型系统。依托试验平台原型系统,完成具有218个节点规模的网络化信息系统(含传感器、通信网络、计算设备、情报处理和作战指挥系统等节点)复制,实现了对虚拟化试验平台的可配置性、安全隔离性、可重组性和快速响应性等特征的验证。虚拟化试验平台典型试验情况如图6所示。由图6(a)可见,虚拟化试验平台提供了可视化的目标系统配置功能,实现了面向任务的目标系统配置。图6(b)给出了试验过程中内存资源变化。试验开始前(黑色虚线左侧),上一次试验所占用的内存资源回收至资源池中;试验开始时,资源重新分配和部署,资源曲线显示内存占用状态,试验进行时达到最大值;试验结束后,内存资源再次释放和回收,表明本文提出的试验平台结构具有对试验资源重组能力。以上218个节点规模的目标系统复制花费时间如表2所示。可见,试验花费总时间小于30min,具有较高的试验快速响应性。另外,利用网络侦察、扫描和渗透等工具测试了构建的虚拟化试验平台安全性,验证了该平台能够应对主要的2~4层(链路层、传输层和网络层)网络威胁,确保了试验安全性。由于试验虚拟化服务层的隔离性,两者不能直接互相访问,故扫描和监听中均未出现任何试验基础设施层信息。

4结束语

平台设计论文范文第10篇

本船在艉部设置了两个甲醇舱,甲醇溶液被供应至海洋石油平台用于钻井液的调配,以抑制钻井作业中钻井隔水套管内的水合物的形成。

2船舶布置

2.1舱室布置

根据A673决议第3章的要求,有毒有害货品的液货舱应与机械处所、轴遂、干货舱、起居处所、服务处所、饮用水舱和生活用品储藏室,用隔离舱、留空处所、货泵舱、空舱、燃油舱或类似处所进行分隔。9000HPPSV深水供应船配有两个甲醇舱配布置在艉部,为不锈钢材质的独立舱室,每舱容积89m3。由干隔舱与其它舱室隔开。由于甲醇舱内为“0”类危险区域,通常设计都以在隔离空舱内充注氮气或者注入淡水的方式来与安全区域隔离。

2.2甲醇泵布置

每个甲醇舱都配一立的浸没式液货泵,并由各自独立的管路系统进行注入排出作业。9000HPPSV项目选用的甲醇泵为侧装式液压离心泵,75m3/h,7.7bar。侧装泵的结构非常简单,泵的液压马达装在干隔舱内,泵体安装在甲醇舱内,通过隔舱填料函连接,无需中间接管。与顶装式深井泵相比安装简便施工方便,成本也要低很多。虽然在扫舱性能上不如深井泵,但对甲醇扫舱余量要求不高的平台供应船来说并无太大影响。

2.3甲醇装卸站布置

平台供应船通常都设有四个货物装卸站,舯部左右舷、艉部左右舷各一个。甲醇舱的管路驳运系统都是相互独立的,考虑甲醇货品的危险性,为了避免驳运管路穿过其它舱室及尽量减少管路长度,甲醇舱货物系统管路都引致同侧的装卸站。在装载或卸货过程中,装卸站区域可能会产生大量蒸汽,根据CCS规范对危险区域划分的要求,甲醇货物出口向上,以6m为半径,无限高度的垂直圆柱内,以及出口向下,以6m为半径,半球面的露天甲板区域为“1类危险区域”;6m半径球面之外4m的露天甲板区域为“2”类危险区域。如果在舯部及艉部装卸站都设置了甲醇货物接口,危险区域可能会占甲板面积的80%以上。这也意味着此域内的电气设备都必须为合格防爆型。平台供应船普遍自动化程度较高,如危险区域过大,成本及施工要求都会大大增加。所以在这类船舶设计初期就应与船东协商澄清,如能满足使用要求则只在艉部的装卸站对甲醇进行装载和卸货,这也可以节省船东日后的维护成本。

3系统设计简介

甲醇被划为“P”类具有污染危害性化学品,蒸汽易燃易爆。但平台供应船运输此类货品数量“有限”,因而不同于化学品船,如完全满足IBCCode-散装运输危险化学品船舶构造与设备规范并不现实。IMOA.673决议-近海供应船散装运输和装卸有限数量有毒有害液体物质指南针对此类船舶对“有限数量”进行了定义:平台供应船载运的有毒有害液体数量不超过800m3和载重量体积(单位:立方米,密度为1.0)40%的较小值。A.673决议合理的考虑此类平台供应船的设计特点及实际,规定了需要满足IBCCode要求的范围。文章主要通过对相关规范规则的研究,对以下几个与甲醇有关的系统进行简单介绍。

3.1甲醇货物系统

3.1.1设计压力

在决定甲醇系统设计压力时,应考虑该系统中的释放阀的最高调定压力。对没有释放阀保护或可能与释放阀隔离的管路和管系部件应至少按下述压力的最大值进行设计:

(1)对于可能存在甲醇的管路或部件,取该液体在45℃时的饱和蒸气压力;

(2)相关泵排放释放阀的调定压力;

(3)当相关泵未装排放释放阀时,取该泵出口处的最大总压头。

3.1.2管壁厚甲醇系统管路一般选用不锈钢管,根据系统设计压力计算壁厚,公式可参照IBCCODE第5章,第1节,此处不再赘述。

3.1.3管路间连接方式甲醇货物系统的管路一般采用对焊连接,法兰只允许用在管路与泵、阀门、膨胀接头的认可形式连接,并且法兰应为焊颈法兰。DN50以下无晶间腐蚀的管路也可考虑使用套管焊接连接。外径≤25mm的仪表管路及次要管路可以使用螺纹连接。

3.1.4管系试验

管路在组装完毕后,每一管系应经至少为1.5倍设计压力的静水压试验。然而,当管系或部分系统已制成并装配备了所有附件后,静水压力试验可在船上安装前进行。焊接的接头应在船上以1.5倍设计压力进行静水压试验。在船上安装完工后,每一管系都应进行泄漏试验,其试验压力系取决于适用的试验方法。对于甲醇舱内的管路和管端开敞的管路,可按照公认的标准可同意放宽这些要求。

3.1.5管路布置

甲醇货物管路应布置在甲板以上,避免布置在甲板以下甲醇舱外侧与外板之间,除非能保持对破损保护要求的距离。布置时应考虑防止机械破坏,在穿过舱壁时还应能防止其在舱壁处产生过大的应力。需注意以螺栓连接的法兰不应穿过舱壁。为了适当控制甲醇驳运,每个甲醇舱的注入管路和排放管路上应设置一个手动操作的截止阀或截止止回阀;在每个货物软管连接处应设1个截止阀;所有甲醇货物泵应设有遥控关闭装置。

3.2货物透气系统

透气系统的目的是防止甲醇舱内的蒸汽压力过压或欠压。每一个甲醇舱都应设置独立于其它舱室透气的系统,能够避免蒸汽集聚和进入安全处所及可能发生火灾、爆炸的处所。透气管布置时应连接到舱室顶部,出口应允许蒸汽垂直向上喷射而不受阻碍,并应尽可能在所有可正常操作的横倾和纵倾的条件下使货物透气管路能自行排放回液货舱内。IBCCODE将液货舱的透气类型分为开式透气系统和控制式透气系统。开式系统指在正常操作期间,允许货物蒸汽自由进出液货舱而无任何限制,此种方式只能用于无安全危险和无毒危险货物。控制式透气系统由一个主透气系统和一个辅助透气系统构成,当其中一套装置发生故障时能允许完全释放蒸气以防止过压或欠压。主系统是在每个液货舱内设置的压力真空释放阀,以限制舱内的压力或真空。辅助透气系统可由安装在每个液货舱内的压力传感器以及安装在货物控制站的监控系统组成,监控系统应设有报警装置,当舱内出现过压或欠压时报警。甲醇舱透气系统需选用控制式透气系统,其设计和操作应能保证在货物操作期间液货舱内所产生的压力或真空不应超过货舱的设计参数。在确定液货舱透气系统的尺寸时应考虑的主要因素如下:

3.2.1设计的装卸率。

3.2.2装货期间气体逸出:至少应为最大装货速率乘以1.25系数。

3.2.3货物蒸气混合物的密度。

3.2.4透气管、交叉连接阀和配件的压力损失。

3.2.5释放装置的压力/真空调定值,一般取0.14bar/-0.035bar。甲醇系统透气阀通常都选用出口喷射速度≥30m/s认可的高速透气阀。IBCCODE中对此类阀门的位置要求是离开起居处所、服务处所和机器处所的空气进口或开口及点火源的最近水平距离至少为10m,此要求通常都可以满足;高度要求是在露天甲板上的高度不小于3m,如设在升高步桥的4m范围内,则在升高步桥以上的高度应不小于3m。而实际上大部分平台供应船的甲醇高速透气阀都布置在安全岛的顶部,安全岛顶部属于升高步桥,A.673决议也未对该条规则进行修正及解释。由于此处完全不可能实现3m高的透气管的布置安装,所以船级社在审图对此高度都会适当放宽,一般取高于主甲板3m即可。这也反映了针对平台供应船的散装化学品系统规范规则还不完善,随着此类船舶的建造数量的增加,更详细的规范更新势在必行。

3.3甲醇舱检测及测量液货舱的检测主要有三种型式:

3.3.1开式装置

利用液货舱的开口进行测量,可以将测量仪表放置于货物或其蒸气之中。

3.3.2限制式装置

此装置伸入液货舱,使用时允许少量货物蒸气或液体逸入大气。不使用时,这种装置是完全封闭的。其设计应确保在打开这种装置时不致使舱内货物(液体或气雾)发生危险的外溢。

3.3.3闭式装置

此装置伸入液货舱,成为封闭系统的一部分,且能防止舱内货物逸出。例如浮筒式系统电子探测器、磁性探测器和带有防护的观察装置等;也可采用不穿过液货舱壳板而与液货舱无关的间接式装置,如货物称重装置和管式流量计等。甲醇系统应采用上述的限制式装置,常规设计是按规范要求设置两套氧气传感器来测量甲醇货物蒸气的浓度,其中一套为固定式探测系统,安装在舱室顶部或甲醇透气管路上;则另一套可采用便携式探测仪,需要透气管路在甲板上预留测量接口。在装载前后应对甲醇舱的蒸气空间进行测试,以保证其含氧量不超过2%体积。甲醇舱配置的传感器应能够实时监测舱内的状态,除了氧气传感器,甲醇舱还配备一套温度传感器用于监测舱内的温度,在甲醇运输或驳运过程中,舱内温度超过设定值时能输出报警;作为上文介绍的的辅助透气系统,每个甲醇舱还应配备一套压力传感器,当高速透气阀发生故障,舱内压力超出设定值时输出报警信号。甲醇舱的液位测量一般选用雷达式液位传感器,能够将液位信息显示在驾控台上,并能输出高位报警。如果雷达液位传感器只设置一套,则应安装一个用于应急测量手动测深管来满足规范要求。另外每个甲醇舱还应另配一套独立的高高位报警传感器,用于输出报警或关闭甲醇泵。以上传感器,除压力传感器和氧气传感器可安装在甲醇的透气管路上,剩余的雷达测深仪、温度传感器、高高位报警传感器需安装在甲醇舱顶部。在设计时可参照下列设置保护罩的方式来安装,此种方式可以避免甲醇舱开孔较多影响强度,通过将传感器布置在保护罩内,还可降低其防护等级的要求。

3.4甲板泡沫消防系统

装载甲醇的平台供应船必须配备固定的抗乙醇泡沫系统,该装置应能把泡沫输送到整个甲醇舱甲板区域,并且能把泡沫送到假定甲板已经破裂液货舱。甲板泡沫系统应能简便、迅速地操作,系统的主控制站应设在货物区域外的适当位置,并应邻近起居处所,以便受保护区域万一发生火灾时能易于到达和操作。在泡沫系统订货时,目前常用的是3%AFFF水成膜泡沫,厂家提供的泡沫单元一般包含泡沫炮、泡沫罐、比例混合器,若干泡沫枪以及组成系统的管路、阀件、仪表、控制系统等。泡沫海水供给泵通常由船上的消防泵、压载泵等来兼做。该泵需要流量较大,对压力也有较高要求,所以在设计之初就应通过计算确定好方案。如后期不能与系统匹配,不仅会增加成本,对设备布置也会造成很大麻烦。在选择甲板泡沫系统时,泡沫的供给速率应按下列的最大值选取:

3.4.1按甲醇舱甲板区域的面积

每平方米为2l/min。此处甲板区域面积是指船舶的最大宽度乘以甲醇舱处所范围整个纵向长度。

3.4.2按具有最大水平截面积的单个甲醇舱的水平截面积

每平方米为20l/min。3.4.3按最大的泡沫炮所保护并完全位于该泡沫炮前方的区域面积,每平方米为10l/min,但应不小于1250l/min。泡沫系统应能确保以最大的供给速率持续提供泡沫溶液至少30min。在计算时甲板区域面积根据A.673决议中对货物区域的定义选取,需要覆盖甲醇舱3m范围内的甲板区域。根据经验,泡沫最大供给速率都由以上第3条计算得出,泡沫炮布置的位置越靠近甲醇货物甲板区域,所需覆盖的面积越小,对设备的选型也越有利。因此在设计时泡沫炮都布置在临近起居处所靠近甲醇舱的安全岛上,每舷一只。

4结束语

平台设计论文范文第11篇

关键词:PWMSG3524控制器

在没有红外探测器或其它图像采集设备的条件下,可以先开发基于PCI总线的图像处理平台,由计算机模拟图像的生成并完成图像的高速传输,以缩短系统开发周期,使系统灵活、实用、便于进行功能扩展。采用美国TI公司的新一代高性能浮点数字信号处理器TMS320C6701(以下简称C6701)研制了实时图像识别与跟踪处理平台,利用不变矩进行图像识别,采用质心跟踪方案,获得了很好的实验效果。充分发挥了C6701强大的数字信号处理能力,并为后续的研究提供了很好的软硬件平台基础。

1C6701数字信号处理器简介

C6701芯片内有8个并行处理单元,分为相同的两组。采用甚长指令字VLIW结构,使C6701成为高性能的数字信号处理芯片。其单指令字长为32b,8个指令组成一个指令包,总字长为256b。芯片内部设置了专门的指令分配模块,可以将每个256b指令包同时分配到8个处理单元,8个单元可同时运行。芯片的最高时钟频率达到167MHz,此时浮点运算处理能力可达到1GFLOPS。外部存储器接口EMIF支持8/16/32b数据宽度的各种类型的同步、异步存储器,便于系统扩展。C6701片内有64KB的数据RAM和64KB的程序RAM;片外存储空间分为4个区(CE0、CE1、CE2、CE3);有4个相互独立的可编程DMA通道,还有第五个DMA通道可与HPI接口。

2PCI9054的主要特点及应用

PCI09054是美国PLX公司生产的一种32b33MHz的PCI总线主控I/O加速器。采用先进的PLX流水线结构;符合PCI本地总线规范2.2版,突发传输速率达到132MB/s;本地总线复用/非复用的32b地址/数据线,有M、J、C三种工作模式,但C模式的数据和地址总线是非复用的;支持8b、16b、32b设备和存储设备,本地总线操作速率高达50MHz;内部有6种可编程的FIFO,可实现零等待的突发传输及本地总线时钟和PCI总线时钟的异步操作,支持主模式、从模式和DMA传输模式。PCI9054是一种性价比高的PCI桥接芯片。

图1给出了PCI总线接口连接图,使用2K的ST93CS56串行EEPROM作为PCI9054的配置芯片,图中双口RAM可设计成32b、16b或8b。PLX9054工作在C模式下。本地总线晶振为30MHz,经过测试PLX9054工作在从模式单字节读写的情况下,本地总线速度已达12MB/s。根据实际图像传输需要(图像大小为256×256,深度为8b的灰度图像)帧频为25帧/s,已经满足需要。为了再提高传输速度,PLX9054可以开发成突发或DMA传输方式。使用CPLD(Xilinx的XC95108)完成PCI9054到双口RAM的译码电路,本地地址空间可寻址大小为1MB,1MB的本地地址空间映射为地址00000000H~000fffffH,PCI总线的地址空间(计算机自动分配)为ef100000H~ef1fffffH,同时要求PCI基址空间2(对应寄存器PCIBAR2)映射到本地地址空间0(对应寄存器LAS0BA()即LAS0RR寄存器设为fff00000H,LAS0BA寄存器设为00000001H。其中,LAS0BA的最低位置成“1”,表示PCI直接从模式访问本地地址空间0,使能译码;写“0”则禁止使能。PCIBAR2的值为ef100000H。

图2图像处理系统硬件框图

利用WinDriver6.01驱动程序开发工具生成PCI图像传输卡的WDM驱动程序代码,用VisualC++6.0编写应用程序,完成图像处理版与PC机之间的高速率的图像序列传输。

3图像处理板硬件设计

系统硬件框图如图2所示。图像处理板以DSPC6701为核心,C6701主要负责图像处理,包括对目标的识别和跟踪,并给出最终的跟踪角误差。源图像通过PCI接口卡传入图像处理板的两片双口RAM,两片双口RAM采用乒乓式存储。即为了保证图像处理的实时性,当一片RAM接收数据时,另一片RAM为DSP提供图像处理的数据。SDRAM用作DSPRAM的扩展,存储图像处理的中间结果。图像处理后的方位与俯仰角度数据通过82C52转换成串行数据,再经DS8921转换成RS-422电平,送给系统的后续电路。

FPGA选用Altera公司的APEXEP20K200,完成整个图像处理板的译码逻辑,并承担部分图像处理功能。APEXEP20K200门数为20万门,采用串行配置时必须使用两片EPC2。FPGA配置在C6701的CE0空间。FLASH选用4Mb的AM29LV040,用作DSPBootLoader加载程序时的8bROM,只能配置在CE1空间,因为C6701只有CE1空间可以与8b/16b的“窄存储器”接口。SDRAM的容量为4M×32b,配置在CE2空间。两片双口RAM为CY7C028V,容量为64K×16b,都配置在CE3空间,地址分别译为0x03000000和0x03040000。C6701的BOOTMODE[4:0]=01101,即存储器映射方式为MAP1、8bitROM加载、地址0处的存储器对应为DSP内部程序RAM。

4软件算法

图像由计算机经PCI卡传到图像处理板的双口RAM后,DSP对图像进行预处理,包括图像校正、图像滤波,之后进行图像分割和识别。当识别出目标时设置跟踪波门,则后续图像序列在波门内进行跟踪。本系统识别的目标为高空飞行的飞机图像,采用的识别算法要求具有平移、旋转和比例的识别特征不变性,同时要求跟踪速度快。

4.1图像分割

图像分割的目的是将图像目标和背景分割开来,从而知道目标的大致位置。目前已有各种各样的方法,其中简单有效的方法是直方图分割法中的最大距离法(类间方差门限法)。它的基本思想是:在直方图取值范围内,任一灰度级可将直方图分为左右两部分,如果这两部分的灰度均值与总体的灰度均值相距最大,则该灰度级就取为分割门限。这种分割技术可由如下公式描述:

D(l′)={[λ(l'''')-μPo(l'''')]2}/Po(l'''')[1-Po(l'''')](1)

式中,,Pl为灰度l级处的概率。分割的准则是将D(l′)为最大值的灰度级l′作为图像分割的门限值。图像中凡是灰度值大于分割门限的像点,均认为是背景中的点;反之,则认为是潜在目标区域中的点。这种分割方法可以精确地找到分割门限,提取目标。

4.2图像识别

图像经过分割后,接下来就要对目标图像识别。实现目标识别技术的关键是如何利用一组特征参数对区域的本质特征进行有效的描述。适当地选择特征是很重要的,因为在识别目标时它是唯一的依据。图像的识别特征有各种各样的描述,如目标形状、大小、统计分布等。这里使用仿射矩不变量和分散度特征来识别目标,取得了较好的效果。

对于经过分割(二值)处理的数字图像f(x,y),可以定义(p+q)阶矩:

mpq=∑XpYqf(x,y)(2)

式中,p,q=0,1,3……

f(x,y)的(p+q)阶中心矩可用下式表示:

μ=∑(X-X)p(Y-Y)qf(x,y)(3)

式中,X=m10/m00,Y=m01/m00,即(X,Y)为目标区域灰度质心。

f(x,y)惟一地确定一个矩序列{mpq},反之,矩序列{mpq}也唯一确定f(x,y)。在此利用公式(4)的5个几何矩不变量[4],再加上分散度特征一起代入目标匹配公式[2]进行目标识别。

φ1=η20+η02

φ2=(η20-η02)2+4η211

φ3=η20η022-η(4)

φ4=(η30-3η12)2+(3η-η03)2

φ5=(η30+η12)2+(η+η03)2

其中,ηpq=μpq/(μ00)(p+q+2)/2。

此5个不变矩对目标区域的平移(T)、旋转(R)和区域的比例大小(S)保持不变。

4.3目标跟踪与轨迹预测

识别出目标后,根据目标确定跟踪波门大小,在跟踪波门内进行跟踪,波门的大小采用自适应设置。常用的跟踪算法有波门跟踪、图像匹配跟踪和多模跟踪算法,考虑到背景较简单,采用基于公式(1)的质心跟踪方案。把波门的中心G(xG,yG)和目标质心T(xT,yT)的偏差作为跟踪误差,通过RS-422接口输出给后续处理板来实时进行跟踪。

在跟踪过程中,目标的位置按照自身的运动方式不断变化着,同时目标也会出现被遮挡的情况。此时,需要对目标的运动轨迹进行预测,可以采用基于最小二乘法的综合预测器来预测[2],认为目标的运动轨迹可以是直线和二次曲线的某种组合。即

f(k+1)=Wfl(k+1)+(1-W)fq(k+1)(5)

式中,fl(·)为线性预测器;fq(·)为平方预测器,W为权函数(0≤W≤1)。

权函数可以根据实时测得的平方预测器的误差而实时构成。当平方预测器误差较大时,则增大权值,否则减小权值。线性和平方预测器的记忆点数N的选取要视具体工作情形而定。当特征量的变化不是太快时,N值应选得稍大些,这样也有利于抑制噪声的干扰;若特征量变化甚快,则N应选用较小的值。一般选择N≤5,当N=2时,线性预测有利于跟上机动性较高的目标;当N=5时,预测的目标运动轨迹比较平滑,有较强的抗干扰能力。

平台设计论文范文第12篇

关键词:VME总线测试平台PSKFPGA

VME(VersaModuleEurocard)总线是一种计算机总线结构。Versa总线由Motorola公司专为其MC6800处理器开发设计的,VME总线是在Versa总线的基础上发展起来的,主要采用了Versa总线的电气标准及欧式卡(Eurocard)的机械标准。VME总线在工业领域得到了广泛应用,航空、航天和军事等领域也大量采用VME总线。

在以VME为背板总线的系统中,很多功能模块作为VME从设备存在于系统中。目前,市场上有关VME从设备的专用接口芯片功能复杂,成本很高,不被广泛使用,很多VME从设备都需要自行开发VME从设备接口。本文介绍一种围绕FPGA芯片设计VME总线从设备接口的技术。本文设计的基于VME的测试平台是某星载上行数据处理模块的测试平台。

图1

1VME局部总线

1.1VME总线的特性

VME总线是第一个独立于微处理器的总线标准,不再受限于某一生产商的处理器产品;VME总线采用主控/目标结构,总线内可以存在多个主模块,所以被称为多路处理总线;VME总线为32位计算机总线,地址/数据信号线采用非复用方式,最大传输速率可达40MPS;在VME64中,VME总线扩展到64位,最大传输速率可达80MPS;VME总线采用异步传输,无时钟也可协调数据传输,模块间的数据传输通过握手信号实现;VME总线能够支持16位、24位、32位寻址和8位、16位、24位、32位数据传送;VME总线支持多处理器体系,最多支持到21个处理器;VME总线支持四级仲裁请求,采用链优先级队列,实现多个主设备共享总线资源。

1.2VME总线系统结构

VME总线主要由功能模块、底板接口逻辑和四组信号总线组成,功能模块通过底板接口逻辑、利用底板信号总线互相通信。其系统结构如图1所示。

底板总线包括数据传送总线、优先级中断总线、数据传送仲裁总线和共用总线四种。VME总线的数据传输协议有两层:最底层为底板访问层,由底板接口逻辑、共用总线模块和总线仲裁模块组成;上层为数据传输层,由数据传送总线和优先级中断总线模块组成。

四类不同的设备板中包括不同的功能模块,系统控制板包括系统时钟驱动器、电源监视、仲裁、链和总线定时器等功能模块;CPU板包括定位监视器、总线主控、请求器、中断处理、中断器等功能模块;存储器板和I/O设备板都包括目标和中断器等模块。

2基于VME的星载上行数据处理模块测试平台的设计

2.1测试平台的系统组成

星载上行数据处理模块由PSK解调卡、指令译码卡和存储器加载卡及VME接口卡组成,主要用来完成上行PSK副载波信号的解调、译码和处理。其中数据注入卡属于VME从设备。

对星载上行数据处理模块进行测试的平台由VME机箱、仿真VME计算机、监测设备和运行在监控计算机上的监控软件组成,用来验证上行数据处理模块的功能及VME从设备接口的设计。系统组成框图如图2所示。

上行数据处理模块所包括的功能单元均以双高度VME卡的形式安装在VME机箱中,其中数据注入板卡通过VME接口与仿真VME计算机完成数据通信。

VME机箱是提供测试模块和被测模块的机械及电气安装载体。

运行在监控计算机上的监控软件提供人机会话界面;设置测试床工作模式(自检/工作);接收由VME仿真计算机传回的遥测参数,反映星上设备的工作状态;接收显示由VME仿真计算机传送的注入数据;接收显示检测设备发出的指令检测报告。

2.2监测设备的设计

监测设备用来检测上行数据处理模块译码输出的指令代码,并且提供双电平状态信号,检测上行数据处理模块延时输出的控制信号、星上设备用电以及硬件复位等。原理框图如图3所示。

2.3VME仿真计算机的设计

图3

VME仿真计算机负责管理上行数据处理模块的工作模式。它通过仿真VME总线时序对上行数据处理模块进行数据的访问,并且能够接收和响应上行数据处理模块的终端请求,然后读取遥控注入数据和遥测参数并传送给测试计算机。另外,仿真计算机还可以通过VME总线向上行数据处理模块发送间接指令。其原理框图如图4所示。

3VME总线从设备接口的设计与实现

3.1EDA技术

在现代电子系统设计领域,EDA技术已经逐渐成为电子系统的主要设计手段。FPGA(现场可编程门阵列)是EDA技术中重要的一种应用。FPGA器件在结构上由逻辑功能块排列为阵列,并由可编程的内部连线连接这些功能块来实现一定的逻辑功能。本设计中遥测解调及遥控注入深试卡的数字和逻辑电路部分均由FPGA器件来完成,这里采用Altera公司的FPGA芯片ACEK1K30QC208。该芯片具有三万门可编程逻辑单元,属于Sram型的FPGA芯片,逻辑信息保存在芯片的静态存储器中,上电时动态加载。这种类型的器件在验证期间可以使用下载工具将逻辑加载到芯片中,验证完毕后需要将逻辑信息烧写在专门的PROM中,以后系统上电时,FPGA从PROM中自动加载逻辑。

3.2从设备接口的设计

在本设计中,VME从设备接口功能为(A24/D16)和(A16/D08),对应的AM代码如下(IEEESTD1014-1987);

AM=0x2DShortsupervisoryaccess(A16)

AM=0x29Shortnonprivilegedaccess(A16)

AM=0x3EStandardsupervisoryprogramaccess(A24)

AM=0x3DStandardsupervisorydataaccess(A24)

AM=0x3AStandardnonprivilegedprogramaccess(A24)

AM=0x39Standardnonprivilegeddataaccess(A24)

AM=0x3FStandardsupervisoryblocktransfer(A24)

AM=0x3bStandardnonprivilegedblocktransfer(A24)

VME总线特性为:

*A24和A16访问

*D16和D08(EO)访问

*支持D16BLOCK传输

*支持D08(EO)BLOCK传输

*支持RMW(Read-Modify-Write)访问

*支持ADO(AddressOnly)周期

*支持Addresspipelining

本地总线特性为:

*支持本地设备就绪信号(LREADY)

*A24/#A16输出(可分别译码)

*SP/#NP输出;DATA_PROG_BLOCK输出(可分别译码)

图4

3.3从设备中断设计

VME总线从设备接口需要包括中断设计,其功能为完成VME中断请求全过程中的所有应答时序。设计参数(IEEESTD1014-1987)如下:

平台设计论文范文第13篇

关键词:自组织网络测试平台路由算法

多跳自组织网络(Adhocnetwork)由多个独立的具有路由(交换)功能的用户通信终湍组成。网络中的相邻终端可直接建立端到端的通信链路;非相邻终端罎可动态地搜索路由,数据包借助其他终端转发,以多跳方式传递至索路由,数据包借助其他终端转发,以多跳方式传递至最终的目的终端。在自组织网络中,无线信道环境的快速变化及终端的移动性造成了网络拓扑结构不断变化。因此,如何搜索、维护有效的路由成为自组织网络研究中的难点问题。近年来,研究者提出了多种路由协议草案,如DSR、AODV、SAR等,其性能的评估数据基本上利用网络模块软件如OPNet、NS-2/GloMoSim等仿真得到。由于仿真软件中采用的无线信道、终端分布、终端运动等模型与真实的网络环境相比均有一定的简化,所以在自组织网络技术进入实现商业应用之前,构建实际的Adhoc网络硬件测试平台对其各层次的网络协议算法设计进行性能测评是十分必要的。但现有的各种无线终端均不支持任何自组织路由协议。

本文设计并实际建立了一个无线自组织网络测试平台系统TATbed。通过加载相应的底层驱动及测试系统软件,使得配有无线网卡的普通PC机成为独立的自组织网络的实际终端;测试平台对各种路由算法协议提供了统一的模块接口,设定相应的路由算法和测试参数蝗,即可通过检测各个终端间的数据传输状况,得到此路由算法的实际性能的统计结果。同时,测试平台可兼容各种无线网卡标准,如IEEE802.11系列、HiperLan系列等。目前TATbed测试平台已经集成了多种AdHoc网络的专有路由算法协议,AODV、DSR、SAR、FSR、ZRP等,并可真实地再现Adhoc网络应用所处的实际环境(包括终端的移动性与客观信道的实际情况),为研究Adhoc网络在多种环境下的性能与特点提供可操作平台,对进一步研究Adhoc网络的结构设计和其各层网络协议算法设计的测试、评估、优化更具有参考价值。

本文结构如下,第一节介绍测试平台系统的总体结构,第二节介绍系统的关键模块设计,第三节介绍其实际应用和总结。

1平台结构

TATbed无线自组织网络测试平台的设计目标是开发支持多种Adhoc网络路由算法协议的测试终端以构建实际的Adhoc测试网络,并通过检测各个终端间的数据传输过程对自组织网络的各种实测性能指标进行统计、评估。

TATbed测试平台由一定数量的独立的自组织网络终端构成。在实际平台设计中,在配有无线网瞳的PC机(笔记本电脑)基础上开发了支持多种路由算法协议的自组织网络终端,每个终端依据设定的路由算法协议自行组建Adhoc网络并进行数据传输。图1为TATbed平台的实际测试示意图。

TATbed测试平台的软件系统包括传输任何生成器、终端处理器和数据统计器三部分。

在测试开始前,传输任务生成器将根据设置的测试参数,生成每个终端的起始传输任务列表,以精确地控制测试过程网络的传输负荷。在传输任务列表中定义了整个测试过程中每组数据包的源发出节点、最终目的节点、数据包数量、发出时间。

测试开始后,每个终端上的终端处理器将读取其对应的传输任务列表,在规定的时间进入发数据包流程,处理需要发出的数据包,同时监听无线网卡接收到的数据包并进行相应的处理。在测试过程中,终端软件模块记录下本节点收到和发出的每个包的信息,包括收(发)时间、包头信息、包长度等。

测试结束后,根据本次测试的整个网络的起始传输任务列表和每个终端在测试过程保存的收发包记录,数据统计器统计分析、计算出相应的测试指标,包括网络容限、节点平均吞吐量、数据包成功传输率、数据包平均传输延时、延时抖动、数据包传输路径平均跳数、系统路由开销等。

2自组织网络测试终端设计

由于现有的各种通信终端设备均不支持任何自组织网络中由算法协议,因此开发自组织网络测试终端成为整个测试平台构建的关键。在TATbed测试平台中,通过在装备了无线网卡的PC机上安装终端处理器,使其支持多种自组织网络的路由算法协议,成为实际自组织网络中的终端。

在现有的标准PC机系统下,网络层采用IP协议,终端之间的连接地址的标识来判别,应用层的传输任务经过数据打包处理后直接交无线网卡发送,并且只有当数据包的源节点和目的邛树熊处于相互无线网卡信号覆盖范围内时,才能成功发送IP数据包,终端本身并不支持任何路由功能。在TATbed测试平台系统中,终端的MAC层和网络层之间加载了自行开发的驱动模块,以支持无线自组织网络中的多跳传输,形成个虚拟的传输链路,为普通数据包的发送提供传输路由,如图2所示。

终端处理器在Windows操作系统提供的NDIS(NetworkDriverInterfaceSpecification,网络驱动程序接口规范)层基础上开发,包括底层接口驱动、路由算法模块和数据包的监听记录三部分。其结构如图3所示。

为测评各种不同路由算法协议的性能,终端处理器中的接口驱动设计为一个自定义的标准路由算法接口。该接口将各种路由算法协议完成的寻找路由、确定路由民系统网络层完成的其他功能,包括与上下层之间的传递、包头内容的填写等工作分离,使得路由算法协议成为需要嵌入的单独子模块。不同的路由算法协议只需要遵循接口定义编写相应的子模块即可。目前,TATbed测试平台系统可支持AODV、DSR、SAR、WRP、Fisheye、CBRP、ZRP等多种自组织网络路由算法的测试、评估。同时,由于终端处理器接口驱动中载在NDIS层上,使得测试平台对MAC层协议透明,因此测试平台可根据测试需要选用各种基于不同传输标准的无线网卡。目前系统中选用了基于IEEE802.11b标准的网卡进行测试。

为支持多跳的数据传输,测试系统中所传递的数据包的包头在标准的Ethernet-MAC包头基础上进行了扩展,加入了路由算法协议中规定的类型信息和路径信息,如图4所示。

图4

包头的第0~13字节为标准的Ethernet-MAC包头格式,第14~27字节为扩展的“路由信息”域,之后是实际的用户数据。对于来自高层(网络层)的数据包,终端从其IPv4标准包头中读出此数据包最终发送的目的地址并将这一“最终目的地址”保存在“路由信息”域的“最终目的节点IP地址”项内;同时调用路由算法模块,根据其最终目的地址获取其对应的多跳路由信息,并将实际的下一跳的接收节点的地址写入第7”12字节处的“下一跳接收节点MAC地址”项内,然后将此数据包交下一层(MAC&物理层)无线网卡处理发出。对于来自底层无线网卡接收到的数据包,终端读取“路由信息”域的“最终目的节点地址”,如果此地址与其自身地址相符,则交上层网络继续牏如果不相符,则调用路由算法模块,得到对应的多跳路由中下一跳的接收节点地址,然后交无线网卡处理发出。对于路由算法协议中规定的其他非数据包,如路由搜索包、路由应答包、路由失败包、周期性握手信息包等,则在“包类型”域中标示区别,由无线网卡收发后直接调用相应的路由算法模块处理。

平台设计论文范文第14篇

关键词:Web信息系统;电子商务系统;开发方法

1.主流电子商务系统开发方法的历史演变

电子商务系统是多媒体、基于Web的信息系统与其他类型的信息系统一样,电子商务系统需要有符合自己特点的分析设计方法。正确地分析和设计电子商务系统是电子商务系统得以正确实施的条件之一。从20世纪90年代初,研究人员已开始对Web信息系统的分析设计方法进行研究;虽然研究成果层出不穷,但是大都还处在理论研究阶段,只有极其少数得到了一定的应用;并且,目前的电子商务系统还没有出现类似于当年的结构化分析设计方法那样占据统治地位的分析设计方法[1],这也说明还没有出现一个令业界公认的、完善的方法。因此,急需对主流的分析设计方法进行比较,分析各自的优劣势,取长补短,不断完善。

从软件工程领域来看,电子商务系统又被认为是一种多媒体系统、Web信息系统。因此,目前电子商务系统的开发方法与Web信息系统开发方法几乎是等同的词汇和内涵[1]。本文也将这两个概念混用。目前,国际上许多学者正在从事这方面的研究工作,同时也取得了一些研究成果,并创建了一批适合于电子商务应用系统开发的开发方法。

1990年,Halasz和Schwartz提出了Dexter(DexterHypertextReferenceModel)[2]。1993年Garzotto[3]提出HDM(HypermediaDesignMethod),它建立在E2R模型基础上;1998年Fraternali&Paolini发展了HDM,提出了HDM-Lite[4],它特别应用于Web信息系统。1995年Isakowitz提出RMM(RelationshipManagementMethodology)[5],它是建立在E2R和HDM的基础上;1999年Lee等人在RMM基础上又提出了VHDM(View2basedHypermediaDesignMethodology)[6]。1991年Rumbaugh提出了OMT(TheObjectModelingTechnique)方法[7];1994年Lange针对OMT的不足,提出了EORM(EnhancedObject2RelationshipModel)[8]。1995年Schwabe和Rossi提出了OOHDM(Object2OrientedHypermediaDesignModel)[9],它建立在OO的基础上,发展了HDM的思想;1998年Schwabe将原型化方法融入OOHDM方法,提出了OOHDM2Web方法[10]。20世纪90年代末,面向用户需求的开发方法引起广泛的重视。1998年,DeTroyer和Leune提出了WSDM(WebSiteDesignMethod)[11];1999年,Bajaj和K.Siau提出了CMU2WEB(ConceptualModelforUsableWebApplications)[12];1999年,Lee等人提出了SOHDM(Scenario-basedObject2OrientedHypermediaDesignMethodology)[13]。

在研究各种开发方法的同时,许多研究者也重视开发方法的实用性,研究了支持开发方法的辅助开发工具,比较著名的是Fraternali和Paolini等人提出了Autoweb[14]。

2.电子商务系统开发方法的比较框架

2.1框架建立的依据

Lee[13]曾经对主要的电子商务系统的开发方法进行过简单的比较研究,其中的一个比较角度是开发方法的阶段划分,但他只列出了各种方法的阶段,并没有比较。本研究试图对开发过程进行详细的比较,从以下两个方面考虑,提出比较框架。首先,按照软件工程的方法,系统的开发一般是结构化的过程,特别是像电子商务系统这样大型的系统开发。其次,电子商务系统的开发有其自身的独特性。Baskerville[15]经过对若干电子商务系统的开发过程比较,总结了开发过程的特点,包括:开发周期短、需求的不确定性、原型化方法、不断升级版本、开发的并行性、固定设计架构、以各自的风格编写程序、系统质量的可协商性、依靠优秀的技术人员、需要新的结构来整合资源。

根据以上的考虑,将电子商务系统开发方法的比较框架设计为四个层次:全局层、概念设计层、导航设计层和系统实施层。

2.2全局层

全局层是从整体的角度,分析和比较各开发方法的设计和开发特点。在这个层次上比较的方面包括:开发阶段、每个阶段的输出结果以及整个过程中CASE的支持程度。开发阶段比较各开发方法是否涵盖所有的系统开发阶段,一个电子商务系统典型的开发阶段应该包括:需求分析阶段、概念设计阶段、导航设计阶段、系统实施阶段和系统维护阶段。

当然,并不能单单依靠一种开发方法所能涵盖的开发阶段的多少来简单评价开发方法的优劣,还需要考察开发方法对各个阶段支持的深度。因此,各级段输出结果比较的目的是比较各开发方法是否能够清晰地输出系统开发各个阶段的结果以及这些结果是否有足够的可读性。开发环境支持的比较是比较各开发方法是否在电子商务系统开发的各个阶段都能够提供CASE工具进行支持。

2.3概念设计层

概念设计层是电子商务系统开发的第一层次,是整个开发过程的基础,涵盖从系统需求分析到系统概念模型建立的所有阶段。在这个层次上比较的方面包括:设计驱动方式和对网络资源和媒体的支持。

电子商务系统设计的驱动方式主要分为两种:数据驱动和模型驱动。数据驱动是结构化设计思想下的设计驱动方式;模型驱动则是采用面向对象的设计思想。

电子商务系统与传统的信息系统最重要的一个区别在于电子商务系统能够充分利用网络的资源,以多种媒体方式表现信息。对网络资源和媒体的支持考察的主要内容就是电子商务系统开发方法对网络资源和媒体的支持方式,即这些开发方法是如何表示和组织诸如图像、声音、视频、文本等信息的。

2.4导航设计层

导航设计是电子商务系统开发的特性,也可称为动态设计。在这个层次上,开发人员需要为概念设计层次中的实体、对象、关系以及信息建立符合系统需求的导航路径和链接。在这个层次上主要比较系统链接的方式和系统访问的结构。系统链接的方式主要比较开发方法对系统各节点之间、各种信息之间以及节点和信息之间关系传递的支持程度。比较中还将引入一些情况来测试这些开发方法是否能够完全或者部分地表现系统同步、页面生成、外部链接等特殊情况。系统访问的结构是分析和比较各开发方法对于电子商务系统访问结构的定义方式和设置环境。在这一项的比较中,主要从访问单元和访问方法两个方面进行比较。

2.5系统实施层

系统实施层将从一个电子商务系统物理实施的层面上进行分析和比较,在这个层次上,开发人员将利用开发方法提供的各种工具将前面层面上形成的逻辑模型转换成实际的物理系统,从而完成一个电子商务系统的建设工作。在这个层次上比较的方面主要包括:

1)系统的物理表现形式

主要研究各开发方法是否涵盖从逻辑模型生成物理系统的过程,如果涵盖的话,那么它们分别是如何来进行这个过程的,主要通过研究物理系统客户端和服务器端的交互情况、系统数据库的交互情况和系统事件的处理方式来进行评估。

2)系统生成的自动化程度

主要研究各开发方法在将逻辑模型转换成物理系统的过程中,对自动生成页面的支持程度。主要对从数据库生成动态页面的支持度和从模板生成静态页面的支持度进行测试。

平台设计论文范文第15篇

1.专业特色不明确,生搬硬套。

对于高校艺术设计学科而言,其实践教学活动与理工科等其他学科大为不同,有着显著的自身特点和专业特色,尤其是在综合类院校中的艺术设计学科,实践平台建设与管理方法决不能照搬其他学科。同时艺术设计学科中的专业与以往纯艺术专业也有着明确的区别,对学生的教育不再是培养个性十足的艺术家,而是培养服务于当代创意产业的设计师,而当前艺术设计学科实践平台建设与管理方法并没有突出这一特点。

2.课堂教学与实践环节的脱节。

实践环节主要的学习内容与考核方式应契合本学科教学培养计划中的重点内容,但是现今的大部分实践项目的制定并没有充分考虑到教学计划的整体要求,形式大于内容,严重地影响了设计实践对课堂知识的训练与检验。当然,学校与实践平台间的链接与沟通不畅也是两者脱节的主要因素之一。

3.管理方法滞后。

目前高校艺术设计学科实践平台管理方法落后于多样化的实践平台建设。实践平台建设的多样化是近年发展的主要成果,但针对于不同实践平台的管理方法却没有得到发展,运用的还是以往较为单一的管理方法。多样化的实践项目与实践平台不能够在科学、高效的管理方法下发挥最大的作用,直接影响了该实践环节的教学效果。

4.培养目标不明确,培养方法单一。

课堂教学与实践教学活动的目标都是为了培养具有艺术设计专业素养的创新型人才,在明确这一培养目标的前提下,才能制定相关的培养计划与培养方法。同时这一目标的制定又要根据不同学校专业间的具体培养计划来做出相应的调整,因此以往的实践教学培养方法必须要做出改进和创新,以符合人才需求。

二、改进艺术设计学科创新实践平台建设的措施

1.以创新人才培养模式为目标,在实践教学中探索创新人才培养方法。

创新实践教学应与创意人才培养目标一致,课堂教学与实践教学活动的目标都是为了培养具有艺术设计专业素养的创新型人才。因此,要将多样的创新实践平台作为桥梁,嫁接于课堂教学与实践教学之间,建立与特定课堂教学目标相联系的主题化实践教学活动,打造“开放式、模块化、立体化”的实践平台创新人才培养体系,探索提高学生的综合知识运用能力和设计创新能力为主体的创新人才培养方法。主题化实践活动。以“实践主题”为切入点,开展实践创新活动。实践主题就是提取若干与课堂重点教学内容紧密相关的研究题目,该主题不仅要与课程紧密相关,与平台的实践活动也密切相连,还要求教师在提取主题活动时要进行多方位的考虑,将课堂知识以主题活动的形式,把重点的设计原理、方法放到创新实践平台中去实践和检验,在设置过程中必须考虑到主题间知识的纵向连贯性和横向整合性、互补性,以串联的形式开展主题化实践教学活动,不同的主题活动针对的知识点和能力要求不同。这种主题形式的实践活动不仅拓展了实践教学的范围、高效地发挥了创新实践平台的桥梁与纽带作用,更为重要的是,“主题”作为学生兴趣的源头能够激发学生主动参与实践活动的热情。多模块的创新实践平台。“主题”作为兴趣点是课堂教学与实践教学链接中的切入点,平台则是开展主题实践创新活动的基础。创新平台的营造不仅要有常规的实践平台,更要有与之相关的模块化创新实践平台,主要形式有:由政府部门资助的大学生设计创新实践基地、教师工作室、实验教学中心、校企联合创新中心、校企政联合创新实践平台等。模块化的设计创新实践平台建设应争取多渠道、多方位的学科交叉型实践平台建设,可涵盖与设计专业密切相关的建筑工程、装饰工程、规划改造工程、印刷、家具等不同的行业,大力发挥设计学科的交叉性学科特点,为学生个性发展、不同方向的设计创新实践提供良好的条件与广阔的平台。开放式实践创新方法。原有的基于创新实践平台的实践活动,多存在设计实践活动资源不足、受益面窄、时间短等问题,主要原因还是实践活动的开放度不够。学校及院系方面不仅要加强设计创新实践的平台建设,而且要着力打造该平台的开放性,能够根据专业方向需求选择合适的主题,使尽可能多的同学参与到实践活动中来。教师与实践平台的工作人员,即“主题”实践创新活动的提供者和组织者应围绕主题实践活动的要求,配置人力和物力,精心策划活动,保证实践活动的创新性和开放度。在人员构成和组织形式上,依据开放性这一基础原则,达到平台资源的共享和高效利用,通过“开放”营造公平的气氛,结合“主题”所带来的兴趣,培养学生实践中的自主性、个性化和多元化。立体化的活动构成形式。立体化的实践创新活动的开展方法即由点到面、由面到体的立体化形式。其中,点为课堂重点教学内容,面是创新平台中相关的研究题目,本学科中的多个方向或多学科的交叉研究则形成面的多个层次。围绕以上重点内容,辅以集中性教学实践、大学生实践创新训练、组织性的课外实践、教师工作室课题、实验中心课题、校企联合创新中心课题最终形成以主题化实践项目为中心点的多层次相互穿插、相互依托的立体化形态。其中课堂重点教学内容、创新项目、实践目标自上而下形成纵向的展开形式。围绕主题由设计思维创新实践训练、设计创新竞赛、面向企业的设计创新课程等活动为横向展开形式,两者相结合构成一系列多层次、全方位的实践创新活动,推动学生“以实践为师,以市场为法”,掌握并提高实践技能。

2.在创新理念和思路指导下,进一步探索创新实践平台的管理方法。

为创意产业培养的人才,最终是为了投入到创意产业的实践之中,注重教学与实践相结合的创新实践平台对于增强学生创新实践能力有着独特的优势。创意产业实践教育不仅要有上文中提及的科学的人才培养方法,还要引入并结合现代企业管理、项目管理等理念,以科学、高效的方法管理实践平台的运营与发展。整体目标管理。以创新型人才培养为出发点的创新实践平台项目,要以高校的专业培养计划为目标,独立的课程或项目也要根据课程的教学目标,对项目进行整体界定。实践平台上的创新活动或项目是既相对独立又与专业培养计划紧密衔接的综合实践教学体,因此整体的目标定位与范围是在培养计划与企业或自拟的实践创新项目相结合的基础上而制定的,其中培养方案和计划是主要因素。评价管理体系建设。创新实践平台的评价管理体系建设应是发展性的评价模式。该体系不仅关注学生个人的实践表现,而且注重学生和平台建设的未来发展,主要内容应有:由实践项目中的评价主体与评价对象共同商定发展目标,确定评价目标后,通过系统地收集评价信息并进行分析,对评价对象的素质发展、学习职责和学习绩效进行价值判断。评价管理体系建设根本目的是为了促进学生的专业发展,因此应突出学生在评价中的主体地位,同时还要注重反馈信息的周期式总结与处理。过程监控与分项管理。过程监控与分项管理的目标是为了提高创新活动的质量。实践项目过程监控由主体项目负责人执行,结合评价管理体系对现行成果进行评估,分析学生取得的进步与其中的不足,推荐使用资料信息库的形式为后阶段学习提供借鉴。对于该过程的监控可使用分项管理方法,具体内容可分为:活动项目的范围管理、费用管理、时间管理和人力资源管理。每项分项管理、内容都要结合学生的阶段性汇报和指导教师的综合性评估与考核作参考,以实现该方法的可信度与效力。资料信息库建设。创新实践活动的信息库建设一方面是可以实现资源利用与共享最大化,提高活动效率;另一方面可以实现创新活动的系统化与自动更新,为后续活动或项目提供参考与资源。资料信息库的主要内容应包括五大基本方面:活动进度与计划、学习课件、经典案例参考、评价体系、沟通交流系统。辅以特定管理软件或网络技术的资源信息库还能够预测活动开展所获效果,辅助教师或责任人实时进行网上评价和监控。

三、总结