美章网 精品范文 超高层建筑抗震设计范文

超高层建筑抗震设计范文

超高层建筑抗震设计

超高层建筑抗震设计范文第1篇

关键词:混凝土结构;超限抗震

1 基本情况

广州琶洲香格里拉酒店项目位于广州市海珠区,广州国际会议展览中心东侧,在建的黄洲大桥西侧,北临珠江,南靠新港东路,长约240米,宽约200米。整个项目包括一座37层的酒店(塔楼高32层,裙楼5层)和宴会大厅,以及2层地下车库。

2 抗震设防标准

(1)抗震设防烈度:7度。

(2)本工程属丙类建筑,按本地区设防烈度采取抗震措施。

3 基本数据

(1)场地类别:Ⅱ类。

(2)土层等效剪切波速为168.4m/s-173.8m/s,场地覆盖层厚度约13.5m-17.4m,砂土液化等级综合评定为严重,属于抗震不利地段。

(3)持力层名称:微风化岩层,埋深约10.90m-23.70m,地基承载力特征值fak=4500KPa,岩石天然湿度下单轴抗压强度的标准值fr=13.5Mpa。

(4)桩型为冲孔/钻孔灌注桩,桩端埋深约15-20m。

4 建筑结构布置和选型

(1) 主楼高度(±0.00以上)140.7m,地面以上结构层为38层,其中出屋面一层,高度为4.7m。

(2) 裙房高度(±0.00以上)29.0m,地面以上结构层为4层。

(3) 塔楼主体部分、裙楼和宴会厅之间设两道110mm宽抗震缝分开。建筑物总高度为136.0m,总平面尺寸为195m×122m。其中塔楼部分(转换层以上)平面尺寸为72米×18米,长宽比L/B=4

(4) 塔楼质心有微小的向上偏心(以底端为原点)。

(5) 结构形式简单、平面形状规则、布置均匀;结构层第5层为转换层,竖向构件布置不连续。

(6) 本工程为现浇钢筋混凝土结构,楼盖整体性好。

(7) 结构类型:框架—剪力墙结构,属于复杂类型。

(8)抗震等级:本工程塔楼的框架和核心筒为一级抗震。由于地下室顶板作为上部结构的嵌固部位,地下一层的抗震等级与上部结构相同。其余部分裙楼及其地下一层与主楼相连,一级抗震。

(9) 结构概况:

整个大楼的设计采用框架—剪力墙结构形式,分为两级结构,转换层以下布置了21根巨型框支柱,剪力墙及承重柱均落地直至基础,由剪力墙、的框架柱和框架梁形成第一级结构,承受水平力和竖向荷载,而楼面及次梁作为第二级结构,只承受竖向荷载并传递到第一级结构上。 转贴于

5 结构分析主要结果

(1)计算软件:PKPM系列结构分析软件SATWE模块(2002规范版本) 中国建筑科学研究院PKPMCAD工程部编制。

(2)楼层自由度为3(刚性楼板)。

(3)周期调整系数:0.8。

(4)主楼结构总重:2291152.81 KN (SATWE)。

(5)基底地震总剪力:32581 KN(X向)36421 KN(Y向)(SATWE)。

(6)扭转位移比:1.3。

(7)转换层的上下刚度比:0.6027。

(8)最大轴压比:n=0.85。

(9)最大层位移角为1/941,在17层(SATWE)。

(10)时程分析采用人工模拟的加速度时程曲线,选用了两组实测波和一组场地人工波进行弹性动力时程分析。弹性阶段的时程分析,构件内力,侧向位移小于采用振型分解反应谱法的构件内力和侧向位移。

6 计算结果小结(与规范要求对比):

(1)在风荷载及地震作用下各构件的强度和变形均满足有关规范的要求。

(2)墙、柱的轴压比均符合《建筑抗震设计规范》和《高规》的要求,转换层以上柱子轴压比小于[0.85],框支柱轴压比小于[0.6]。

(3)按弹性方法计算的楼层层间最大位移与层高之比Δμ/h =1/941满足《高层建筑混凝土结构技术规程》(JGJ3-2002)第4.6.3条要求的1/800。

(4)塔楼满足(JGJ3-2002)关于复杂高层建筑结构扭转为主的第一自振周期与平动为主的第一自振周期之比最大值为0.729,不大于0.85的规定。

(5)塔楼满足(GB50011-2001)第3.4.2条关于复杂高层建筑各楼层的最大层间位移不应大于该楼层两端层间位移平均值的1.4倍的规定。

(6)除转换层外,塔楼各层均满足(GB50011-2001)第3.4.2条关于各楼层的侧向刚度不小于相邻上一层的70%,并不小于其上相邻三层侧向刚度平均值的80%的规定。

(7)塔楼满足(JGJ3-2002)第E.0.2条关于转换层上部结构与下部结构的等效侧向刚度不应大于 1.3 的规定。

(8)除转换层外,塔楼各层均满足(JGJ3-2002)第4.4.3条关于楼层层间受剪承载力不宜小于相邻上一层的80% 的规定。

(9)塔楼满足(JGJ3-2002)第5.4.4条关于结构稳定性的规定。

(10)塔楼满足(JGJ3-2002)第3.3.13条关于各楼层对应于地震作用标准值的楼层水平地震剪力系数不小于表3.3.13的规定。

(11)塔楼满足(JGJ3-2002)第3.3.5条关于按时程曲线计算所得的结构底部剪力不宜小于CQC法求得的底部剪力的65%的规定。

(12)结构薄弱层弹塑性层间位移符合《建筑抗震设计规范》(GB50011-2001)第5.5.5条关于弹塑性层间位移角(1/164)小于1/100的规定。

7 其它需要说明的问题

本工程在三种超限条件(高度、高宽比、体型规则性)中,高度超限13.3%,高宽比满足规范及规程的有关要求,结构平面形状规则,竖向不规则。

主要超限抗震措施包括:

(1)为避免大楼整体结构之间形状的不规则,引起不利于抗震的情况,在主楼和裙楼之间设置110mm宽抗震缝两道,缝的两侧设置双柱,地下室、基础不用设缝。

(2)转换层位于第5层,框架柱和剪力墙的抗震等级根据《高规》表4.8.2和表4.8.3 规定提高一级,为特一级。

(3)首层、设备夹层、避难层、屋面层楼板加强,板厚为180mm,中央核心筒板厚加强为150mm,配筋相应加强,设双向双层钢筋网。

(4)薄弱层的地震剪力乘以1.15的增大系数,按照《建筑抗震设计规范》进行弹塑性变形分析和验算,并采取有效的抗震构造措施。

超高层建筑抗震设计范文第2篇

关键词:超限高层;建筑抗震设计;专项审查;桩基

中图分类号:TU473文献标识码: A

1、超限高层建筑的概述

超限高层是指超过规范要求限制的高层建筑。 超限高层审查是在项目的初步设计阶段,按国家建设部要求,申请全国超限高层审查委员会组织专家从技术角度进行多方论证,力求在抗震、消防等方面保证建筑物的质量安全。“小高层”和“超高层建筑”都是“民间说法”,不规范。超限高层的高度和层数并没有统一的“定数”。对混凝土框架剪力墙结构的高层建筑,超过120米为超限高层;混合剪力墙结构为100米以上;有错层的为80米以上;网架结构的为55米以上;而网架无盖结构为28米以上。无论建筑物多高,超限高层都对工程技术质量提出了更高的挑战。

建设部早在2002年就了111号令《超限高层建筑工程抗震设防管理规定》,明确了在各省、自治区、直辖市对此类工程的管理应由相应省级建设行政主管部门负责。并规定若在抗震设防区内进行超限高层建筑工程建设,建设单位应在初步设计阶段向当地省级建设行政主管部门提出专项报告,可见政府对此工作的重视程度。

2、超限高层建筑工程抗震设计研究的作用和意义

在我国经济的发展和全球经济一体化的大趋势下,我国基础设施的建设发展也突飞猛进,出现了各个行业的流动资金开始往基础设施建设汇集的现象。超高层建筑工程是在人们对空间成分利用的前提下应运而生的,这反映了人们对充满时代感和现代感的城市生活的追求。但是问题也随之而来,因为超限高层建筑工程自身的结构特点已经超出了我国对建筑工程的理解和规定,抗震也成为摆在超高建筑工程面前的重大难题。尤其是这几年以来我国地震灾害频发,汶川、玉树和雅安地震的发生造成建筑物的破坏更是让我们触目惊心。建筑物的抗震安全性是人民生命财产安全的重要保障。所以,我们要正确认识到在发展过程中存在的问题,提高超限高层建筑工程抗震设计的能力。完善超限高层建筑的抗震设计既与人民生命财产安全密不可分,又是社会发展的需要所在。

3、抗震设计的主要要点

针对建筑物悬挑过大的结构设计,应充分考虑其质量的大小,对质量较大的部位,应该避免由偏心所造成的扭转,同时还要考虑竖向的地震作用。对于立面开大洞的结构设计,应注意加强洞口四角以及边缘。而对于有转换层的建筑,利用厚板转换的不利的,一般采用的是梁式转换,并且避免多级复杂的转换。

超限高层建筑抗震设计的基本要求就是要对框架结构、普通剪力墙结构的高度进行超限的程度控制,应考虑现实的情况,遵守高规中结构的最大使用高度,并且控制好抗震措施,如材料强度等级、体型布置、抗震等级、配筋率、轴压比等方面应采取比规范更严格的要求,以满足提高结构延性的要求。对于筒体结构或者是框剪结构的建筑,要注意6度或者7度设防的时候,高度不得超过规范最大适用高度的30%,而8度则不能超过最大适用高度的20%。同时,在房屋高度,高宽比和体型规则方面,必须要有一点或者一点以上符合相关规范、规程的要求。

4、严格审查

首先,我们现在设计高层建筑的抗震分析方法与规范都是建立在目前的科学技术水平之上的。规范中所推荐的反应谱法与时程分析法等并不完善,它们都采用了一系列的假定,特别是反应谱法,它把整个高层建筑假定为一个质量串,认为它们的重心都在一条垂线上,而且分析时只考虑了峰值加速度,频谱组成仅近似地考虑了振型耦合,对持续时间根本就不考虑,而这些恰恰是对结构输入地震能大小影响十分关键的因素。由于以上原因,我们必须要求建筑非常规则,方能适用于我们现行规范的计算方法。如果规则性方面超出规范太多,则书本上的计算方法已不适用,电算输出的结果的可靠性也就成了问题。而一般设计人员常常认为我们计算结果满足规范就可以了,而忽略了计算方法本身的适用范围,当然对超限高层控制的目的,就是要保证在现有的设计水平下,使被审查的工程都能在现有计算方法适用范围之内,以保证其计算结果的可靠、安全。

其次,我们选用的结构类型都有一定的适用范围,超过了这个范围,我们采取的构造措施通常会缺乏实践的经验,而且会给可行性、技术合理性、经济性带来很大问题,因此对各种类型的结构,规范都限定了固有的适用高度。例如A级高层建筑超过了限值高度,那么就要按B级高度的高层建筑进行设计,其实质是要提高其结构的抗震等级。

最后,对高宽比的控制主要是为了保证结构的整体稳定性,并对总刚度、经济合理性、承载能力进行宏观控制,使主结构受力更加合理均衡、易满足变位条件,以保证正常的使用与造价的控制。

5、高层建筑桩基的施工工艺

高层建筑桩基施工技术首先是(1)在施工的时候对于方案的编制;(2)在施工之前要制定好工程的进度再根据总进度确定桩基的施工计划。(3)施工的时候要注意安全的保证、质量的保证以及文明的施工等。(4)为了保证施工工艺的合理性,在施工前应进行试桩,再在此基础上提取确定参数。由于城市化进程的加快,目前对高层建筑桩基施工工艺有了更高的要求。

5.1、预制的混凝土桩与钢制桩的沉桩

预制混凝土的形式包括管状型的桩和方形的桩两种,钢制的桩包括有钢管桩和H型的钢制桩两种。以上这些桩沉桩的方法最主要的是铁锤击打法、静力压桩法以及水流冲击沉桩法,但有的时候也会才用振动式沉桩的办法。这几种沉桩的方法中用铁锤击打深入法、静压力沉桩和振动沉桩的办法在所有沉桩过程中都会出现挤压土壤,即挤土的现象出现。而在这种现象出现的时候一定要注意采取措施以减少挤压土壤对周边环境的破坏。

5.2、灌注泥桩的成桩法

灌注泥桩成孔的方法主要包括干作业成孔、泥浆护壁成孔以及沉管成孔这几种成孔方法。而在成孔完成钢筋笼、混凝土安置浇筑上之后才会形成灌注沉桩。泥浆护壁成孔一般有正反循环泥浆护壁成孔与冲击成孔这两种方法。前者特别适用于淤泥以及淤泥质土,但是在应用的时候也要注意泥浆的护壁,特别是防止护壁的倒塌;后者适用于碎石和粘土,也可以在沙质土以及粉质土中使用。

6、结语

本文主要是通过超限高层建筑抗震设计的主要作用和意义进行的,同时对抗震设计的基本思路和原则,主要要点和高层建筑桩基的施工工艺作了探讨。这对提高我国超限高层建筑领域的水平和技能,都有着重要的作用和意义。

参考文献:

[1]姜文辉,李智.超限高层建筑工程抗震设计中的若干问题[J].广东土木与建筑,2008,01:14-16.

超高层建筑抗震设计范文第3篇

关键词:超限高层建筑、抗震设计、分析

中图分类号:TU97文献标识码: A

一、前言

改革开放以来,我国经济快速增长,城市化进程明显加快,大量农村人口迅速向城市集中,由此造成城市人口数量的不断膨胀,对房屋的需求也急剧增加。为了缓解城市人口对房屋需求的压力,越来越多的高层、超高层建筑如雨后春笋般出现在各大、中城市。超高层建筑,除了具有充分利用有限的土地面积,最大限度利用地上建筑使用空间外,还具有强烈的标志性及展示性作用,从而往往能成为区域性、地标性建筑或成为城市“名片”。

然而,尽管城市中的超高建筑越来越多,但目前却没有统一的方法和明确的依据来对超限工程进行抗震设计,多数情况下还是要依靠工程师和专家们的结构概念和经验来把握,而其可靠程度,限于现今的技术水平一般只能作出定性结论,还很难作出定量的描述。以下本文就超限高层建筑工程抗震设计方面内容作出简要分析,供广大同行参考。

二、超限高层建筑工程抗震设计研究的作用和意义

随着我国经济的快速发展,在全球经济一体化的趋势下,我国基础设施的建设发展有了突破性进展,出现了各个行业的流动资金开始往基础设施建设汇集的现象。超高层建筑工程是在人们对空间的成分充分利用的前提下应运而生的,这反映了人们对充满现代感和时代感的城市生活的追求。但是,问题也随之而来,因为超限高层建筑工程自身的结构特点已经超出了我国对建筑工程的规定,抗震也是摆在超高建筑工程面前的重大难题。尤其是这几年以来我国地震灾害频发,汶川和玉树地震的发生造成对建筑物的破坏,更是让我们触目惊心。建筑物的抗震安全性和人民的生命财产安全密不可分。所以,我们要正确认识到在发展过程中存在的问题,认识到超限高层建筑工程抗震设计的重要性。完善超限高层建筑的抗震设计是人民生命财产安全的重要保证,也是社会发展的需要所在。

三、超限高层建筑工程抗震设计的原则和基本内容

1、超限高层建筑工程抗震设计的原则

在建筑物抗震设计上,我国遵循这样三条原则“:小震不坏、中震可修、大震不倒”。 第一,小震不坏。当建筑物遇到多遇地震时,其结构没有遭受到损坏,无需修理就可以继续使用。在这个原则下,一般是对建筑结构的承载力进行验算,是建筑工程抗震设计第一阶段的弹性设计。第二,中震可修。当建筑物遇到设防地震时,建筑物可能发生一定程度的损坏,经过修补之后就可以继续投入使用。这要求建筑设计时考虑到建筑结构的非线性弹塑性变形和承载力,是第二阶段的弹塑性变形验算。第三,大震不倒。当遭受到罕遇地震影响时,建筑物不会发生倒坍等威胁人民生命财产安全的重大事故。这一阶段的设计是前面两个阶段验算和设计的分析过程,并采取相应的抗震措施和技术来提高建筑物的抗震性能。

2、基本内容

第一,当超限高层建筑物采用钢筋混凝土框架结构和抗震墙结构时,其高度不得超过《建筑抗震设计规范》规定的最大适用高度。当采用的是抗震墙结构和筒体结构时,建筑工程为 9 度设防时,其高度不得超过《建筑抗震设计规范》规定的最大适用高度;建筑工程为 8 度设防时,其最大高度应是《建筑抗震设计规范》规定最大适用高度的120%;建筑工程为 7 度和 6 度设防时,其最大高度应是《建筑抗震设计规范》规定最大适用高度的 130%。第二,超限高层建筑物设计时,其高度、高宽比和体型规则性这三者中至少有一项需要满足《建筑

抗震设计规范》的要求。第三,在进行抗震设计时,至少要采用两种力学模型来计算分析建筑物的受力情况,其计算程序需要经过有关行政部门的鉴定许可。第四,为保证超限高层建筑的安全性,应采取比《建筑抗震设计规范》更严格的抗震措施。第五,当超限高层建筑物有明显薄弱层时,还应进行结构的弹塑性时程分析。

四、超限结构抗震设计要点

1、高度和高宽比超限建筑

a. 尽可能采用适用高度较高的结构类型, 如钢筋混凝土框架结构房屋高度超限时, 可改用框架-剪力墙结构。

b. 验算结构整体抗倾覆稳定性, 验算在侧向力最不利组合情况下桩身是否会出现拉力或过大的压力, 并进行风荷载或地震作用下的舒适度验算, 控制顶点位移及层间侧移, 当侧移无法满足要求时, 可考虑利用建筑设备层和避难层空间, 沿竖向设置若干层伸臂桁架或腰桁架。

c. 适当降低底部竖向构件在最不利荷载组合下的轴压比并加强配筋, 当轴压比不满足要求且构件截面再增大有困难时, 可采用钢或其它组合构件与混凝同组成的结构。

d. 要有足够的埋置深度, 考虑重力二阶效应, 并进行风荷载作用下的舒适度验算。

2、平面规则性超限建筑

a. 采用弹性楼盖模型, 或按分块刚性楼板+局部弹性板进行计算, 并考虑扭转耦联效应。

b. 对于凹凸不规则和楼板局部不连续的情况,采取符合楼板平面内实际刚度变化的弹性楼板计算模型。

c. 对于楼板应力集中部位( 凹凸部位及洞口四角) 和弱连接的楼板, 应采用加大楼板厚度、增加板内配筋、配置集中配筋的边梁、配置 45°斜向钢筋等方法予以加强。凹口部位可增设部分拉梁或拉板, 以改善这些薄弱部位的刚度和延性, 提高其抗震性能。

d. 当平面过于不规则、楼板连系过弱或建筑物超长时, 可通过设置变形缝将结构分成若干个子结构。对结构扭转效应明显的超限高层建筑, 应尽量使抗侧力构件在平面布置中对称、均匀, 避免过大偏心,并尽量加大竖向构件的抗侧刚度和强度。

3、竖向规则性超限建筑

a. 立面收进引起超限, 如有可能则宜采用台阶形多次内收的立面, 确保结构位移沿竖向没有突变,并使结构扭转效应控制在合理范围内; 宜加强收进部位的竖向构件及楼板; 立面收进若造成偏心, 则底部结构会因扭转而产生较大内力, 故应加强底部周边构件的配筋, 并补充进行静力非线性分析和时程分析, 验证结构的抗震性能, 确定结构的薄弱部位。

b. 连体建筑的连体部位及其周边应采用弹性楼板计算, 并控制连接部位的层数, 且两塔楼层刚度差异不宜过大, 连接体与主体宜用弱连接,如铰接等;连接体结构自身重量应尽量减小, 故应优先采用钢结构或型钢混凝土结构等。

c. 对于立面开大洞的建筑, 应加强洞口四角及洞边, 避免在小震时洞角开裂。

d. 对于悬挑建筑, 应考虑竖向地震作用; 当悬挑质量较大时, 应避免偏心造成的扭转。

e. 对于带转换层的高层建筑, 尽量避免多级复杂转换, 优先采用梁式转换, 慎用厚板转换。尽量强化和提高转换层下部结构侧向刚度、抗震承载能力和延性, 并控制转换层的设置高度; 结构分析时除检查结构位移和刚度有无突变外, 还应重点检查框支柱所承受的地震剪力和轴压比; 采取有效措施减少转换层上、下结构等效剪切刚度和承载能力的突变;加强转换层楼板、转换构件、框支梁、框支柱、框支层上部剪力墙(包含筒体)及落地剪力墙(包含筒体)的抗震构造措施。

五、结束语

随着抗震技术和理念的快速发展,抗震设计的重要性也日益凸显出来,而超限高层建筑工程结构复杂,抗震设计要求高,这也就要求设计者必须不断提高自身知识修养,借鉴他人抗震设计经验,运用最新抗震技术和措施提高建筑物的抗震性能。转变思想观念,多方面借鉴相关知识和概念,从其他地方激发设计灵感,转变刚性为主的抗震模式,努力实现抗震设计理念的创新,开创超限高层建筑工程抗震设计的新局面,为老百姓打造更加安全的建筑物。

参考文献:

[1] 徐培福 戴国莹:《超限高层建筑结构基于性能抗震设计的研究》,《土木工程学报》,2005年01期

[2] 侯伟雄:《提高建筑物抗震性能措施探讨》,《科技风》,2010年11期

超高层建筑抗震设计范文第4篇

关键词:超限;高层建筑;剪力墙结构;抗震设计;性能设计

中图分类号: TU97 文献标识码: A 文章编号:

1 工程概况

本工程位于昆明市,规划用地25万㎡,总建筑面积为127万㎡。该工程住宅部分为剪力墙结构,均为高层及超高层建筑,其中有18栋达到B级高度。设计使用年限50年,抗震设防类别丙类,设防烈度8度,基本地震加速度0.20g,设计地震分组第二组,抗震等级一级。结构的安全等级二级,地基基础设计等级甲级,建筑桩基设计等级甲级。场地类别Ⅲ类,基本风压为0.35KN/㎡(100年重现期)。本文以16#主楼(39层,建筑高度120m)为例进行分析,户型如下图所示:

2 基础设计及沉降控制

根据地质报告,基础为桩筏基础,筏板厚度2m,每边扩出主楼范围1.5~3m;采用边长450预应力混凝土空心方桩,桩受力为摩擦桩,桩长约35m,以粉土层为持力层,单桩承载力特征值为2600~3000KN。该楼地下三层,基础底板埋深均达17m以上,最大附加应力约为240Kpa,沉降可控制在100mm以内,沉降差满足要求。

3 嵌固位置

主楼嵌固位置为地下室顶板。地下一层以下设置施工后浇带及沉降后浇带。住宅楼地下室与地下车库及商业在地下室连为一体,地下一层顶板以上(包括商业部分)设置伸缩缝,形成单塔结构,避免了大底盘多塔结构。各楼嵌固层与上层剪切刚度比采用的是要求较高的剪切刚度算法,刚度比≈2。

4 超限情况

根据《超限高层建筑工程抗震设防管理规定》(建设部令第111号),对高层住宅的各项指标进行检查,超限结果为:高度超过100m但不大于130m,为B类高层。平面规则性:不规则结构,位移比大于1.2但不大于1.4部分楼平面凹凸尺寸大于相应边长30%。竖向规则性:各楼平面上下无变化,仅楼底部层高有变化,通过改变墙厚及混凝土标号,刚度变化满足规范要求,无薄弱层。其他情况:无错层、无转换、无多塔、无连体,无扭转不规则。

5 计算及结果

本工程采用SATWE及PMSAP进行对比,两者计算的结果接近,结果如下:周期及阵型均是1、2周期平动,3周期扭转;扭转周期与平动周期的比值小于0.85,满足规范要求。位移满足1/1000的要求,位移比满足不大于1.4。阵型数不小于15,有效质量不小于90%。楼层最小剪重比大于 3.20%。刚度无突变,无薄弱层。整体稳定满足要求可以不考虑重力二阶效应。剪力墙的轴压比不超过限值0.5。

通过两个不同模型的计算软件比较,确定力学模型计算的可靠性;SATWE和PMSAP两个程序的计算结果基本一致,只是由于程序在某些方面处理方法在概念上不尽相同,计算结果在数值上存在一定差异,但均在工程上可接受的范围内。对比分析表如下:

6 时程分析

采用SATWE程序进行了弹性时程分析,时程分析采用三类场地天然波(简称TH3TG055,TH4TG055)及三类场地人工波(简称RH1TG055),峰值加速度取0.7m/s2,采用包络设计。

弹性时程分析表明:时程分析的最大楼层剪力曲线和CQC的最大楼层剪力曲线基本符合,说明CQC计算基本符合计算要求。时程的最大楼层剪力仅少数顶部楼层略大于反应谱结果,其余均小于反应谱结果,超出不多,拟在施工图时候考虑放大该部分楼层的地震剪力;3条时程曲线计算的结构响应位移与振型分解反应谱结果比较接近,位移响应曲线基本光滑无突变,说明竖向刚度变化平缓;3条时程曲线计算的结构响应层间位移与振型分解反应谱结果比较接近,均略小于CQC结果;时程计算楼层剪力分布曲线光滑无突变,底部剪力均大于振型分解反应谱法下的65%,3条时程曲线计算得到的底部剪力平均值大于振型分解反应谱法下的80%,满足规范相应要求。

通过对比时程分析的最大楼层剪力曲线和CQC最大楼层剪力曲线的计算结果,说明CQC计算基本符合计算要求。具体对比见下面的表格及图形。

7 性能设计

本结构为超限高层建筑,考虑采取性能设计。结合经济条件及抗震设防类别、设防烈度、场地条件、结构类型和不规则性,确定以下性能设计。

1)采用合理的结构形式,避免复杂高层结构,使结构尽可能合理。本结构选用剪力墙结构,有较好的抗震性能。避免采用复杂的高层结构体系,无错层、无加强层;底部与多层商业设缝,嵌固于地下室顶板,形成单塔结构,避免大底盘多塔结构。

2)选定地震动水准。本设计使用年限50年的结构,选用规范给定的的多遇地震、设防地震和罕遇地震的地震作用。

3)抗震性能目标设计:抗震性能设计执行规范的三水准设防目标,对结构进行多遇地震作用下的结构和构件承载力验算和结构弹性变形验算。选定性能设计指标。对关键部位底部加强区剪力墙的抗震承载力、变形能力进行适当提高。控制结构整体周期比及竖向刚度不出现薄弱层,使结构在设防地震和罕遇地震下的受力性能较为合理。做法如下:

ⅰ 控制底部加强区的剪力墙轴压比在0.3左右:在小震下结构为弹性受力,在中震作用下,底部加强区为结构塑性铰产生的部位,为使塑性铰有足够的转动能力,就要保证底部加强区剪力墙具有一定的延性,其有效的措施之一就是控制其轴压比。本工程底部加强区剪力墙的轴压比基本控制在0.30左右,因轴压比较小,中震下有较强的塑性变形能力,不易发生脆性破坏。

ⅱ 控制结构的周期比在0.7以内:规范要求B级高层周期比应控制在0.85以内,为了减少结构在罕遇大震下的扭转效应,本结构周期比控制在0.7以内。 结构不致于出现过大的扭转效应,结构受力也比较合理。

ⅲ 控制不出现薄弱层:薄弱层会引起结构受力突变,本结构上部为标准层,布置较为合理,底部商业层高通过调整墙厚避免了薄弱层。

ⅳ 提高底部加强区剪力墙的配筋率:底部加强区的剪力墙为主要的塑性铰发生区。经计算在多遇地震下底部加强区剪力墙配筋基本为构造配筋,满足规范要求的最小配筋率0.25%。考虑在施工图设计中适当提高底部加强区的剪力墙配筋,控制最小配筋率提高到0.3%,提高剪力墙的承载力及塑性变形能力。

超高层建筑抗震设计范文第5篇

关键词:超高层结构;钢管混凝土柱;钢筋混凝土核心筒;伸臂桁架;桁架转换;拉索式门式刚架;性能目标

随着我国经济的不断增长,城市化进程进一步加快,城市规模扩大使得高层和超高层建筑越来越多,人们对建筑的抗震性能要求也更加地严格。但是一些超高层建筑由于结构不合理导致了抗震性能不符合要求,影响了建筑的安全性。如何对建筑的结构进行计算分析来保证其抗震性能符合要求成为了人们关心的问题。下面就结合实例对此进行讨论分析。

1 工程概况

1.1 项目概况

本工程总建筑面积约为21.5万m2,建筑高度为217.20m。本项目塔楼标准层平面布置呈半椭圆形,顶部从屋面东侧悬挑出直升机救援平台,塔楼东侧有180m高的外凸玻璃中庭,从救援平台顺势倾斜而下,和底部裙楼玻璃天窗相接。本工程建成后将成为当地地标之一。

2 塔楼结构设计特点及抗震性能目标

2.1 设计特点

该塔楼结构主要设计特点有:高度超B级高度30%;平面布置不规则;东侧靠外凸幕墙部分楼板开口且各层不规则;二层受入口大堂通高布置影响,有效楼板宽度小于50%;局部钢桁架托柱转换等。同时,为增加外框架刚度,在塔楼东侧两个疏散楼梯边部通高设中心钢支撑。

2.2 抗震性能目标

结构构件抗震性能目标见表1。

表1 结构构件抗震性能目标

3 幕墙结构

幕墙结构以塔楼结构作为其支撑体系,根据塔楼结构特点,将幕墙结构分为顶部区块02和顶部区块03、底部区块01两部分。

顶部中庭部位幕墙包含顶部区块02和顶部区块03,采用钢板梁(钢板厚40mm)和竖向悬吊方钢管(120×200×12×12)体系,各区块幕墙的重力荷载由悬挂在主体结构避难层(42层和27层)的转换桁架上的方钢管承担,水平风荷载和地震荷载由铰接于塔楼中庭两侧钢管混凝土柱的水平钢板梁传递给主体结构。

底部区块01中庭结构采用了拉索式门式刚架和箱形次梁体系,幕墙的重力荷载由悬挂在12层的受拉杆件、拉索式门式刚架和箱形次梁共同承担,水平风荷载和地震荷载由拉索式门式刚架、连接于塔楼墙体的水平次梁共同承担。拉索式门式刚架南侧由主入口的空间桁架提供竖向和水平支撑,北侧连接在四层的裙楼结构上。

4 结构计算分析

4.1 塔楼结构

(1)结构整体计算指标

分别采用SATWE,ETABS软件对塔楼结构进行计算,分析时提取幕墙荷载,然后作用于塔楼以近似考虑幕墙结构对塔楼的影响。分析时考虑双向地震作用的扭转耦联效应,并考虑偶然偏心影响。结构阻尼比取0.04,水平地震影响系数最大值αmax取0.162(安评报告最大地面运动峰值加速度为0.072g×2.25=0.162g),特征周期Tg=0.35s,抗震等级为特一级(钢框架梁为一级)。小震作用下结构主要计算结果见表2。

表2 小震作用下结构主要计算结果

由表2可以看出,两种软件计算结果相近,结构扭转为主的第一自振周期与平动为主的第一自振周期之比小于0.85;小震作用下最大层间位移角小于高规限值1/637;剪力墙轴压比控制在0.4以内;X向剪重比基本满足规范要求,Y向剪重比不满足规范剪重比要求的楼层数小于总楼层数的15%;框架部分分配的楼层地震剪力标准值最大值大于结构基底剪力标准值的10%,因此按高规第9.1.11条第3款对框架部分进行剪力调整;楼层位移比在裙楼以上各层均小于1.2,仅在裙楼个别楼层大于1.2,但小于1.4;结构26层(27层避难层下层)为薄弱层,对其地震作用下的剪力标准值乘以1.25的放大系数;结构刚重比大于1.4和2.7,满足稳定性要求,计算时可不考虑重力二阶效应。结构顶点风振加速度小于0.25m/s2,满足舒适度要求。

(2) 中震不屈服、中震弹性承载力验算

剪力墙、钢框架梁按中震不屈服设计。水平地震影响系数最大值αmax取0.45,荷载分项系数和构件承载力抗震调整系数改为1,材料强度采用标准值,将与抗震等级相关的调整系数均改为1。采用SATWE,ETABS软件对结构进行分析设计。计算结果表明剪力墙的剪压比不大于0.20,钢框架梁应力比不大于0.95。

钢管混凝土框架柱、伸臂桁架、转换桁架按中震弹性设计。水平地震影响系数最大值αmax取0.45,与抗震等级相关的调整系数均改为1。计算结果表明伸臂桁架各构件应力比不大于1.0,钢管混凝土柱应力比不大于0.9。

4.2 幕墙结构

(1)整体分析

为确保幕墙结构计算的可靠性,对幕墙结构进行了独立分析设计,计算采用SAP2000(V14),其中玻璃幕墙自重取1.5kN/m2,活荷载取0.5kN/m2,风荷载、地震作用按照《玻璃幕墙工程技术规范》(JGJ102―2003)相关规定取值,并参考风洞试验报告相关结果。此时,顶部区块02、顶部区块03的水平钢板梁与塔楼相接处近似按不动铰支座考虑,但42,27,12层的转换桁架按实际情况考虑。幕墙底部区块01与北侧裙楼的连接,竖向按不动铰支座考虑,水平向用线弹簧模拟实际楼层刚度;与南侧裙楼连接时,裙楼竖向、水平向按等效刚度折算的深梁模拟。

(2) 水平钢板梁屈曲分析

对顶部区块02、顶部区块03的水平钢板梁进行单榀屈曲分析,钢板梁用壳单元模拟,钢板梁两端用铰支座模拟,竖向吊杆用弹簧单元模拟,弹簧刚度按竖向钢管受拉轴向刚度计算。为确保收敛性,在竖向吊杆与钢板梁交接处设置刚域以减小应力集中。侧向风荷载、地震作用按楼层高度折算为线荷载,作用于钢板梁侧面,钢板梁计算模型及屈曲分析可以看出,风荷载、地震作用下屈曲因子均大于29,满足结构稳定要求。

6 结语

综上所述,由于中庭幕墙结构依附在塔楼结构上,所以在进行塔楼设计时只需要考虑幕墙结构的附加荷载。我们在设计幕墙结构时,不仅要达到幕墙自身承载力的要求,也要考虑到其与塔楼交接部位位移协调产生的次应力影响。这种设计方法有着减小幕墙结构构件尺寸同时令建筑效果更好的优点。

参考文献

超高层建筑抗震设计范文第6篇

关键词:混凝土结构;超限抗震

1基本情况

广州琶洲香格里拉酒店项目位于广州市海珠区,广州国际会议展览中心东侧,在建的黄洲大桥西侧,北临珠江,南靠新港东路,长约240米,宽约200米。整个项目包括一座37层的酒店(塔楼高32层,裙楼5层)和宴会大厅,以及2层地下车库。

2抗震设防标准

(1)抗震设防烈度:7度。

(2)本工程属丙类建筑,按本地区设防烈度采取抗震措施。

3基本数据

(1)场地类别:Ⅱ类。

(2)土层等效剪切波速为168.4m/s-173.8m/s,场地覆盖层厚度约13.5m-17.4m,砂土液化等级综合评定为严重,属于抗震不利地段。

(3)持力层名称:微风化岩层,埋深约10.90m-23.70m,地基承载力特征值fak=4500KPa,岩石天然湿度下单轴抗压强度的标准值fr=13.5Mpa。

(4)桩型为冲孔/钻孔灌注桩,桩端埋深约15-20m。

4建筑结构布置和选型

(1)主楼高度(±0.00以上)140.7m,地面以上结构层为38层,其中出屋面一层,高度为4.7m。

(2)裙房高度(±0.00以上)29.0m,地面以上结构层为4层。

(3)塔楼主体部分、裙楼和宴会厅之间设两道110mm宽抗震缝分开。建筑物总高度为136.0m,总平面尺寸为195m×122m。其中塔楼部分(转换层以上)平面尺寸为72米×18米,长宽比L/B=4<[6],高宽比H/B=6.0<[7];裙楼部分平面尺寸110m×45m,长宽比L/B=2.4,高宽比H/B=0.5;宴会大厅平面尺寸65m×53m,长宽比L/B=1.2,高宽比H/B=0.3。

(4)塔楼质心有微小的向上偏心(以底端为原点)。

(5)结构形式简单、平面形状规则、布置均匀;结构层第5层为转换层,竖向构件布置不连续。

(6)本工程为现浇钢筋混凝土结构,楼盖整体性好。

(7)结构类型:框架—剪力墙结构,属于复杂类型。

(8)抗震等级:本工程塔楼的框架和核心筒为一级抗震。由于地下室顶板作为上部结构的嵌固部位,地下一层的抗震等级与上部结构相同。其余部分裙楼及其地下一层与主楼相连,一级抗震。

(9)结构概况:

整个大楼的设计采用框架—剪力墙结构形式,分为两级结构,转换层以下布置了21根巨型框支柱,剪力墙及承重柱均落地直至基础,由剪力墙、的框架柱和框架梁形成第一级结构,承受水平力和竖向荷载,而楼面及次梁作为第二级结构,只承受竖向荷载并传递到第一级结构上。5结构分析主要结果

(1)计算软件:PKPM系列结构分析软件SATWE模块(2002规范版本)中国建筑科学研究院PKPMCAD工程部编制。

(2)楼层自由度为3(刚性楼板)。

(3)周期调整系数:0.8。

(4)主楼结构总重:2291152.81KN(SATWE)。

(5)基底地震总剪力:32581KN(X向)36421KN(Y向)(SATWE)。

(6)扭转位移比:1.3。

(7)转换层的上下刚度比:0.6027。

(8)最大轴压比:n=0.85。

(9)最大层位移角为1/941,在17层(SATWE)。

(10)时程分析采用人工模拟的加速度时程曲线,选用了两组实测波和一组场地人工波进行弹性动力时程分析。弹性阶段的时程分析,构件内力,侧向位移小于采用振型分解反应谱法的构件内力和侧向位移。

6计算结果小结(与规范要求对比):

(1)在风荷载及地震作用下各构件的强度和变形均满足有关规范的要求。

(2)墙、柱的轴压比均符合《建筑抗震设计规范》和《高规》的要求,转换层以上柱子轴压比小于[0.85],框支柱轴压比小于[0.6]。

(3)按弹性方法计算的楼层层间最大位移与层高之比Δμ/h=1/941满足《高层建筑混凝土结构技术规程》(JGJ3-2002)第4.6.3条要求的1/800。

(4)塔楼满足(JGJ3-2002)关于复杂高层建筑结构扭转为主的第一自振周期与平动为主的第一自振周期之比最大值为0.729,不大于0.85的规定。

(5)塔楼满足(GB50011-2001)第3.4.2条关于复杂高层建筑各楼层的最大层间位移不应大于该楼层两端层间位移平均值的1.4倍的规定。

(6)除转换层外,塔楼各层均满足(GB50011-2001)第3.4.2条关于各楼层的侧向刚度不小于相邻上一层的70%,并不小于其上相邻三层侧向刚度平均值的80%的规定。

(7)塔楼满足(JGJ3-2002)第E.0.2条关于转换层上部结构与下部结构的等效侧向刚度不应大于1.3的规定。

(8)除转换层外,塔楼各层均满足(JGJ3-2002)第4.4.3条关于楼层层间受剪承载力不宜小于相邻上一层的80%的规定。

(9)塔楼满足(JGJ3-2002)第5.4.4条关于结构稳定性的规定。

(10)塔楼满足(JGJ3-2002)第3.3.13条关于各楼层对应于地震作用标准值的楼层水平地震剪力系数不小于表3.3.13的规定。

(11)塔楼满足(JGJ3-2002)第3.3.5条关于按时程曲线计算所得的结构底部剪力不宜小于CQC法求得的底部剪力的65%的规定。

(12)结构薄弱层弹塑性层间位移符合《建筑抗震设计规范》(GB50011-2001)第5.5.5条关于弹塑性层间位移角(1/164)小于1/100的规定。

7其它需要说明的问题

本工程在三种超限条件(高度、高宽比、体型规则性)中,高度超限13.3%,高宽比满足规范及规程的有关要求,结构平面形状规则,竖向不规则。

主要超限抗震措施包括:

(1)为避免大楼整体结构之间形状的不规则,引起不利于抗震的情况,在主楼和裙楼之间设置110mm宽抗震缝两道,缝的两侧设置双柱,地下室、基础不用设缝。

(2)转换层位于第5层,框架柱和剪力墙的抗震等级根据《高规》表4.8.2和表4.8.3规定提高一级,为特一级。

(3)首层、设备夹层、避难层、屋面层楼板加强,板厚为180mm,中央核心筒板厚加强为150mm,配筋相应加强,设双向双层钢筋网。

(4)薄弱层的地震剪力乘以1.15的增大系数,按照《建筑抗震设计规范》进行弹塑性变形分析和验算,并采取有效的抗震构造措施。

超高层建筑抗震设计范文第7篇

【关键词】超限高层建筑;建筑工程;抗震设计;对策

如今,随着建筑行业的兴起,居住建筑与人们的生活就密切的联系着,但是近年来,随着人们的生活水平的不断提高,人们都在不断的关注着住宅的面积、位置以及建筑的抗震设计等问题,所以超限高层建筑抗震设计很受人们的关注。因此,与居民生活相关的抗震设计的好坏直接的影响着居民的使用,能否综合利用实用、美观和人性化等因素对给超限高建筑工程抗震进行科学的设计是一个重要研究内容。超限高建筑由于自身高、大以及给抗震设计繁琐等原因,其在设计方面应该要不同于其他建筑上卡座设计,要根据其特点进行设计,体现出超限高层建筑抗震设计的不同风格。

一、对超限高层建筑工程抗震设计的基本要求

(一)在进行超限高层建筑工程的设计过程中,要严格的对建筑物本身的稳定性能、承载能力、整体延性等多个方面进行综合性研究和考虑。在工程的设计过程中,对于其结构的构建要严格的符合安全的具体要求,还要对可能出现的问题进行防治和加强,采取必要的措施进行加固,大力提高超限高层建筑本身的抗震能力。

(二)在进行建筑物的设计过程中,要采取措施尽量来设计出多层次的抗震防线。在我国超高层建筑物中,每一个建筑物如果具有良好的抗震体系,就必须有多个比较良好的延伸性分体构成,这些构建要结合在一起,能在起到整体的配合作用下也不会影响它们之间的相互作用。在进行超限高层建筑物设计中,会设计更多地抗震防线,这主要是由于在一起比较强烈的地震之后,一定会有更多地余震出现,如果只有一道抗震防线,那么建筑物的安全性和稳定性就会受到很大的冲击,很难保障建筑物和人民生命财产的安全。所以,扎起进行超限高层建筑物设计的过程中,要尽量的多设计一些抗震防线,保证其主要的耗能构建具有非常高的延伸性和刚柔性。这样,不仅能有效地保证超限超高层建筑物的结构不遭到破坏或者影响,而且还能对地震能量的有效减缓有很大的帮助作用,大大的提升超限高层建筑的整体性能。在这个过程中,也不能对超限高层建筑物内部的构件爱你之间的有效联系不能忽视,对于每一栋楼、一层楼来说,在对使用的耗能构件出现屈服后,要严格的对其进行弹性监测,能大大的提高其长久的使用能力和抗震能力。

(三)对于超限高层建筑物中的薄弱环节要密切的进行重视和控制,采取必要的措施来提高建筑物本身的整体抗震性,如果发生地震,超限高层建筑的主要构件可以很大的程度上承受较大的冲击力,这就需要大力的对超限高层建筑物的薄弱环节进行严格的检查、观察和研究工作,要严格的采取有效地措施对其进行加固,对所处于的承载力和弹性力的均衡点等进行严格的处理和控制,保证在地震发生的情况下能及时的发现问题,进行及时的处理。

二、超限高层建筑抗震设计的处理方式

在我国很多的超限高层建筑中,针对其整体的安全性和稳定性,要根据具体的实际情况采取必要的措施进行加固措施,防止在地震发生时出现不必要的隐患,对人民生命财产安全造成不必要的损害,这样能大大的保证超限高层建筑在遭受到地震冲击时更好地发挥其稳定性和安全性。

(一)构件的具体加强措施。一是要尽量的增加建筑物底部的剪力墙厚度;二是在底部大量的增加一些钢筋混凝土柱或者加大其的配箍特征值;三是对于连接梁之间的配筋来说,需要采取交叉暗掌的形式进行搭建;四是对于框架支柱的轴压比要进行比较严格的控制;五对于节点或者锚固的有效加强可以采取构造的措施来加以实现。

(二)梁式转换层的主要结构。一是要将梁的转换层向上加伸到两层,二是对于剪力墙的配筋强度要合理的进行提升;三是对于框支柱的压轴比要采取有效措施进行控制,使用钢筋混凝土梁柱;四是在进行配筋的使用时,在进行转换层的使用上可以利用双向或者双层配筋;五是对于建筑物的整体结构要进行严格的调整,满足在其设计上的刚度要求;六是要合理的对混凝土的梁结构的节点和配筋进行合理的设置。

(三)对于竖向湖或者结构进行平面布置过程中,要严格避免扭转所带来的严重影响,还要大力的保证侧向的刚度能在比较均匀的水平层次上发生变化。对于构件的整体布置,要严格的通过充分的分析、研究和计算,反复的、多层次的进行调整,最大的得到一个最佳的、最合理的位置,这样可有效地保证在地震发生情况下不会出现偏移现象。

三、超限高层建筑设计中应注意的问题

(一)强柱弱梁。今年来,我国的地震灾害频繁发生,所以在超限高层建筑框架的结构设计中,应该加强对房梁的设计,让梁端形成塑形铰,节点处于弹性状态,柱端处于非弹性状态。柱强梁弱是相对于梁端截面的相对弯曲能力而言的,一般来说柱端截面的抗弯曲能力越大其增强的幅度越大,是在出现地震的情况下,决定柱端截面屈服后塑性转动能否不超过其塑性转动的能力,保证柱能在意外发生时不造成破坏。梁端纵筋超配程度的大小是由柱强于梁的幅度大小决定的,在梁和柱端塑性铰的形成过程中,塑性内力分布和其动力特征都有一定的变化。在建筑条件允许的条件下,尽量将柱的截面尺寸扩大,使柱和梁的线刚度比值大于1,控制柱的轴压,增加延续性。在对截面进行承载力运算时,应该将柱的设计按照梁弱柱强的原则进行放大,将柱的配筋构造进行强化。梁端的纵向受拉钢筋不得过高,避免在地震中不能形成塑性铰,或者将塑性铰转移。在设计中注意节点的构造,把塑性铰向梁跨内移动。

(二)强剪弱弯。在建筑框架结构中采用强剪弱弯的设计,可以保证构件的延性,在建筑中有可能出现脆性破坏,就要求在建筑中加大各构件的抗弯曲能力和抗剪承载力,这能够有效的应对地震对建筑框架的破坏,一旦遇到地震等突况能够保证不出现脆性剪切失效的状况。对于建筑框架结构中应该加强对抗剪验算和构造的设计,使结构框架能够符合相关规范的要求。

(三)构造措施。1.在建筑框架结构中,要注意对大跨度的柱网进行框架设计,在楼梯间处的框架柱和平台梁相连接,楼梯间的柱可能为短柱,这就应该对柱箍筋进行全长加密的措施,有些工程设计中没有对此设计引起重视,往往忽略了其重要性;2.对框架的外立面进行设计的过程中,如果外立面为带形窗时,由于设置连续的窗过梁,这就说明外框架柱可能为短柱,应该对其构造采取一定的措施;3.在结构框架的设计中,有可能会出现框架结构长度超过一定的规范限值,某些建筑不需要留缝,为了减少裂缝,应该采用混凝土对裂缝进行浇注。在后浇带的设置中,应该采用细密的双向配筋,其构造间距应该小于150,对后浇带进行适当的加强。

四、结语

随着超限高层建筑的高度在逐渐的提高,难度在逐渐的增大,这样就对其的结构提出了更多地复杂性和更多地技术难题,抗震设计关系着超限高层建筑物本身的稳定性和安全性,想要真正的保证超限高建筑的安全使用能力,就要进一步加大对其抗震设计提出更多地措施,加大对其的重视力度。所以说,在进行超限高层建筑建设的过程中,要做好抗震设计,真正的反映出我国综合国力的提高。相信在未来我国建筑业的发展过程中,超限高层建筑的发展方向一定出朝着安全、环保和经济的发展方向前进。

参考文献:

[1] 黄志华, 吕西林. 上海市超限高层建筑工程的若干问题研究[J]. 结构工程师,2007,23(05):1-18.

[2]吕西林.高层建筑设计与分析中的力学问题[A].走向21 世纪的中国力学[C],北京:清华大学出版社,1996:155-163.

[3]瞿国辉.超限高层建筑工程抗震设计中的若干问题[J].科技风,2012,(17).

超高层建筑抗震设计范文第8篇

关键词:超限,结构抗震设计,优化措施

Abstract: combining with engineering examples, this paper expounds the engineering and the structure of the off-gauge corresponding design thinking, in the theoretical analysis and the concept design, under the premise of the performance-based design buildings aseismic method, in view of the problems found in the design process, and has made the corresponding improvement measures, optimize the structure, achieve finally overrun the design requirements.

Keywords: overrun, structure seismic design, optimization measures

中图分类号:S611文献标识码:A 文章编号:

1、高层建筑的概述

在古代人们就开始建造高层建筑,比如埃及的亚历山大港灯塔,高100 多米,为石结构。现代高层建筑发展迅速,在大中城市随处可见。高层建筑是指超过10 层的住宅建筑和超过24 米高的其他民用建筑。高层建筑可以带来明显的社会经济效益;首先,使人口集中,可利用建筑内部的竖向和横向交通缩短部门之间的联系距离,从而提高效率;其次能使大面积建筑的用地大幅度缩小,有可能在城市中心地段选址;第三,可以减少市政建设投资和缩短建筑工期。由于高层建筑的高度比较高,所以解决水平抗剪问题成为关键,而抗震是解决水平抗剪

问题的一个重要因素。然而对于不同的结构形式,同一设防烈度下,抵抗地震能力有很大区别,因此选择合适的结构形式对于高层建筑尤为重要。

2、超限高层建筑抗震设计思想

国内外对建筑抗震进行了大量的研究,抗震设计理念也有多种,但是现在比较常用的主要有:概念设计和基于位移的抗震设计。

2.1概念设计

概念设计是相对于数值设计而言着眼于结构的总体地震反应,可以理解为运用人的思维和判断能力,从宏观上决定结构设计中的基本问题。抗震概念设计是根据地震灾害和工程经验所获得的基本设计原则和设计思想,进行建筑结构总体布置并确定基本抗震措施的。高层建筑形状力求规则和简单、建筑结构尽量对称、

设置防震缝及尽可能满足建筑竖向均匀性。前三种易于理解,以下就着蘑介绍建筑竖向均匀性问题。均匀性问题存在于建筑的竖向布置中,无论是几何图形还是楼层刚度变化,其规则匀称应该是立面设计中优先考虑的。不均匀布置会产生了刚度、强度的突变,引起竖向的应力集中或变形集中,以致在中小型地震中损坏,在大震时倒塌。但是,要使结构做到完全均匀性,在实际设计中也有一定的困难。结合工程实际,其均匀性问题主要表现如下:

(1)填充墙设置的影响。框架内的填充墙若设置不当,地震时往往会改变结构的受力状态而产生不利影响。例如,由于填充墙设置不当,可使框架柱形成短柱而造成破坏。为此,应把墙同柱分开或采用轻质墙以使框架柱连续。

(2)抗震墙不连续。由于建筑上的需要,可能出现上下不连续的抗震墙,这就产生了不均匀性。为此,应考虑限制上下层的刚度以及连续抗震墙的间距。

3、工程概况

本项目建筑用地面积4930m2,总建筑面积为16687m2,地上11层,地下2层,建筑总高度为42.00米。本工程为框架-抗震墙结构,设计基准期50年,抗震设防类别为丙类,设防烈度7度,设计基本地震加速度0.10g,地震分组为第一组,Ⅱ类场地,特征周期0.35s。结构整体模型见图1

图1结构整体模型

3.2地震危险性分析与地震波的选定

根据地质资料进行地震危险性分析,其结果为场区基本烈度(50 a超越概率为10%)为7度,基岩加速度为118.9 cm/s2;在多遇地震(50 a超越概率为63%)作用下,其烈度为6度,相应基岩加速度为31.2 cm/s2;在罕遇地震时(50 a超越概率为3%)烈度为7.7度,相应基岩加速度220 cm/s2.与国家地震局、建设部《中国地震烈度区划图(1999)使用规定的通知》中,中山市区设防基本烈度为7度相一致。根据地震危险性分析场区属近场地震效应,但根据国内外大量震害资料表明,软弱场地长周期地震作用对超高层最不利.并考虑到地震发生有较大的随机性,因此选择远震一长周期多遇地震强震记录进行地震反应分析.场地地震波的选定,按地震危险性分析结果,近震所确定的“基岩”加速度峰为输入,以现行规范㈨“基岩”反应谱为目标谱,拟合人工波作为地震反应分析的输入地震波,在埋深16 m处,分别选择近震多遇地震人工波HJl、符合场地近震特征的近震多遇地震强震记录HJ2(w.NASHINGON地震OLYMAPIA台站)和远震多遇强震记录HJ3(天津宁河波天津医院台站).在埋深9 m及地面处,同样选择上述3种地震波,但加速度、速度和位移峰值不同.表1-1列出了不同埋深处所选定的地震波的加速度、速度和位移峰值,表1-2列出了各地震波的归一化水平地震影响系数及特征周期。

表1-1不同埋深处所选定的地震波加速度和位移峰值

表1-2地震波的归一化水平地震影响系数及特征周期

3.3抗震设防要求

《抗规》的三个水准的设防要求,即“小震可修,中震不坏,大震不倒”。它是通过二阶段设计来实现的,(如表2抗震设防目标要求)。

1 按小震作用效应和其它荷载效应的基本组合演算结构构件的承载能力,以及在小震作用下演算结构的弹性变性。

2在大震作用下验算结构的弹塑性变形,以满足第三水准抗震设防目标的要求。第二水准抗震设防目标的要求,是以抗震构造措施来保证的。

3.4、超限设计分析

本工程采用两个不同力学模型的空间分析程序进行计算对比分析,选用SATWE软件(简化墙元模型,2010版)和GSSAP软件(细分墙元模型,15.0版)。

3.1针对结构存在局部跨度16.8m转换梁柱情况,采用振型分解反应谱方法计算竖向地震作用效应。结果表明在竖向地震作用下,转换柱轴压比及梁柱配筋均满足要求。

3.2为了提高框架作为第二道防线的抗震承载力及性能,框架抗震等级提高一级,轴压比限值也相应提高。

4、超限高层建筑设计应重视抗震概念设计

对于超限高层建筑结构设计,计算分析很重要,但计算不是结构设计的全部内容。现有的各种计算模型都是基于各种假定下作必要的简化处理才得以实现的,其计算结果有的不一定是结构真实受力状态的反映;对于实际工程中出现的各种各样的复杂结构形式,现有的计算模型也不是都能适用的。因此在设计高层结构时,一方面应重视结构的计算,但也不应过于依赖计算和盲目应用计算结果,应从工程结构的基本力学和抗震概念出发,对计算结果认真加以分析;应重视结构的概念设计,重视工程实践经验的应用。对钢筋混凝土结构来说,最大的矛盾是结构的内力按不变刚度的弹性理论进行计算,而构件截面承载力按允许进入

裂缝状态下的弹塑性理论进行计算,两者的计算结果是互不协调的。如对于框架一核心筒高层结构,由于竖向荷载作用下墙、柱之间轴向变形的差异较大,临近核心筒的框架柱计算轴力往往偏小,而连接墙与柱之间的框架梁配筋往往很大,甚至超筋。若在计算梁截面配筋时,对梁端弯矩进行调幅,将使梁与核心筒的连接节点刚度退化,与计算模型不相一致,造成柱的实际内力超出按弹性分析的计算轴力,如不加分析地采用计算结果,会导致柱及柱下基础的设计偏于不

安全。

5、超限优化措施

5.1通过提高关键部位及底部剪力墙墙肢的延性,使抗侧刚度和结构延性更好地匹配,达到有效地协同抗震。首先,通过提高约束边缘构件的配箍率、竖向分布筋配筋率等措施提高第一道防线的承载能力,其次,框架部分的抗震等级和轴压比限值按框架结构的规定取用,以提高第二道防线的承载能力[5~7]。

5.2根据计算结果对楼板边缘、转角等应力集中的地方进行加强,特别是平面细腰部位楼板加厚为150mm,配置45度斜向钢筋,并适当加强边梁配筋。

5.3针对本工程尺寸突变等竖向不规则的情况,适当增加结构的振型数,以考虑高阶振型的影响,并适当加大收进处上下层的竖向构件和水平构件的最小配筋率,相关竖向构件箍筋全长加密。

5.4扭转不规则使主体结构薄弱部位通常出现在整体结构边缘区域,设计时采取减小边缘结构竖向构件轴压比、剪压比及提高配箍率、配筋率等措施,提高结构延性,避免脆性破坏[8]。特殊情况下,还可以增设芯柱,以提高柱子的延性。

5.5转换构件范围内楼板厚度取180mm,通过考虑竖向地震和全楼弹性的模型对转换柱与转换梁进行分析,同时确保中震下其满足抗弯不屈服,抗剪弹性,大震下处于不屈服状态。

5.6跨层柱考虑二阶效应的影响,确保中震下抗弯不屈服,抗剪弹性。

5.7采用中震和小震作用下弹性楼板应力分析,以考虑跨层及错层墙柱的实际受力情况。

结束语

由此可见,超限高层建筑结构设计是一项非常长期、复杂的工作,它对结构工程师既要有扎实的理论功底,又要有丰富的工程设计经验,并且结合概念设计,这样设计出来的建筑物才能达到既安全、可靠、又经济、合理。所以,任何在这过程中的遗漏或错误都有可能使整个设计过程变得更加复杂或使设计结果存在不安全因素。

参 考 文 献

[1] 高层建筑混凝土结构技术规程(JGJ 3-2010)[S]. 北京:中国建筑工业出版社,2010

[2] 甘丹, 张敬书等. 细腰复杂截面高层建筑抗震性能分析[J]. 西北地震学报, 2008(4)

[3] 建筑抗震设计规范(GB 50011-2010)[S]. 北京:中国建筑工业出版社,2010

[4] 吕西林. 超限高层建筑工程抗震设计指南[M]. 上海:同济大学出版社, 2009

[5] 赵耀普, 卫文. 招商酒店抗震设计[J]. 建筑科学, 2011

[6]吕西林.超限高层建筑工程抗震设计指南[M].上海:同济大学出版社,2005.88―89.

超高层建筑抗震设计范文第9篇

【关键词】超限高层建筑;抗震设计;建议;问题

引 言

当今世界人口密集,资源压力大。人们的生存空间逐渐从简单的低层地面发展到了超限的高层建筑。在大城市中,高楼林立。而由于大城市具有比较多的工作机会,越来越多的人涌入进来,也更加促使超限高层建筑工程的发展,未来将会成为“天空的世界”。超限高层建筑工程与地面工程相比,施工难度和强度都比较大,要考虑地质条件,方案标准和成本等诸多因素的影响。超限高层建筑工程的抗震能力是最需要考虑的,它关系着整个超限高层建筑工程的安全性。因此,对超限高层建筑工程抗震设计是一个复杂而且严格的过程。

一、抗震设计的基本思路和原则

从世界范围来看,各国的抗震的主要原则是“小震不坏,中震可修,大震不倒”,这也是处理地震作用高度不确定的最优途径。在实践过程中,此原则得到了广泛的认可和一定程度上的效益。参照此原则严格执行的西方发达国家和地区,大部分建筑物符合了抗震规范设计,重大地震过程中所造成的人员伤亡已呈下降趋势。但是在中小地震过程中,依旧可能造成建筑物的某些结构正常使用功能的丧失,从而影响了人们对人居环境的更高追求和实现。

超限结构抗震的设计环节主要分为两个阶段。第一是弹性反应谱的采用,主要是针对多遇地震地区。用这两种方法主要是能够根据详细的结果和数据粗略估算出结构层的薄弱位置。第二阶段是Pu shove弹塑性时程分析方法的采用,此方法主要是分析判定结构构件塑性铰出现的分布和顺序。

二、超限高层建筑工程抗震设计的要求

1设置建筑物的抗震防线

建筑物的抗震防线体系都是由许多延伸性比较好的分体系构成的。这些延伸性比较好的分体系,能够互相联系,共同工作。虽然每一个建筑物都有自身的抗震防线,但是不能只设置一道,因为一旦地震发生,强震之后必将伴随着余震。只有一道抗震防线,就会被接二连三的余震所影响,导致建筑物的坍塌。超限高层建筑工程抗震设计要建立一系列的屈服度,并在内外部具有丰富的余度。组成抗震的分体部件,要有一定的延伸性和适当的刚柔性,这样的结构能够减缓比较多的地震能量,提高超限高层建筑工程的抗震能力。另外。要对楼层内的结构构件进行处理,主要的耗能结构屈服以后,就检测一下弹性阶段的构件,保证结构的延伸性和抵抗坍塌的能力。

2保证建筑物的稳定承载能力

工程设计中,首先要保证的就是建筑物的延伸性、稳定性和承载度。工程设计构建结构要加固底层的墙柱、节点,弱化横梁和构建。对建筑物中可能出现薄弱的地方或者是已经出现了薄弱的地方,要采取相应的科学合理的办法,提高总体的抗震能力。超限高层建筑承担的竖向荷载的构件不应该是主要耗能的构件。

3 采取多项措施提高抗震能力

在大地震中,真正起抗震作用的是建筑物本身的主要构件。构件能在大地震中承受地震所带来的危害,就要仔细的检查高层建筑物中的薄弱部位。对高层建筑物的弹性受力和承载能力的均衡位置点要合理的处置,在楼层的比值发生变化时,要及时发现和处理,并采取加号的办法进行解决。

三、超限高层建筑工程抗震设计出现的一些问题

1缺乏评测周边环境和地质条件的资料

虽然我国早已步入了市场经济体制,但是在建筑建设中依然存在着计划经济体制急功近利的思想。许多的工程建设因为追求眼前的经济效益以及工程的进度,就直接按照规划好的图纸进行施工建设,而没有仔细的对地域的周边环境和地质条件进行勘探和评测。没有地质资料,就失去了施工的准备和依据,容易出现许多的事故,造成不利的影响。

2解决结构上的平面布置

超限高层建筑结构有的为了追求美观,也有的是因为地质构成和周边环境的影响,导致外形不是很规则、均匀,凹凸的变化大。这就使得一个结构内的单元内,受结构平面上的形状的影响,刚度发生了不均匀的现象,导致平面的长度变长。

3结构单元内存在不同的受力结构体系

超限高层建筑施工方案中常会出现这样的现象。一个单元内用砌体来承受重量,而另一个单元内,用排架或者全框式的承受重量。这就使得原本的建筑物出现受力不均匀的现象,容易造成房屋倒塌。

四、对加强超限高层建筑工程抗震设计的建议

1加强构造构件抗震性能的措施

对超限高层建筑的底部,要加强部位的剪力墙厚度。用型钢混凝土柱来加大底部加强的部位,并加大其配箍的特征值。交叉暗撑式来组成连梁配筋形式。严格控制框支柱的轴压比,并运用相关的构造措施来加强节点和锚固。

2 梁式转换层结构设计

首先要增大落地剪力墙的厚度,对型钢结构模型混凝土转换粱的主要节点和配筋进行强化,调整结构的布置,使上下部机构的转换层的侧向刚度符合标准的规范 对转换层临近的上下层楼板的配筋,用双层双向配筋处理,严格控制框支柱的轴压比,运用型钢混凝土柱,并控制好柱的配箍特征值。适当的将剪力墙的配筋提高,柱由转换层延伸2层左右。

3 结构的平面布置

降低扭转的直接影响,侧向刚度逐渐均匀的发生变化。对结构构件布置要反复的考虑,并充分的调整和计算。在考虑好偶然的偏心影响地震作用之下,楼层竖向构件的水平位移和最大层间位移和楼层平均值相比,要小于该楼层平均值的1.4倍,转换层侧向刚度与相邻上部楼层刚度相比,要大于70%左右,受剪承载力与上层受剪承载力相比,要大于上层的80%左右。

4 制定一项严格程序

超限高层建筑工程制定旋工方案和实施是一个长期且比较复杂的过程,要考虑好经济投入的成本和施工风险,注意施工以及工期的条件。根据不同的地质环境和周边环境的影响,制定一个满足地震设计、周边环境的要求以及具有经济效益的工程制定施工方案。而制定程序是保证施工方案质量的最佳制定的办法。制定的程序主要有这两个阶段:① 对周边环境和地质条件进行勘探和评测,将施工对象的地质条件摸清楚,测量好固岩的稳定,预测好各项风险的因素,并设计出最好最佳的方案,评估工程对周边环境的总体社会影响。②对各个因素进行取舍,在无法兼顾工程的成本和进程,以及方案的选择问题时,要明确整个工程的目标价值,考虑工程中每个因素的作用,做出正确的判断。

五、结束语

总体而言,对于超限高层建筑工程的抗震设计,是当今社会建筑工程中一个比较重要的研究话题。如何让更好的对超限高层建筑工程的抗震设计进行加强管理,需要从周边环境和地质条件的评测、结构的平面布置以及单元内的受力体系等方面综合考虑,设置全面的抗震防线,加强建筑物的稳定承载和抗震能力。保证超限高层建筑工程抗震设计的最终质量,就要组织全体的知识和力量,学习国际上的先进技术和理论,总结我国的基本国情,因地制宜的研究出适合我国大城市超限高层建筑的抗震体系,拿出经济实际的最佳方案。最终为居民的生命财产安全提供保障,促使我国的社会经济安全可持续的发展。

参考文献

[1].陈剑峰.高层建筑抗震设计存在的主要问题及设计对策叨.科技视界,2012,(19).

超高层建筑抗震设计范文第10篇

【关键词】:静力弹塑性分析;动力弹塑性分析;超限高层建筑结构 ;抗震设计

中图分类号:TU97 文献标识码:A

【前言】

近些年来,社会经济实力的上升,促使我国高层建筑的规模得到了较大幅度的提升,使得房屋的数量不断的增加,不少较为复杂的结构及形体得以出现。对于这些高层建筑结构来说,其中有一部分都超出了抗震设计的规范范围及相关的抗震设计的规定之外。怎样能够对这些建筑在地震中产生的可靠性进行分析与评估,受到研究者们的关注。静力弹塑性分析方法能够有效的来对结构弹塑性下的强度、变形需求及探测结构的设计进行分析。特别是在对一些不规则结构进行分析时,其可以弥除弹性分析过程中不能做到的一些环节,动力弹塑性分析方法能够有效的来对结构的屈服机制及相关的薄弱环节进行判断,这是结构弹塑性分析过程中一种最为有效的方法。

一、工程概况的反应

1、对外框筒具有情况的分析

外框筒在工程实施的过程中是依据建筑的外形来进行设置进行。在本座大楼中,其存在的四个面均是呈现出外凸弧形,四个角的局部具有凹进部分。其存在的外框筒的基本柱的距离为5.5m左右,这是为了底部出入口大门净空的设置。并且因为大柱距处于外框筒的中部,进行对外框筒造成的影响比较小,为了对结构的延性做到提高,就需要对构建的截面进行减小,在大楼的14层之下的距离使用型钢混凝土柱来进行实施。

2、对内筒具有情况的分析

在研究的大楼中,其主塔楼的内筒是经过四个相关的小筒来进行联系在一起的。并且每一个小筒都是使用多道的剪力墙来组成的,因为明确的受力,使其具有较好的抗震效果。在内筒墙体的厚度从上到下来进行减小的时候,其混凝土的也从C60变化为C40,这样就可以实现对结构具有的自身重量做到有效的减小。

3、计算模型及假定条件的分析

在工程实施过程中,需要将其方烈度调置为七度作用,将其加速度也进行降低,因为在工程实施过程中使用的为钢筋混凝土筒的中筒结构,内筒为混凝土剪力墙核心筒的结构设置,并将外筒设置为外筒,把其距离设置为四米上下,并将楼层的20层以下都使用钢筋混凝土结构来进行设置,另外还需要在相关规定中表示出来。把钢筋混凝土的最大高度设置为230米作用。但就次楼来说,超出了几十米,因此就属于一种超限高层建筑。对于高层建筑来说,其结构中具有梁及柱等结构。梁、支撑及柱都属于一维构建,并且可以使用空间杆单元来做到对承受状态的模拟,并且可以根据受力条件的不同,需要把两端进行连接起来,分为一端固定连接,一端铰接及两端铰接的几种情况。并且当柱截面过大的时候,需要对剪切变形的影响进行考虑。剪力墙为高层建筑的主要抗侧力构件,在有限元理论的基础上,用壳元来模拟剪力墙的受力状态是比较切合实际的。楼板可采用平面板元和壳元来模拟其受力状态。

4、对静力弹性分析的采用

我们在分析的过程主要是对SATWE及ETABS这两个程序的使用,从而能够做到对众值烈度下地震作用进行反应谱分析。根据相关程序反应的结果显示,一个工程周期所使用的时间大约是在四点五秒上下。另外分析软件分析的结果,这种最大层间所具有的位移角为1/1583,而是这是在对四十五层楼进行模拟所得到的结果。另外通过另一种软件分析显示,其出现的位移角为1/1551。并且这是在对第三十八层楼进行模拟所得到结果。这两种软件所得到的结果均能够满足相关的规定与标准。都把中筒结构层的最大位移角控制在1/1500之中。因此所得到的结果就表示了这种方法能够起到对七级地震进行抵抗的效果。

5、对弹性时程的相关分析‘

在分析的过程中,根据场地的特征来选择两条天然波,并且将其所对应的峰值调到与设防烈度相适应的位置之上。通过对多条时程曲线所得到的结果显示,其得到的平均值都大于振型分解反应谱法的80%,并将其作为控制条件。经过相关的计算可以得出,使用人工波过程中,当采用最大的速度来对其进行时程进行分析的时候,就会得到结构底部所具有的剪力刚刚超出反应谱的60%上。是哟两条天然波的过程中,采用最大加速度来进行的时候,其得到的结构底部剪力不能满足相关规定所给出的要求。

二、使用静力与动力弹塑性分析来对超限高层结构的抗震性研究过程

1、使用静力弹塑性分析的应用过程

当使用ETABS这种非线性有限元计算分析软件来进行分析的时候,就可以建立起三维有限元模型,从而做到对建筑结构的弹塑性分析。根据分析的结果表明了,结构在7度的时候,当遇到较大地震的时候,其层间所发生的位移为1/156,这样得到的结果是小于相关规定中所设置的1/120限值标准。因此在发生这样7度地震的时候,建筑也不会受到影响。并且在对其塑性铰的分布问题进行分析之后,就会知道建筑物的部分柱子的脚部及顶部会有塑性铰的形成,其主要发生的原因是因为角柱的形状为异形柱,对其进行计算的过程中并没有加入型钢,并且对于混凝土的钢筋并没有进行改变,因此导致塑性铰在其上部的大量存在。

2、使用动力弹塑性分析的应用过程

在这种分析方面的实行过程中,需要两组真实的强震来进行选择,并且做好记录工作,与此同时,还人工进行模拟一组,以便于能够使用加速度时程曲线来对人工波进行分析,从而做到对地震波分析结果的了解。另外采用楼层位移的计算方法所得到的最大间位移结果是非常安全的。而且经过对相关分析结果对比显示,当层间弹塑性的位移较小,并且低于规定标准的时候,此时的结构就是属于比较安全的。另外根据对动力及静力的弹塑性结果分析得出,这种塑性铰的分布形式还是较为符合的,因此在对其进行时程分析的过程中,能够得到较为广泛的应用。

三、静力与动力弹塑性分析所展现出来的效果

1、分析过程较为合理

因为建筑结构的周期为4.5秒左右,并且根据振型分解反应所得出的最大层间位移角为1/1583及1/1551,其得到的结果都是在相关的规定之中。并且因为外框筒所占据的比例为50%左右,因此表明了外筒对地震的承担效果较为良好,并且受力程度也较为合理。

2、分析方法是具有较强的安全性的

在使用弹性时程进行分析的时候,按照相关的地震的情况来获得最大弹性间层位移角进行时,得到结果为1/1890。并且得到结构地震剪力也小于振型分解反应谱法。因

此,在弹性状态,按照振型分解反应谱法计算所得的内力进行设计是安全的。

3、这种分析方法还需要得到进一步的提高

使用弹塑性时程分析方法及Push-Over分析方法对超限高层结构地震作用的评价具有较大的影响。使用Push-Over方法还可以找出结构体系中存在的不足部分,从而找出结构的破坏顺序,并且具有较为明显的效果。

在实际的运用过程中,怎样来做到对加载模式、高阶振型及目标移位所造成影响的确定,以及在需求谱及能力谱计算方法选择上,还有很多工作要完成。时程分析这种方法虽然运用的较为成熟,但是在对构件及对地震波的选择过程中,还需要做到进一步的研究。

总结:

虽然在对超限高层建筑结构抗震设计的研究过程中,静力与动力弹塑性研究方法还存在着较多的不足之处,其中在计算的过程中会消耗大量的时间来用于计算。但是从整体所祈起到的效果来看,在这种分析方法中,选用较多的地震波和采用不同的恢复力模型对超高层建筑结构进行分析是目前较好的选择。

参考文献:

[1] 门进杰,史庆轩,周 琦.钢筋混凝土框架结构模型振动台试验及抗震性能对比[J].建筑结构,2008,5(38):45~48.

[2] 程绍革,王 理,张允顺.弹塑性时程分析方法及其应用[J].建筑结构学报,2000,2(21)1:52~56.

超高层建筑抗震设计范文第11篇

第二条本细则所称超限高层建筑工程,是指超出现行规范、规程及技术标准规定,以及现行规范、规程及技术标准规定中明确应专门研究的新建、改建、扩建及进行抗震加固的高层建筑工程。

第三条**市建设和管理委员会负责本市超限高层建筑工程抗震设防的管理工作,**市工程抗震办公室负责本市超限高层建筑工程抗震设防管理工作的具体实施。

第四条设计单位应对超限高层建筑予以判定,在初步设计阶段由初步设计主审部门征询**市工程抗震办公室意见,**市工程抗震办公室负责超限高层建筑初步设计抗震设防专项审查。

第五条**市建设工程抗震设防审查专家委员会由高层建筑工程抗震的勘察、设计、科研和管理专家组成,由**市建设和管理委员会聘任,对抗震设防专项审查意见承担相应的审查责任。

第六条**市建设工程抗震设防审查专家委员会组织专家进行审查,提出书面审查意见,**市工程抗震办公室应当自接受超限高层建筑初步设计抗震设防专项审查全部申报材料之日起20个工作日内,将审查意见提交初步设计主审部门。

第七条审查难度大或审查意见难以统一的超限高层建筑工程,可由**市工程抗震办公室邀请有关专家参加审查,或委托全国超限高层建筑工程抗震设防审查专家委员会进行审查,提出专项审查意见,并报国务院建设行政主管部门备案。

第八条建设单位提交的超限高层建筑工程初步设计抗震设防专项审查资料,应当符合超限高层建筑初步设计抗震设防专项审查送审文件的要求(见附件二)。

第九条超限高层建筑工程的抗震设防专项审查内容包括:建筑抗震设防设计依据、抗震设防分类、抗震设防烈度(或者设计地震动参数)、场地勘察成果和抗震性能评价、地基和基础的设计方案、建筑结构的抗震概念设计、主要结构布置、建筑设计与结构设计的协调、采用的计算程序、结构总体计算和关键部位的计算结果和分析判断、薄弱部位的抗震措施、以及可能存在的结构抗震安全问题等。

第十条超限高层建筑工程抗震设防专项审查费用(包括组织审查、结构分析及试验等)由建设单位承担。

第十一条超限高层建筑工程的勘察、设计、施工、监理,应当由具备甲级(一级)及以上资质的勘察、设计、施工和工程监理单位承担,其中建筑设计和结构设计应当分别由一级注册建筑师和一级注册结构工程师承担。

第十二条未经超限高层建筑工程抗震设防专项审查,初步设计审查不予通过,有关部门不得对超限高层建筑工程施工图设计文件进行审查。

第十三条超限高层建筑工程的施工图设计文件审查应当由具有超限高层建筑工程施工图设计审查资格的施工图设计文件审查机构承担。

第十四条建设单位、勘察单位、设计单位应当按照超限高层建筑初步设计抗震设防专项审查意见进行超限高层建筑工程的勘察、设计;施工图设计文件审查时应当检查设计是否执行抗震设防专项审查意见和采取相应的抗震措施;未执行专项审查意见的,施工图设计文件审查不予通过。

超高层建筑抗震设计范文第12篇

【关键词】复杂超限超高层连体建筑;建筑结构;建筑结构设计

复杂超限超高层连体建筑结构设计非常复杂,只有应用科学的设计,才能提高复杂超限超高层连体建筑结构设计的质量。本次结构针对复杂超限超高层连体建筑结构设计的原理及设计难,提出关键设计的策略。

1复杂超限超高层连体建筑结构设计理论

复杂超限超高层连体建筑就是指建筑结构的高度超过一般建筑的设计标准,设计结构非常复杂的建筑,这类建筑的剪力墙结构设计、梁式转换设计等都与仅仅只是高度超限的建筑有很大的区别。这类建筑结构常有错层、跃层、中空层等。要设计复杂超限超高层连体建筑时,要强化物理力学的应用,巧妙的应用物理受力平衡这一要点进行物理设计。复杂超限超高层连体建筑不仅外观设计复杂,抗震设计更为复杂,因为复杂超限超高层连体建筑外观及结构与普通常规超高层建筑不同,较为常用的建筑防震理论难以应用到这类建筑上,如果要强化复杂超限超高层连体建筑的防震计能,就要既满足复杂超限超高层连体建筑的独特审美设计,又要提高建筑的抗风性能、防震性能、刚度性能。

2复杂超限超高层连体建筑结构特点分析

超限认定,普通的超高建筑不能称为复杂超限超高层连体建筑,复杂超限超高层连体建筑的特点为以空间的标准来说,复杂超限超高层连体建筑对空间结构有极高的要求;从建筑功能来说,它要求建筑内部突出大跨度、大容量的空g;从建筑层的转换来说,它的有多个转换层,比如建筑结构内部会应用梁式转换、双塔结构转换等。

错层,复杂超限超高层连体建筑的功能有很高的要求,为了突出建筑结构的功能,它提出跃层、错层的建筑要求,复杂的错层带来建筑设计的难度。

平面不规划,复杂超限超高层连体建筑的功能要求非常复杂,这就带来建筑结构参数计算的难度。比如部分复杂超限超高层连体建筑要求建筑左右两端建设两个塔楼,这就意味着不能应用普通的建筑结构设计方式来设计建筑,施工单位只能把抗侧力构分布在两个端部;假如建筑的底层要求呈现大空间、大跨度、高空间的结构,那么建筑空间内就不能设置剪力强、柱子隔开空间,施工单位就只能依靠裙房建筑物两端来承担建筑荷载;假如建筑中间层要出现大空间、大跨度、高空间的建筑结构,施工单位就不能应用连续楼层的方式设计楼层荷载。

3复杂超限超高层连体建筑结构关键技术

3.1抗风设计

在复杂超限超高层连体建筑结构设计中,必须重视抗风的设计。这是因为复杂超限超高层连体建筑结构的体积大、建筑结构较为复杂,这类建筑极易受到风力的影响,抗风设计是复杂超限超高层连体建筑结构设计的重点之一。建筑施工单位要把风产生的动力效应结合风振系数来计算,变成建筑结构设计中的拟静力计算。施工单位要做好模型风洞实验、结构动力分析、计算校核等工作。施工单位除了要做好建筑整体抗风设计外,还要注意到细节设计对主体设计的影响。比如在风力的影响下,建筑墙体开裂、玻璃墙体开裂都会对建筑主体带来重要的影响,施工单位要注意风力对建筑结构设计带来的综合影响,把风力对建筑结构群体的影响列入到参数计算中,强化建筑结构的抗风性。

3.2抗震设计

抗震设计是复杂超限超高层连体建筑结构设计的难点。这是因为这类建筑的特点带来抗震设计的困难。如果在满足复杂超限超高层连体建筑结构设计特点的前提下,要加强抗震设计,就要做好以下几个方面的工作。第一,优化复杂超限超高层连体建筑结构地理的位置。地理位置对于复杂超限超高层连体建筑结构的影响非常大。部分地区较多软弱地基、周边的环境较为复杂,这类地基极易受地震的影响,不利于复杂超限超高层连体建筑结构设计。为此,施工单位要优化复杂超限超高层连体建筑地理位置设计,为复杂超限超高层连体建筑结构的抗震性打好基础。第二,施工单位要从建筑整体的角度做好抗震设计。从整体的角度设计,是指施工单位要从宏观的角度看待复杂超限超高层连体建筑结构抗震设计,使影响抗震效果的因素及因素之间产生良性互动的关系,最大限度的发挥建筑的抗震性。比如施工单位要从建筑结构设计的整体施计优化建筑抗震设计,尽量应用对称设计等方式加强建筑结构的整体抗震性;施工单位要优化施工材料的应用,优化建筑的抗震性;应用抗震设计与隔震设计相结构的方式强化建筑的抗震性。应用提高建筑结构整体抗震性的方式可以取得1+1>2的抗震效果。第三,在做好整体抗震布局的基础上,施工单位要做好界面大小、应力分布等计算工作,做好建筑结构的定量分析,优化施工参数设置,为施工技术的应用提出理论依据。

3.3刚度设计

刚度设计决定复杂超限超高层连体建筑结构设计是否能实施,如果复杂超限超高层连体建筑结构设计刚度设计不合理,不能以施工的角度实现,刚度设计就失去意义,施工项目就难以完成。施工刚度设计的重点是建筑整体结构的重心点、建筑结构几何开关的中心点、建筑结构整体刚度的中心点。只有科学的设计这三项参数,建筑施工才能实现。当前施工单位以应用预应力混凝土材料来实现三点设计。预应力混凝土是指混凝土的整体刚度并不强于同类型的混凝土,然而它的自重量、体积轻于同预应力的混凝土,它以强化混凝土材料局部预应力的方式加强混凝土抗负荷的能力。这样的混凝土材料适用于复杂超限超高层连体建筑结构设计。在应用预应力混凝土时,施工单位要结合三点设计这一重点优化空间几何构造,有效的应用预应力混凝土材料,应用空间几何布局与预应力混凝土材料的特点强化建筑结构的刚度设计。

4总结

随着社会向前发展,人们需要一些复杂超限超高层连体建筑,这类建筑具有结构特殊性,它们的结构设计较为困难。本次研究说明了复杂超限超高层连体建筑结构设计的原理、设计难点,结合它的设计原理说明了抗风设计、抗震设计、刚度设计这三项设计的要点,建筑施工单位可应用这一理论优化复杂超限超高层连体建筑结构设计。

参考文献:

[1]汪大绥,周建龙,姜文伟,王建,江晓峰.超高层结构地震剪力系数限值研究[J].建筑结构.2012(05)

超高层建筑抗震设计范文第13篇

1.1建筑的平面布局设计建筑设计的中心设计部分就是建筑平面布局,平面布局的好坏对建筑功能和使用的要求有一定的影响,并且平面布局还与抗震设计有着必要的联系,所以,想要将建筑设计融入到建筑抗震设计中,首先要保证建筑的刚度和结构质量分布匀称,具有对称性,避免建筑出现扭转的现象。在建筑的墙体设计上,一定要保持对称性和均匀性,抗震墙的布局,一定要与抗震结构相结合,刚度较大的楼层语电梯都要布置在中心位置,以免发生建筑扭转效应。在进行平面布局的时候,要为结构抗侧力构建的合理布局制造出有利的条件,从而使得建筑的使用功能与建筑的抗震结构需求相结合,使建筑抗震设计发挥出最大的效果。

1.2建筑的纵向布局设计建筑的纵向布局主要是建筑物岩的高度、建筑结构的质量以及建筑物的刚度分布。不管是在工业建筑还是民用建筑,不论建筑的层数是多还是少,都会存在这样的问题。在进行建筑设计的时候,尽可能的将建筑物沿与建筑的刚度设计成相近的系数,剪力墙的布局不仅要布局均匀,还要使其能沿着建筑纵向一直贯穿到建筑的底部,不要中途中断或者是不到达建筑的底部。在设计过程中,一定要避免楼层之间刚度不均匀的现象,同时还要避免在地震中,建筑出现扭转的现象。

1.3建筑的整体布局设计建筑的整体布局设计,主要是指建筑的平面和立体空间上的设计。在建筑的整体布局中,要使建筑平面和建筑空间在形状上,既规则又简洁。建筑的平面形状可以是圆形、矩形、方形等,这样的形状能够提高建筑抗震的水平。在建筑的整体布局设计中,要避免凹凸行的设计,这样的设计对建筑抗震起到了一定的制约作用。严重是还会出现扭转效应。要设计出具有立体美和具有艺术性的建筑,就一定要将建筑艺术和建筑所具备的功能,与建筑抗震设计结构结合到一起。例如:南昌绿地紫峰大厦,该建筑的高位268m,其框架是核心筒结构,对该建筑的抗震设计,在建筑三分之二出,东西里面内凹,其内凹部分的荷载通过结构柱支撑在41层与43层之间的跨悬臂转换墙上。其整体结构设计融入了新年功能化设计的思想,并对建筑结构进行小震下的反谱计算,以及中震弹性复核。

2建筑设计过程中应重视的抗震设计问题

2.1建筑物屋顶抗震设计屋顶太高或太重,是目前建筑设计最主要的问题。屋顶过高或者过重,会加重地震的作用,导致建筑变形,对建筑物自身的抗震能力有所制约。建筑屋顶的重心和建筑底部的重心不在一条线上,那么就会导致建筑抗侧力不能连续,从而加剧建筑的扭转效应,制约建筑的抗震水平。所以,设计师在进行设计的时候,一定要避免屋顶超高超重的现象,使得整个建筑的结构与刚度均匀的分布下来,让屋顶与建筑的重心保持在同一条线上。如果建筑物的屋顶设计的过高,那么就一定要保证建筑具有良好的抗震稳固性,降低建筑扭转效应。3

2.2设计限值控制相关文件规定,在建筑设计过程中,要考虑抗震要求的限值控制。房屋的建筑高度和楼层的数量。在实际设计当中,有的建筑高度超标,有的建筑层数超标,有的建筑高度没有超标,但是其宽度超标。这些超标,都将会给建筑抗震带来一定的安全隐患,特别是一些高度和宽度超标的建筑,因此,在建筑设计中,只要完全融合建筑抗震设计,就能够有效的进行限值控制。例如:防裂度为8的时候,粘土砖等对称建筑的总高度要低于18m,建筑的层数一不能超过6层;底层框架为砖房的建筑高度应该保持在16m,层数保持在5层以内;建筑材料为钢筋混泥土框架房屋的时候,其高度要保持在45m以下,而框架的抗震墙高度应该保持在100m以内。除了在设计过程中要考虑抗震要求的限值控制之外,还要考虑房屋抗震横墙之间的间距以及局部墙体尺寸的限值控制。抗震墙限值控制,就是避免横墙的间距超过了原有的额定值,从而导致建筑平面的刚度下降,遇到水平地震力时,影响了建筑水平地震力的传递,因此,导致了建筑纵墙发生形变,制约了建筑抗震的承载力度,致使建筑倒塌。对局部墙体尺寸的限值控制,是因为这些局部墙体能够增强建筑抗震强度,如果局部墙体尺寸的限值小于规定的值,那么就不能够满足建筑抗震设计的要求,就会出现墙面裂开或者是倒塌的现象。因此,在设计过程中要注意建筑设计限值控制。

3结束语

超高层建筑抗震设计范文第14篇

关键词:高层建筑;抗震设计;结构设计

引言

随着建筑行业的快速发展,我国建筑逐渐向高层建筑和超高层建筑结构发展。高层建筑的结构复杂,层数比较高,建筑地基承受的荷载比较大。地震发生时,震源对高层建筑结构会产生冲击力,容易造成建筑梁、柱断裂,建筑倒塌等现象,严重威胁到人民群众的安全。我国是地震灾害比较频繁的国家,高层建筑抗震设计一直是社会关注的重点,抗震设计的好坏直接关系到高层建筑的质量。因此高层建筑抗震设计的时候要根据高层建筑的实际情况,提高建筑结构抗震性能。

1超限高层建筑结构基于性能抗震设计与常规抗震设计的比较

1.1基于性能的抗震设计的概念

概念设计是目前一种比较先进的设计理念,与传统建筑设计相比,概念设计不需要精准的计算或参考建筑设计规范相关的目录,而是设计者根据实践经验,按照建筑结构体系的力学关系、结构破坏机理,从建筑结构整体进行把握设计。传统的建筑设计思想无法满足人们对建筑结构抗震功能的要求,为了提高建筑结构抗震安全性能要求,抗震设计已经发生了较大变化。比如建筑结构以力分析为主并兼顾力与变形,考虑到建筑结构变形、耗能和损失,以及非线性分析和可靠性分析。基于性能的抗震设计是20世纪90年代美国建筑设计师提出来的一个全新的设计理念。它的主要核心是将抗震设计从保护居民生命财产安全为基本目标转移到不同风险水平地震作用力下满足人们对建筑的性能要求,通过多层次、多目标的抗震安全设计,保障建筑安全,最终实现经济效益和投资效益的平衡,满足人们对建筑的个性需求。

1.2我国常规抗震设计方法

当前大部分国家的抗震设计规范为“小震不坏、中震可修、大震不倒”的原则,我国采用二阶段抗震设计方法满足工业建筑和民用建筑实现以上三个原则的抗震要求,并在这个基础上根据建筑物抗震重要性分成甲、乙、丙、丁四类建筑物,根据建筑物的类别设置相应的抗震防烈要求。二阶段抗震设计方法如下:第一阶段是对建筑结构强度进行验算,也就是小震的地震洞参数,通过弹性模量计算建筑结构的弹性地震作用力,并与建筑物风荷载、雪荷载、水平荷载等进行组合,计算建筑结构截面的抗震承载力,确保建筑结构的强度,并通过合理的平面结构布置,确保建筑结构的抗拉力。第二阶段则是验算建筑结构的弹塑性,也就是对地震作用下很容易倒塌的建筑结构按照大震标准进行设计,处理好建筑结构的薄弱环节,以免地震发生时首先冲击建筑结构的薄弱环节,影响到整个建筑结构的安全性和稳定性。

1.3常规抗震设计方法与基于性能抗震设计方法的比较

基于常规抗震设计方法与基于性能抗震设计方法在设防目标、设计实施方法和检验方法、实现性能和工程应用方面都有所不同,具体见表1。通过比较发现,基于性能抗震设计方法是未来建筑抗震设计的发展方向,它适应了社会新技术和新工艺发展需求,能够满足建筑业务单位和使用单位对建筑结构安全性、经济性等相关要求。

2超限高层建筑结构的抗震性能目标

某酒店塔楼的高度是168.9m,结构计算高度为176m,建筑结构为B类钢筋混凝土高层建筑。建筑场地类别为III类,建筑抗震等级为二级。

2.1结构的抗震性能水准

按照相关规定,酒店的塔楼高度、平面扭转不规则等不能超限,所以在第一、二阶段抗震设计过程中,必须采取有效的方法满足建筑工程国家以及地方相关的标准,并将基于性能抗震设计目标概念进行设计。按照《建筑抗震设计规范》给出的抗震性能设计方法以及《高层建筑混凝土结构技术规范》中的相关规范进行设计,确定该酒店的性能水准为C类,具体控制目标如下:

2.2建筑结构的性能目标

超限高层建筑结构规则性、高度等方面超出了建筑工程规范中的适用限值,使得抗震设计缺乏相应的参考依据。基于性能目标设计方法在设计的时候,需要综合考虑到建筑场地实际设防裂度、超高限值以及建筑结构不规则等经济因素,对超高建筑的薄弱环节、主抗侧力构件等结构变形能力和抗震承载能力有具体的性能目标。按照建筑工程设计中相关内容,建筑结构关键构件由建筑结构工程师根据工程实际情况分析。比如水平转换构件和支撑竖向构件、大悬挑结构的主要悬挑构件、长短柱在同一楼层的数量相当于在该层各个长短柱等要求。这其实是将过去常规抗震设计中的“小震不坏、中震可修、大震不倒”的抗震设计原则进行量化和细化。比如将A级性能目标设计要求建筑结构小震不坏、中震和大震不坏,就是要求建筑结构在中震和大震中依然保持一定的弹性。

3结语

随着建筑行业的快速发展,常规的建筑工程抗震设计方法已经无法满足当下建筑设计的要求,基于建筑结构性能抗震设计理念对抗震结构的目标进行量化,明确抗震目标性能,能够提高建筑结构抗震性能,必将成为建筑行业的发展趋势。

参考文献:

超高层建筑抗震设计范文第15篇

关键词:建筑设计;抗震设计;重要作用

1前言

建筑行业作为我国最为重要的社会经济提升行业之一,其质量的好坏影响着我国人民的生命财产安全。加上我国属于多地震的国家,对于建筑物的抗震能力要求也就有着更高的要求,但是就我国现阶段建筑物的抗震能力而言,还处于发展阶段,对于建筑物的抗震能力就需要加强,所以,就需要对建筑物建筑设计中的抗震设计进行加强,从而确保我国人民的生命财产安全。

2建筑设计在抗震设计中的要点

2.1建筑平面布局设计

建筑物的平面布置在建筑设计中是十分重要的部分,它直接反映建筑的使用功能和要求。将建筑设计应用在建筑物的抗震设计中,应重点关注建筑物平面布局问题,先协调整理好建筑物的建筑刚度以及建筑物结构质量间的关系,在进行建筑物的平面布局的时候[1],一定要确保建筑物楼层的两端对称性,避免让房屋建筑受力不均匀,进而出现了建筑结构变形的问题,也就是说建筑物的抗震受力墙和建筑物本身的抗震受力结构之间应该是相对应的,一般刚度比较大的空间楼板层会被设计在建筑物的中间位置,这样可以有效地防止建筑结构出现扭转效应[2],与此同时,还需要注意到建筑物的抗侧移平面布局,使得建筑结构整体刚度以及质量都可以很好地分布下去,电梯、楼梯井可以设计在中间位置,将使用功能的设计同抗震设计结合在一起。

2.2建筑体型设计

一般来讲,建筑物的体型设计可以具体分成平面设计与立体层上的空间设计,实践经验证明,如果建筑物的平面设计太过复杂,一定会使得这些多出的外凸,伸悬等侧翼设计在地震发生时被破坏掉,而平面设计比较简单的建筑设计,就不会在地震被严重损坏。因而在对建筑物的体型进行设计的时候,考虑到防震设计的要求,应当尽量选用那些平面结构以及空间结构比较简单、有规则的设计方式,比如说圆形设计、扇形设计还有方形设计,抗震的效果比较不错。既然那些比较复杂、不规则的外凸或是内凹的体型设计,在地震中损坏的比较严重,就尽量不要去选择这种易损坏的设计方式,防止因为建筑结构体型不对称问题而出现的建筑结构扭转问题。

2.3竖向布置设计

建筑的竖向布置设计问题在建筑设计中主要反映在建筑沿高度(楼层)结构的质量和刚度分布设计上。在对建筑物进行竖向的建筑布置设计时,主要是考虑正在建造的建筑物在竖直方向上的质量设计和刚度设计,是否按照楼层的分布来进行设计的,一般在工业生产建筑物和民用住宅建筑物中,都需要重点考虑到建筑结构的竖向布置设计问题,进而使得建筑结构在各楼层上面的刚度设计水平都是比较接近的,布置均匀性的剪力墙,能够垂直布置在建筑物的底部当中,不会出现刚力没有进到底或者已经中断了的问题,防止建筑物楼层的刚度太小,影响到建筑结构的整体稳定性。

2.4屋顶抗震设计

对于一些楼层数比较多的高层建筑物设计来说,建筑物的防震抗震设计显得尤为重要,因而在高层建筑的设计当中,还需要着重关注到建筑物的屋顶设计问题,千万不要让建筑物屋顶设计的太高,也不能设计得太重,这是因为屋顶结构设计的太高或是太重,都会进一步加剧建筑物的结构负担和压力,进而在地震发生的同时,加快了建筑物的变形速度,还会影响到抗震性能的有效发挥。总而言之,在屋顶建筑设计中,宜尽量降低其高度。采用高强轻质的建筑材料和刚度分布比较均匀、地震作用沿结构的传递比较通畅,使屋顶重心与其下部建筑物的重心尽可能一致;当屋顶建筑较高时,要使其具有较好的抗震定性,使屋顶建筑的地震作用及其变形较小,而且不发生扭转地震作用[3]。

2.5设计的限值控制

在对建筑物的建筑抗震结构进行设计时,还需要根据我们国家建筑部门提出的《建筑抗震设计规范》要求在建筑物的抗震设计限值进行有效的控制,也就是要控制好建筑物楼层的高度设计值,当建筑结构的防震裂度为8度的时候,建筑物的整体高度不能超过18米,建筑楼层不可以超过6层,但是在实际的建筑设计中,总是出现或者建筑高度超过规定范围,或者建筑楼层超过规定范围的情形,或者是建筑物的高度和宽度比超过了一定范围,这也都是需要在今后的建筑结构限值设计中需要注意到的问题。除了建筑高度和楼层数的控制问题,还需要设计好房屋建筑的抗震横墙的间距设计和一部分墙体的大小尺寸设计问题,不要让横墙之间的间距过大,影响到建筑物的结构刚度,进而使得建筑物的纵墙结构出现形变,降低建筑结构的防震承载能力,最终造成建筑物的坍塌。而墙体的尺寸设计,也不能小于一定数值,那样会造成建筑墙体开裂,影响建筑结构的稳定性[4]。

3建筑设计在建筑抗震设计中的重要作用

3.1使建筑抗震设计内部性能得以有效发挥

在建筑物结构进行抗震设计中,科学地展开房屋建筑設计,还可以更好地发挥出建筑物抗震设计的内部性能,进而提升建筑物内部结构的稳定性,不会造成建筑物施工安全事故的发生,保障了施工人员的人身安全。在进行建筑物抗震设计的内部性能设计时,可以将建筑结构的外沿设计、高度设计以及建筑结构的质量设计,平面刚度布局设计按照一定的标准设计要求来进行。作为建筑工程项目的施工设计人员,要能够设计好每一环节的细节问题,提高了剪力墙结构的设计水平,防止了墙体结构开裂问题的出现。

3.2使建筑物的抗震实用性得到有效提升

通过将建筑抗震设计理念同建筑物的结构设计有效地融合在一起进行科学的房屋建筑设计,目的是为了能够更好地提升建筑物的抗震实用,比如说彻底避免了在过去的房屋建筑中出现的那种建筑屋顶重心和建筑物底部重心不在一条竖直线上的问题,减少了建筑结构扭矩效应的发生,从而提升了建筑结构的稳定性,同时还可以有效地提高建筑结构的刚度水平,将建筑物的高度设计、楼层数的设计控制在一定范围内,将建筑物中电梯井设计在建筑物的中间位置,使得房屋建筑的功能设计可以和建筑物的抗震设计相一致,而不会影响到建筑物使用性能的正常发挥[5]。

4结语