美章网 精品范文 自然灾害综合风险评估范文

自然灾害综合风险评估范文

自然灾害综合风险评估

自然灾害综合风险评估范文第1篇

关键词:农业气象灾害;评估模型;发展趋势

中图分类号: S42 文献标识码: A DOI编号: 10.14025/ki.jlny.2017.02.027

统计显示,我国每年因自然灾害造成的农业经济损失达2000多亿元。由于农业气象灾害是一种自然灾害,我们无法阻止其发生。但是可以通过各种技术手段提前评估预测自然灾害的等级及规律,来降低气象灾害对农业经济的损失。

1 农业气象灾害评估研究现状

农业气象灾害评估通常是以农业气象灾害评价指标体系为基础的,并在此基础上建立评价模型,利用定量分析的方法,综合评估气象灾害所带来的损失。近些年来,随着对气象研究的深入,评估模型的评估结果越来越准确,农业气象灾害评估的精细化程度在不断提高。目前使用较为广泛的评估模型主要分为以下几类:综合评估模型、作物评估模型和农业气象灾害风险评估。

1.1 综合评估模型

综合评估模型是基于灾害评估指标体系,利用层次分析法、模糊数学方法、BP神经网络等方法,建立农业气象灾害综合评估模型,对农业气象灾害进行定性或定量评估分析。在建立农业气象灾害评估指标体系过程中,通常考虑到气象灾害的等级划分、气象灾害对农作物的影响程度、地区的抗灾水平和经济发展水平等因素。

在实际研究中,许多学者在对农业自然灾害的评估过程中使用了综合评估模型。例如马晓群等通过对灾害损失率分析,得出灾害损失率的影响因素包括灾害强度、作物敏感度、气候脆弱性等。除此之外,还考虑了不同气象灾害对作物影响程度。以上述因素为基础,建立综合评估模型,并用淮北地区的十个代表站的农作物数据对模型的效果进行检验,结果表明误差率较小,模型具有实用性。王雨等以黑龙江省的水稻为例,建立综合评估模型,将水稻气象灾害损失量从产量中分离,得到黑龙江省水稻气象灾害的损失评估。

1.2 作物评估模型

随着科学的不断发展和进步,人们对农作物受灾机理的认识也在不断加深。在对农业气象灾害进行评估时,使用作物的生长模型具有一定的优势,主要包括能够很好地反映出作物生长发育过程以及产量与温度、湿度的关系,最终能够对气候进行有效的应变管理。

作物评估模型应用最为广泛的主要有以下几类:荷兰的系列模型、美国的DSSAT模型、澳大利亚的APSM模型和中国的CCSODS模型。不同的模型具有不用的特点和使用范围。在对模型的选取过程中,应根据实际情况和特点选择适合的模型或改进模型进行作物评估。

1.3 农业气象灾害风险评估

农业气象灾害风险评估指的是对未来气象灾害发生的概率以及危害程度进行评估。一般来说,农业气象灾害风险评估是一项综合分析工作,主要的评估内容有灾害的危害程度、灾害的风险等级、灾害的预测、对灾害的应对等。农业气象灾害风险管理指的是对灾害进行有效的识别、评估和评价,最大程度地降低灾害带来的风险,实现安全保障。

我国对农业气象灾害的风险分析起步较晚,前期主要以风险分析技术为核心,包括对概念、方法、模型的探讨。之后的研究主要集中在风险分析、风险跟踪、灾后评级及应变对策等技术体系。

2 农业气象灾害评估中存在的主要问题

一是综合模型评估具有局限性。综合模型评估是建立在统计分析基础上的经验性模型,在统计分析过程中往往存在样本不足或不具代表性等问题。除此之外,该模型评估适用性较差,只适用于特定的环境和区域,而对不同环境不同区域的评估不够准确;二是作物机理模型应用有待加强。虽然利用作物机理模型进行农业气象灾害评估具有相对的优势,但是由于其复杂性,目前评估方法还有待发展,未来还需更进一步地研究生理生态过程,同时加强对模型的应用研究;三是灾害风险评价理论和方法有待完善。目前我国对灾害风险的评价大多是基于已有的气象资料和农作物资料计算风险性,在这个过程中,并没有考虑模型中的不确定性对实际的影响,因此模型结果会存在一定的误差;四是要加强对风险形成机理的研究和社属性风险评价的研究。

3农业气象灾害评估的发展趋势

一是农作物模型的实际运用将会大大加强。农作物评估模型具有相对简单的架构和较为精确的评估准确性,未来的发展方向将从专业层面研究向基层实际应用研究转变,与此同时,农作物模型与数学模型和专家模型相结合,有望构建出一套完整的农业气象灾害专家评估系统,在可视化和专业化方面也有较大的提升空间;二是农业气象灾害评估技术更加多元化。现阶段的气象灾害评估重点关注直接经济损失,未来的评估系统将纳入社会经济损失和生态破坏损失方面的内容。此外,卫星遥感、GPS技术、3S技术和网络技术将更多的参与到气象灾害的预报和评估系统中,为农业经济发展提供助力。

4 结语

我国农业气象灾害评估系统起步较晚,现阶段应用还不是很完善。面对未来复杂多变的经济社会形势,亟需发展和完善,并不断地投入到实际应用中,切实做好农业气象灾害服务,有利于推动我国农业经济发展。

参考文献

[1] 吴阳军.农业气象灾害风险评估研究进展与展望[J]. 自然科学:文摘版,2016(01):238.

[2] 郭丽丽.农业气象灾害风险评估研究进展与展望[J]. 农业科技与信息,2016(11):52-53.

自然灾害综合风险评估范文第2篇

【关键词】农业气象 灾害 影响评估 发展趋势

一、国内农业气象灾害的评估现状

农业气象灾害对农业造成的破坏和影响主要是依据农业气象灾害指标体系对其进行评价的,我国的学者通过多种控制条件、实验和对气象灾害数据的统计分析,逐渐形成了以农业为主的气象灾害指标体系,并以此为基础,建立了各种农业气象灾害评价的数学模型,使我国的气象灾害逐渐由定性评价向定量评级进行转变。其中,主要的研究对象包含洪涝、干旱、台风、暴雨、寒潮等农业气象灾害。目前,我国国内外对农业气象灾害的评估内容主要有灾害风险区划及管理、人类社会经济损失和作物产量损失等,评估的模型主要有灾害风险评估、作物模型评估和综合模型评估。

1.农业气象灾害风险评估

灾害风险分析最早起源于国外,分析领域主要集中在重大自然灾害和经济领域,而对农业气象灾害的风险分析相对较少,起步较晚,我国的农业气象灾害风险分析,经过几十年的发展,现在主要是通过灾害影响评估的风险化、数量化技术和方法,构建风险评估的技术体系,主要内容包含了气象灾害的风险分析,后期的跟踪与评价,灾后的评估以及应对的措施等等。农业气象灾害风险评估是一项综合性的、多因子的评估分析工作,主要涉及对气象灾害的危害性、危险程度,对灾害的预测、承载体系的承受能力以及降低灾害措施的分析等方面。

2.农业作物模型评估

目前,在国际上的农业作物模型评估类型比较多,例如澳大利亚的APSIM模型、美国的DSSAT模型、荷兰de W it学派的系列模型等,而我国目前采用的主要是CCSODS模型。该模型主要面向国内的农田管理者以及农业管理者,具有通用性和机理性的特点,经实践证明,在气象灾害评估方面具有较强的实用性,能够提供作物的优化栽培体系。

3.综合模型评估

综合模型评估所要考虑的因素主要有灾害的覆盖面积、灾害的强度、农作物对灾害的敏感度、农作物的防御能力以及当地在某一时间段所拥有的生产力水平等,在此基础上构建气象灾害评估的指标体系,然后通过模糊数学方法、回归分析法、层次分析法,以及灰色聚类分析和BP神经网络等方法的选择与利用,建立农业气象灾害的综合评估模型,以此实现对农业气象灾害的定量分析和定性分析。目前,我国的很多专家和学者都根据当地气象灾害和农业发展的实际,对综合评估模型进行创新和发展,确定了科学的评估手段和方法。在该模型中,农业气象灾害定量评估主要依据对农作物受灾后产量的损失评估,农业部门主要是计算受灾面积、成灾面积和绝收面积对粮食的损失。

二、国内农业气象灾害评估的发展趋势

1.农业气象灾害评估中将加强作物模型的应用

农业作物模型主要是对农作物的生理过程和土壤、气象等一系列影响因素进行数值模拟,把农作物的成长过程进行模拟再现,对农作物的生长过程与环境因素的相互关系做定量的描述,这对于农业气象灾害的评估有非常重要的价值。基于作物模型的特殊作用,在我国的农业气象灾害评估系统中将会得到广泛应用。从作物模型的发展来看,将依据简单、精准、大众化为基本准则,研究方向将有专业的上层研究转向基层的广大生产用户。农业评估模型也将结合数学模型融合专家知识模型,最终建立成综合系统的评估专家系统,实现作物模拟的专业化和可视化。

2.农业气象灾害风险评估将得到进一步完善

随着经济的进步和科学技术的发展,许多新的理论和方法都将被引入到农业气象灾害的风险评估体系中,并将得到进一步发展和完善。首先,通过农业灾害相关机理的研究,对于承灾体的易损伤性、致灾因子的不稳定性以及区域防灾能力的脆弱性将得到深入分析和研究。其次,因为不同的自然环境孕育出不同类型的气象灾害,而在风险评估过程中不同的风险因素的影响效果也是不一样的,对不同的风险模型评估和风险指标体系的看法也是千差万别,这就导致风险评估结果的不统一,所以,通过不断构设标准统一的风险评估体系,在未来的风险评估指标和风险评估模型的标准方面会得到进一步的统一和规范。

3.农业气象风险综合评估技术将朝向多元化方向发展

农业气象灾害是受多方面的因素影响的,然而在对农业受灾损失进行定量评估时,一般都比较看重给农业带来的经济方面的损失,对于生态环境、社会生活等方面的损失关注力度不够。随着经济社会的不断发展,农业气象灾害评估将朝向多元化方向发展,与之相配套的风险综合评估技术也将出现多元化。对于气象灾害的影响,除了灾害性天气之外,植被地标状况、区域地形结构等也成为气象灾害的影响因素。综合来看,农业气象灾害评估将发展成为地面监测与3S技术相融合的一体化的灾害评估系统,对农业气象灾害进行全面评估。

三、总结

综上所述,通过我国农业气象灾害评估的现状分析和对未来发展趋势的研究可以看出,我国要不断加强对农业气象灾害的评估与相关作物模型的分析研究,切实提高农业生态环境的气象保障能力,使作为我国基础性产业的农业能够持续、稳定、健康的发展,为我国这个人口大国提供可靠的保证,这也是我国能够实现独立自主发展的先决条件。只有加强农业气象灾害的评估,才能为农业的长远发展保驾护航。

参考文献:

[1] 常彦军,董津瑞.我国农业气象灾害评估现状和发展趋势[J].黑龙江科技信息,2011,(06).

[2] 余卫东,张弘,刘伟昌.我国农业气象灾害评估研究现状和发展方向[J].气象与环境科学,2009,(03).

自然灾害综合风险评估范文第3篇

关键词:农业气象灾害;研究进展;风险评估;发展现状;参考信息

结合可靠的气象灾害风险评估理论及风险方法,可以逐渐地加快其研究进展,增强研究工作中存在问题的有效处理。现阶段农业气象灾害风险评估研究中各种不利因素的客观存在,对其研究进展带来了一定的阻碍作用,需要从不同的角度对其未来的发展做出必要地预测,全面提升我国农业气象灾害风险研究水平,为农业气象领域服务范围的扩大提供可靠地保障,更好地确定未来我国农业气象学的主要研究方向。

1 农业气象灾害风险评估研究的发展

最初的农业气象灾害风险研究起源于20世纪80年代,通过运用风险评价的措施,加强了对风险形成机制的深入分析,并结合系统的方法对各种风险要素及相关的作用进行综合地评估,间接地推动了农业气象灾害风险评估研究进展,为其实际作用的充分发挥打下了建设的基础。现阶段有关农业气象灾害形成机制的理论较多,像“区域灾害系统理论”、“致灾因子轮”等,在实际的应用中为灾害风险评估效果的增强提供了重要的理论支持,促使农业气象风险评估研究中存在的问题得到了有效地处理,间接地提升了整体的研究水平。同时,随着“三因子说”及“四因子说”实际应用范围的扩大,一定程度上为农业气象灾害学研究领域服务范围的扩大打下了坚实的基础。而国际上农业气象灾害风险评估的研究集中在20世纪80年代后期,主要是通过构建完善的风险评估方法体系,对果树等农业经济作物进行了深入地研究,形成了基于产量损失风险计算、定量评价等方法,并通过对风速、干旱风险等因素的风险,获得了可靠的气象观测数据,加快了农业气象灾害风险评估研究进展。我国在农业灾害风险评估方面的研究要点主要集中在:(1)农业生态区中相关农业经济作物风险分析模型构建;(2)基于遥感、地面信息资源的农业灾害风险评估技术体系构建。这些研究要点相关计划的有效开展,为我国农业灾害风险评估整体水平的提升提供了可靠地保障。

2 农业气象灾害风险评估研究的内容

通过对现阶段农业气象灾害风险评估研究进展的深入分析,可知其中包含着丰富的研究内容。这些研究内容主要包括以下方面:

2.1 有关各种致灾因子危险性方面的评估

致灾因子危险性主要针对的时灾变强度及活动频率,进而对灾害风险造成的影响进行综合地评估。具体的评估内容包括:灾害发生时的类型、致灾因子的强度大小、影响过程中的持续时间、等级等,评估过程中主要依赖于构建可靠的危险性评价模型及风险估算模型,增强了农业灾害风险评估的有效性。与此同时,通过信息扩散技术的有效使用,为我国农业气象站的灾害风险评估提供了重要的技术支持。

2.2 相关承载体脆弱性方面的评估

这种评估主要是指在一些较为危险的区域中承灾体面容易受到一定强度致灾因子的损害,通过对损害程度而做出的综合评估。现阶段承载体脆弱性方面的评估主要集中在:(1)设置科学的评估指标,对不同因素给农业生产造成的影响进行综合地评估;(2)对减灾能力、耦合防灾等不同的要素进行深入地分析,从而构建出相关的参考模型;(3)绘制出有效的作物脆弱性曲线,对不同的灾害类型进行必要地分析,掌握脆弱性规律的同时增强实际的评估效果。

2.3 灾害风险的综合评估

通过对农业气象形成机理的分析,在合成法的支持下对各种影响农业生产的灾害风险进行必要地评估,进而构建出可靠的风险综合评估模型,促使不同地区、不同气候条件下的风险能够在一定的时间内得到有效地排除。与此同时,通过农业灾害风险综合评估模型的合理运用,可以获得可靠的参考数据,间接地降低了相关农业生产活动开展中各种风险发生的几率。

3 农业气象灾害风险评估研究的方法

现阶段适用于农业气象灾害风险评估的主要研究方法包括:(1)基于指标的综合评估方法。这种方法使用中主要选取的是灾害风险指标,并在参考模型的支持下计算出相关的参数,对农业气象灾害风险评估起着重要的保障作用;(2)基于数据的概率评估方法。这种方法使用中需要确定资料样本数量,并通过对资料序列的有效利用,计算出灾害L险发生的几率;(3)基于情景模拟的评估方法。这种方法主要关注的是可能发生农业灾害的过程,利用风险动态评估方式处理实际的问题。

4 农业气象灾害风险评估存在的问题和展望

4.1 存在的问题

通过对当前形势下我国农业灾害风险评估发展现状的深入分析,发现其中依然存在着一定的问题,对未来农业气象灾害风险的有效预防造成了较大的影响。这些问题主要包括:(1)理论体系不完善,研究中的应用方法较为薄弱。现阶段很多的研究理论注重于农业灾害的自然属性,忽略了其社会属性,影响着研究数据的准确性;(2)缺乏必要的农业灾害风险评估标准缺乏规范性,在评估方法、风险表征等方面的缺少必要的规范标准;(3)动态化农业气象灾害风险评估技术有待加强。

4.2 研究展望

作为农业气象灾害学的重要分支学科,未来农业气象灾害风险评估需要从这些方面入手:(1)加强动态风险评估技术的合理运用,构建完善的多灾种综合风险评估体系;(2)注重农业气象灾害风险评估相关理论及方法的深度,利用量化评估及模型支持的方式,全面提升灾害风险评估水平;(3)通过对农业气象灾害风险评估指标的有效设置,扩大动态评估技术的实际应用范围,构建可靠的作物生长模型,加强对各种农业灾害风险属性要素的合理运用。同时,需要深入研究多灾种农业气象灾害综合风险评估技术,构建完善的风险评估体系。

结束语:

做好农业气象灾害风险评估研究进展的相关工作,深入理解其中的研究内容,掌握正确的研究方法,加强对评估过程中存在问题进行深入研究,将会不断地加快我国农业气象学的发展速度,扩大其实际的应用领域,满足实际农业生产活动需求的同时扩大其应用范围,促使我国的农业气象灾害风险评估研究水平能够始终保持在更高的层面上。在未来农业气象学及灾害学发展的过程中,加强信息化技术及其它专业技术手段的有效使用,将会更好地发挥农业气象灾害风险评估的实际作用,进而为我国农业生产效益的持续增加提供可靠地保障。

参考文献

[1]徐磊.农业巨灾风险评估模型研究[D].中国农业科学院,2012,(06).

[2]喻红银.农业气象灾害风险评估研究进展[J].江西农业,2016,(15).

自然灾害综合风险评估范文第4篇

开展海冰灾害风险评估和区划,有助于指导结冰海区沿岸各级政府制定和优化海冰防灾减灾决策,以最大限度地减轻海冰灾害造成的损失。本研究选取冰厚、密集度及冰期和各类承灾体密度、规模等作为评估指标,将河北省沿海县级行政区所辖海域作为基本评估单元,利用权重分析等方法,对河北省的海冰灾害风险进行综合评估。在此基础上,结合海冰防灾减灾的实际需求对河北省的海冰灾害风险进行空间区域的等级划分,并绘制风险等级分布图。所得结果较为真实地揭示了海冰灾害风险在河北省所辖海域的分布状况,可为河北省的海冰灾害风险管理等提供依据。

关键词:

河北省;海冰灾害;致灾因子;权重分析;风险评估和区划;冰情;承灾体

河北省所辖海域每年冬季都有不同程度的结冰现象[1]。海冰对海上交通运输、海洋(岸)工程设施、海水养殖以及渔业生产等均有不同程度的影响[2],并会造成损失。其中,仅2009—2010年冬季,河北省因海冰造成的直接经济损失就高达1.55亿元[3]。因此,海冰灾害是河北省的主要海洋灾害之一。多年来,河北省及沿海地区各级政府高度重视海冰防灾减灾工作,采取各种措施预防和减轻海冰灾害造成的损失,并取得一定成效。但是,由于缺乏科学有效的海冰灾害风险评估和区划成果作为依据,不仅影响了防灾减灾效果,也不同程度地造成了灾害应对成本的增加和行政资源的浪费。因此,要使海冰防灾减灾工作科学、有效,必须对海冰灾害风险进行评估和区划。包括海冰灾害在内的自然灾害风险评估目前尚无成熟的技术方法[4]。本研究从河北省所辖海域历年冰情监测资料和承灾体(即涉海经济社会活动,下同)实际状况出发,通过建立海冰灾害致灾因子指标体系,利用权重分析等方法,对河北省所辖海域的海冰灾害风险进行综合评估和区划,得到较为符合河北省海冰防灾减灾实际需求的评估和区划结果。

1资料来源与时限

本研究所用资料包括冰情和承灾体两大类。冰情资料主要为国家海洋局北海分局历年对河北省所辖海域进行的海冰监测数据;承灾体资料则由河北省各级海洋主管部门提供,资料截止时间为2011年末。

2评估和区划方法

2、1评估指标和评估单元选取根据渤海海冰灾害特点[5],结合海冰灾害孕灾环境[6]和致灾原因[7]分析,其致灾因子基本为冰情和承灾体。因此,河北省海冰灾害风险评估指标主要选取冰情和承灾体两类因子。冰情因子确定为冰厚、冰期和密集度;承灾体则确定为交通运输、海水养殖、海洋(岸)工程和有人居住岛屿。基本评估单元确定为县级行政区所辖海域。河北省沿海地区所辖县级行政区(自北向南)依次为秦皇岛市的山海关区、海港区、北戴河区、抚宁县、昌黎县,唐山市的乐亭县、唐海县、滦南县、丰南区和沧州市的黄骅市、海兴县等共计11个县(县级市、区)。由于个别行政区的评估指标值难以获取,将县级评估单元作了适当调整。(自北向南)依次为秦皇岛市区(包括山海关区、海港区、北戴河区)、抚宁县、昌黎县;唐山市乐亭县、曹妃甸区(包括唐海县、滦南县、丰南区)和沧州市渤海新区(包括黄骅市、海兴县)。考虑到河北省沿海大型港口的年均吞吐量均在亿吨以上且港口地位普遍较高,将大型港口作为独立单元进行评估,(自北向南)依次为秦皇岛港、唐山港京唐港区、唐山港曹妃甸港区和黄骅港等共4个基本评估单元。

2、2致灾因子评估指标体系(1)冰情致灾因子:选取各评估单元多年平均严重冰期、海冰厚度和密集度作为冰情致灾因子[8],并分别划分为5个等级,以确定其在海冰灾害风险中的影响大小,建立冰情致灾因子评估指标体系(表1)。若同一评估单元出现不同等级的冰情致灾因子,则选取其影响等级最高者。(2)承灾体致灾因子:将各评估单元承灾体分为交通运输、海水养殖、海洋(岸)工程(包括核电厂等)以及有人居住岛屿等4大类,并将其作为评估指标,然后对各类承灾体按其规模大小确定其风险影响等级,每个指标按4个等级划分(表2)。若同一评估单元出现不同承灾体,则选取其风险影响等级最高者。将表1给出的冰情致灾因子影响等级和表2给出的承灾体风险影响因子影响等级作为评估指标,分别确定两类因子不同等级评估指标的自重权数和系数,计算出各自的等级权数,形成海冰灾害风险综合评估体系,见表3。

2、3风险评估值确定各评估单元的海冰灾害风险评估值(犚),根据其冰情致灾因子和承灾体综合影响两类指标,按表3给出的不同代码进行组合并且相乘,其乘积(综合权数值)即为海冰灾害风险评估值(犚。根据冰情与承灾体指标值,按表1至表3以及式(1)计算出的各个评估单元的海冰灾害风险综合评估值(犚)见表4和表5。

2、险等级划分目前,我国尚无划分自然灾害风险等级的国家标准。根据国内外最新研究成果,结合河北省海冰灾害风险管理工作现状,本文将海冰灾害风险按照高风险(Ⅰ级)、较高风险(Ⅱ级)、较低风险(Ⅲ级)和低风险(Ⅳ级)4个等级进行划分。具体划分标准见表6。

3结果与分析

3、1海冰灾害风险等级划分将表4和表5所列各个评估单元的风险评估值,按表6给出的划分标准确定各个评估单元的海冰灾害风险等级,结果见表7和表8。

3、2风险等级调整由于各个评估单元的承灾体属性以及海冰防灾减灾需求不同,其最终风险等级应结合典型历史灾害状况和防灾减灾的具体要求综合确定。考虑到渤海新区附近海域冰厚,密集度高,且有严重堆积现象,对经济社会活动影响相对较重,因此在县级评估单元中将渤海新区的风险等级Ⅱ级上调为Ⅰ级;由于黄骅港海域海冰密集度较高,港口航道两侧修建有大型防浪堤,航道内的浮冰不易向外海漂移,易出现海冰堆积现象,冰情对来往船只的影响明显。同时,黄骅港不仅是河北省沿海的区域性重要港口,也是我国的主要能源输出港之一,因此将黄骅港的风险等级Ⅲ级上调为Ⅱ级。

3、3风险等级分布及分析根据调整后的最终风险等级可知河北省海冰灾害风险等级分布情况。河北省海冰灾害风险等级最高的评估单元分别是渤海新区和秦皇岛港。渤海新区主要受冰情指标较高影响,秦皇岛港则主要与承灾体指标较高有关。

4结论与讨论

(1)通过建立冰情和承灾体致灾因子指标体系,利用权重分析等方法对海冰灾害风险进行综合评估,并据此对海冰灾害风险进行等级划分,较为科学、合理与可行[9]。(2)所得到的区划结果比较真实地揭示了海冰灾害在河北省所辖海域的分布状况,可以满足河北省当前海冰防灾减灾的实际需要,也可为河北省海洋经济建设布局、海洋资源开发、利用及规划等提供依据。(3)应当指出,将评估单元确定为县级行政区所辖海域,虽然为各类指标值尤其是承灾体指标值的获取提供了便利,但容易出现因各自所辖海域面积和海岸线差别较大而导致的评估结果偏离实际。这种不足应当结合海冰防灾减灾以及典型海冰灾害案例分析等予以适当调整。

参考文献

[1]王相玉,袁本坤,商杰,等.渤黄海海冰灾害与防御对策[J].海岸工程,2011,30(4):46-55.

[2]白珊,刘钦政,李海,等.渤海的海冰[J].海洋预报,1999,16(3):1-9.

[3]孙劭,苏洁,史培军.2010年渤海海冰灾害特征分析[J].自然灾害学报,2011,20(6):87-93.

[4]高庆华,马宗晋,张成业,等.自然灾害评估[M].北京:气象出版社,2007:205-207.

[5]张方俭,费立淑.我国的海冰灾害及其防御[J].海洋通报,1994,13(5):75-83.

[6]丁德文等.工程海冰学概论[M].北京:海洋出版社,1999:210-213.

[7]李志军.渤海海冰灾害和人类活动之间的关系[J].海洋预报,2010,27(1):8-12.

[8]袁本坤,郭可彩,王相玉,等.我国单因子海冰灾害指标体系及海冰灾害等级划分方法初步探讨[J].海洋预报,2013,30(1):65-70.

自然灾害综合风险评估范文第5篇

1雷电灾害风险评价体系理论

雷电灾害风险的评价与管理工作,是当前国际减灾防灾管理中较为先进的模式,已经成为灾害科学等学科的发展方向和研究课题。雷电灾害的风险评估是指在一定时限范围内,对风险区遭受到雷击灾害的概率,以及可能造成的后果进行定量分析和评估。其内容主要包括2个层面:一是对发生雷击灾害可能性较大的区域,进行雷击风险的评价;二是对评估区域内发生的雷击灾害进行综合性分析。通过对雷击灾害风险进行识别、估测、评价,并以此为基础对各种防控风险的方式进行优化组合,就可有效管控雷击灾害带来的损害并且妥善处理损失,以最小的成本来获得最大的安全保障目标。

2雷电灾害风险评估的目的及作用

就减轻雷电灾害带来的损失而言,通常有3种方式:一是加强雷灾天气的预警工作,提醒人们在雷电灾害到来之前做好相关预控措施,例如关闭各种用电设备等;二是防雷项目的建设,有利于提高建筑物的防雷能力;三是强化事故抢险救援工作的能力。我们国家虽然对雷暴的临近预警能力有了很大的提高,但是依旧处于起步阶段,对于一些特殊的公共行业来说(电力、医疗等),要求在雷暴来临之际关闭所有的电力设备有些不切实际。而目前的技术对雷电灾害救援工作来说也还不够成熟,所以进行防雷建设的就成为最重要工作,防雷措施可以大大提高建筑物的防雷击能力。雷电风险评估是根据评估目标所在地雷电活动时空分布特征及雷电灾害特征,分析、评估、计算雷电可能导致的人员伤亡、财产损失程度与危害范围等方面的综合风险,达到优化项目选址、合理功能分区布局、确定防雷类别(等级)和最佳防雷措施,并能实时应急处理雷电灾害事故的目的。雷电风险评估是雷电防护目标实现综合雷电防护的首要程序,为科学设计、经济投资、应急处置雷害提供准确的数据,是实现预防为主,科学防雷理念的必要条件。因此,一方面要加强雷暴灾害的预警工作,另一方面要通过对雷灾风险的研究,确定雷电灾害高发区域的范围,以此来有效地提高防雷资金的可利用效率,合理安排防雷工程的建设,根据雷电灾害风险程度依次确定最佳的防雷计划,对不同目标采用差异化的防护,使防护措施有最高的性价比,防止防雷工程的盲目性建设。

3雷电灾害风险评估方法

雷电灾害带来的风险与其他自然灾害的风险本质相同,都是多种自然因素相互作用的结果,它往往受到某个区域自然系统、社会系统等因素的影响。在相同的区域内,因雷电造成灾害的风险机制大致相同,孕灾环境也别无二致,因此可以采用相同的风险评估办法,来表示该区域内雷电灾害风险的大小以及对比关系。以历史气象灾害统计的相关数据为依托,采用模糊数学法、灰色系统法等数学方法,对当前的雷灾风险作出预测。当前公认评价较好的自然风险形成机制,主要包含的内容为:在某区域内发生自然灾害的风险,由自然灾害危险性(H)、暴露(E)、承灾体的易损性(V)、防灾减灾能力(C)4个风险因素相互交织而成,表达式为:R=H•E•V•C。但是这些因素比较抽象笼统,因此需要与雷电灾害的形成机制相互结合,再采用多元分析法或者分层分析法等数学方法,对其进行量化,得出该区域的雷电灾害风险评估计算公式才可以更加准确、详细地对雷电风险进行预测,而且可操作性更强。

4雷电灾害风险评估表达式

由于文中涉及雷电风险评估的主要研究对象是人以及建筑物,因此建筑物遭受雷击风险的通用表达式为:此外,若该建筑物使用类似避雷针等预防雷击的装置,那么建筑物遭到雷电打击的风险大小可以依据该装置的避雷效果呈现降低趋势。

5雷电灾害风险评估系统的设计

把建筑物所受到雷击评估的流程与计算机技术相结合,设计成雷电评估数据库,进而建立雷灾风险评估系统。该系统能够对建筑物受到的雷击风电度做出快速的评估,然后依据评估的结果,以最快的速度找出有效防治雷击的措施,进而减小损失。设计的内容主要包括以下几点。1.建立雷击灾害风险评估界面,同时要求设计数据处理窗体,存储输入、修改评估参数。2.建立数据库,主要用于保存雷电闪击次数及损害几率等常量,在该系统运行时,能够有效、快速地对建筑物所受到的雷灾风险值进行估算,进而采取适当的防雷保护措施。3.评估系统由很多功能不同的窗体组合在一起,每一个窗体都表示一定的功能块,所以用户可以在相关窗体下执行相应功能模块的操作。评估系统模块组成图如图1所示。

6雷电灾害风险评估的现状和未来

自然灾害综合风险评估范文第6篇

关键词: 荔枝; 极端气候; 产量; 风险评估

中图分类号:S667.1 文献标识码:A 文章编号:1009-9980?穴2011?雪06-1093-06

Risk assessment of extreme climate on the yield of litchi in Fujian Province

CHEN Jia-jin, LI Li-chun, WANG Jia-yi,LIN Jing,YANG Kai, XU Zong-huan, MA Zhi-guo*

(Fujian Institute of Meteorological Science, Fuzhou,Fujian 350001 China)

Abstract: Taken the potential hazard of the meteorological events, vulnerability of the hazard-affected body and disaster coping capability as assessment indicators, extreme climate risk on the yield of Litchi in Fujian was assessed by risk assessment model constructed by various indicators, based on meteorological data, Litchi plant area and yield, and other socio-economic data in Litchi growing region in Fujian over years. The indicator weight of the assessment model was integrative determined by AHP method, expert grading method and entropy-weight coefficient method. The results showed that: risk of extreme climate in most growing regions south of Changle on the Litchi yield were lighter; risk in Pinghe, Nanjing and Huaan of Zhangzhou, Yongchun, Anxi of Quanzhou, inland of Putian and Xianyou, montain areas of Minqing, Minhou, Luoyuan and Fuzhou, Fuding, Fu'an, Ningde were above severe; risk in high latitude areas were severity; risk in the other regions was moderate.

Key words: Litchi; Extreme climate; Yield; Risk assessment

福建是中国荔枝的第三大产区,种植历史悠久,品种资源丰富,福建省漳州市还被国家林业局正式命名的“中国荔枝之乡”。福建荔枝主要分布在沿海地区,在荔枝生长发育过程中,常遭受极端气候的影响,冻害、暖冬、连阴雨、干旱、台风等农业气象灾害均会对荔枝产量构成不同程度的影响;在荔枝生产中存在不合理种植以及低产的风险问题。因此,我们拟对影响荔枝生长发育和产量的致灾因子危险性、荔枝脆弱性以及种植区的防灾减灾能力作出分析,综合评估极端气候对福建荔枝产量影响的风险大小和范围,以期为荔枝优化布局和防灾减灾提供依据。

1 资料和方法

1.1 资料

气象资料选用福建省荔枝种植区各县1971―2008年气温、降水、风速的日观测数据;荔枝种植面积、产量及其他社会经济资料选用1992―2008年统计数据,数据来源于历年《福建农村经济统计年鉴》。

1.2 方法

采用“多指标综合评估法” 评估极端气候对福建荔枝产量影响的风险。

1.2.1 构建指标体系 根据前人对荔枝的研究成果,结合走访福建省热带作物科学研究所的林智明、谢金凤、郑銮坚,漳州市农业局的郭建辉、纪旺盛,漳州市天宝国有林场的黄开成,厦门同安区农业局的林美媛,福建省气象科学研究所的李文,漳州市气象局的杨志强、林俩法,漳州市热带作物气象试验站的曾瑞涛,厦门同安区气象局的张翊,漳州平和县气象局的林连城等荔枝方面的高级专家及生产调查,从致灾因子危险性、承险体脆弱性以及应灾能力3个方面构建极端气候对荔枝产量影响的风险评估指标体系。

(1)致灾因子危险性指标。通过对影响荔枝产量的致灾因子危险性分析[1-9],确定出影响荔枝产量的致灾因子危险性评估指标,即以越冬期极端最低气温、开花至成熟期日最大平均风速、花芽分化期日极端最低气温、秋梢抽生期连旱时间、开花期连阴雨时间5个致灾因子在不同强度下的历年平均发生频率分别作为越冬期冻害、开花至成熟期风害、花芽分化期暖害、秋梢抽生期旱害和开花期湿害的危险性评估指标,以考虑不同强度灾害对荔枝产量影响的风险大小。

(2)荔枝脆弱性指标。荔枝承险体的脆弱性从荔枝在面对极端气候造成危险时所表现出的物理暴露性、应对灾害打击固有的敏感性来考量[10]。对于荔枝这个承险体而言,各县荔枝种植面积占全省总种植面积可以反映荔枝的物理暴露性,种植面积越大,其所承受的灾害风险越大;而欠年的减产情况可一定程度综合反映荔枝自身的敏感性,采用荔枝单产量的欠年平均减产率、欠年减产率变异系数和减产率(≤-10%)发生概率3个指标来综合反映极端气候对荔枝产量影响的综合敏感性。

(3)种植区防灾减灾能力指标。对于荔枝来说,防止或减轻极端气候对荔枝产量的影响,在基础防灾减灾能力方面,主要还是对防御气象灾害的资金投入;而在工程抗灾方面,主要是为了防风害而建立的防护林工程,防干旱而建立的水利灌溉工程。因此,结合考虑数据的来源,选用防护林面积占耕地面积比、有效灌溉面积占耕地面积比、农民人均纯收入3个指标作为荔枝种植区防灾减灾能力评估指标。

1.2.2 确定指标权重 综合应用层次分析法、专家打分法和熵权系数法来确定风险评估指标权重。以县为最小评估单元,采用层次分析法(AHP法)和专家打分法确定风险评估指标的主观权重,通过16位果树专家对荔枝风险评估指标体系中各项指标的重要性进行两两比较打分,构建出各指标的判断矩阵,应用“和积法”求出各指标所对应的权值向量,并进行判断矩阵的一致性检验,得出各评估指标的主观权重ωi[11]。

再利用熵权系数法确定风险评估指标的客观权重αi,即按照风险评估指标体系逐级构建荔枝风险评估的特征矩阵,然后对各指标值进行归一化处理,计算第i个评价指标下第j个待评价对象评价指标特征值,即每个指标出现的概率Pij,最后得出各个评价指标的熵和熵权[12]。

最后为了全面反映评价指标的重要性,考虑决策者的经验判断能力,将决策者对各指标给出的主观权重ωi与客观权重αi相结合,由公式(1)确定出各指标的综合权重σi。

风险指标权重计算结果见表1~4。

1.2.3 风险评估指数的计算 在确定各风险指标的权重后,根据公式(2)逐级计算各个评价对象的风险评估指数λj。

1.2.4 构建评估模型 将计算得出的致灾因子危险性、荔枝脆弱性、种植区防灾减灾能力和综合风险的构成因子权重进行加权,得出各风险指数评估模型(表5)。表5中,Ifi、Iwi、Ihi、Idi、Iri分别代表冻害、风害、暖害、干旱和连阴雨致灾因子的风险评估指数;Ipr、Irr、Ivi、Icp分别代表荔枝种植面积占全省总种植面积比、欠年平均减产率、欠年减产率变异系数和减产率(≤-10%)发生概率的评估指数,Isr、Iir、Ife 分别代表防护林面积占耕地面积比、有效灌溉面积占耕地面积比、农民人均纯收入的评估指数,Ih、Iv、Ic、I分别代表致灾因子危险性、荔枝脆弱性、种植区防灾减灾能力和综合风险的评估指数。

1.2.5 划分风险等级 采用自然断点法这一种不等值分级方法来分级,即通过荔枝种植范围内所有风险评估指标的风险指数值与平均值之差的原则来寻找特征点,结合对实地风险大小调查的情况,按各风险指标归一化指数划分风险等级。

1.2.6 制作风险区划图 在GIS技术的支持下,将多指标的致险程度用栅格化图层来表示致险程度指标的地域分布,并按风险评估模型将各个图层叠加,从而得到综合灾害风险区划图。

2 结果与分析

2.1 致灾因子危险性指标分级

根据5个致灾因子不同强度对荔枝产量影响的程度,将越冬期极端最低气温、开花至成熟期日最大平均风速、秋梢抽生期连旱时间3个致灾因子危险性指标分为轻度、中度、重度和严重四级;而由于福建荔枝生产发育过程中未存在严重暖害和严重湿害情况,只将花芽分化期日极端最低气温、开花期连阴雨天数2个指标分为轻度、中度、重度三级,具体分级标准见表6。

2.2 评估单元综合风险指数分析

根据表7荔枝种植区评估单元的各风险指标归一化评估指数分析,致灾因子危险性归一化指数介于0.03~1,其中指数大于0.5的有福鼎、东山、福安和闽清,指数介于0.1~0.5的县市有霞浦、连江、罗源、永春、南靖和华安,其余县市指数在0.1以下。荔枝脆弱性归一化指数介于0.19~1,其中指数小于0.3的有福安、福清、闽侯、南安、安溪、永春和漳州市辖区,指数大于0.75的有漳浦、诏安和平和,其余种植区指数在0.3~0.75。种植区防灾减灾能力归一化指数介于0.16~1,其中指数小于0.35的有福安、罗源和晋江;指数大于0.65的有福州大部分县市(除罗源、连江和闽清外),泉州市的南安、永春,漳州市的龙海、漳浦、长泰和华安,宁德市的霞浦县;其余种植区指数介于0.35~0.65。

从荔枝种植区评估单元各指标综合风险归一化指数分布来看,指数介于0.01~1,其中指数大于0.5的有福安、福鼎、闽清和东山,指数介于0.1~0.5的县市有霞浦、连江、罗源、永春、南靖和华安,其余县市在0.1以下,以漳州市辖区为最小。

2.3 风险等级划分标准

根据各评估单元计算得出的风险指标评估指数,应用自然断点法与实地风险调查综合分析,得出各风险指标的具体等级划分标准。限于篇幅,表8仅列出各致灾因子、致灾危险性、荔枝脆弱性、种植区防灾减灾能力和综合风险的等级划分标准,除花芽分化期暖害、开花期湿害、荔枝脆弱性、种植区防灾减灾能力4个指标未设严重(或特高)级别外,其余风险指标均设4级标准。

2.4 综合风险评估

从荔枝种植区综合风险区划图上可以看出(图版),长乐以南沿海县市大部分种植区(除东山县外)极端气候对荔枝产量影响的风险较轻。重度风险以上的区域主要分布在漳州市的平和、南靖、华安,泉州市的永春、安溪,莆田和仙游的内陆地区,福州市的闽清、闽侯、罗源及市辖区的山区,宁德市的福鼎、福安、宁德辖区及福安的山区,其中海拔高的山区有严重风险。其余种植区属中度风险。

从风险构成来看,长乐以南沿海县市大部分种植区(除东山县外)的致灾因子危险性较低,同时防灾减灾能力也较强,虽然脆弱性也比较大,但由于影响权重较小,故使这个种植区的风险总体偏轻;而东山岛因为存在严重风害致使致灾危险性高,导致风险严重,内陆海拔较高的山区主要是因为存在重度以上冻害危险性,同时防灾减灾能力也较弱,会出现重度以上风险;其余种植区致灾因子危险性、承险体脆弱性和防灾减灾能力属中等,其综合风险属中度。

3 讨 论

风险评估结果是否符合实际情况,其关键技术是风险指标体系的构建以及指标权重的确定。在风险指标体系构建中,本文选择12个风险3级评估指标,能较为充分表达致灾因子危险性、荔枝脆弱性和种植区防灾减灾能力的情况,当然还有一些好的评估指标,如在反映种植区防灾减灾能力中,很重要的一点就是考虑防冻害能力,但由于缺乏防冻时消耗的农资、材料、财力、人力等数据来源,无法入选到指标体系当中。

在采用“多指标综合评估法”进行风险评估时,指标权重的确定方法很多,本文综合运用层次分析法、专家打分法和熵权系数法确定指标权重,通过主、客观权重的融合,能较好地反映各个评价指标的重要性,当然还可以通过各种不同的主、客观权重计算方法的组合,评估出风险大小,以评估结果是否符合实际情况来选择最佳的权重计算方法。

基于本研究构建的指标体系以及采用的多指标综合评估法,评估极端气候对福建省荔枝产量影响的风险大小与分布区域结果,结合实地考察应用,基本符合实际情况,可为福建各地进行荔枝规划布局和防灾减灾提供参考。(本文图版见插6)

参考文献 References:

[1] OU Liang-xi. Production technology for pollution-free Litchi[M]. Beijing: China Agricultural Press,2002: 29-30.

欧良喜. 荔枝无公害生产技术[M]. 北京: 中国农业出版社,2002: 29-30.

[2] CHEN Shang-mo, HUANG Shou-bo, WEN Fu-guang. Meteorology of Fruit[M]. Beijing: Meteorology Press, 1988: 430-439.

陈尚谟,黄寿波,温福光.果树气象学[M]. 北京:气象出版社,1988: 430-439.

[3] ZHI Shi-qun, ZHOU Shi-huai, ZHANG Yu. Analysis and divisions of meteorological conditions in litchi production in Guangdong[J]. Chinese Journal of Agrometeorology, 2002, 23(1): 21-24.

植石群,周世怀,张羽. 广东省荔枝生产的气象条件分析和区划[J]. 中国农业气象,2002 ,23(1): 21-24.

[4] GAO Su-hua, LIN Ri-nuan, HUANG Zeng-ming. The effects of winter temperature and freezing damage on the litchi yield in Guangdong[J]. Journal of Applied Meteorological Science, 2003, 14(4): 496-498.

高素华,林日暖,黄增明. 广东冬季气温、冻害对荔枝产量的影响[J]. 应用气象学报, 2003, 14(4): 496-498.

[5] LI Yan-lan,SU Zhi,TU Fang-xu. The Effects of climatic factors on yields of lichee and longan in Guangxi[J]. Journal of Guangxi Academy of Sciences, 2002, 18(3): 136-140.

李艳兰,苏志,涂方旭. 若干气候因素对广西荔枝龙眼产量的影响[J]. 广西科学院学报, 2002, 18(3): 136-140.

[6] GAO Su-hua,HUANG Zeng-ming. Thermal index in lichee bud differentiation period and its impact on yield[J]. Meteorology, 2004, 30(3): 17-21.

高素华,黄增明. 荔枝花芽分化期的冷暖气候指标及对产量的影响[J]. 气象, 2004, 30(3): 17-21.

[7] CAI Wen-hua, ZHANG Hui, XU Zong-huan,CHEN Hui,LIN Liang-fa,TAN Zong-kun. Primary research on index of litchi freeze injury[J]. Chinese Agricultural Science Bulletin, 2008, 24(9): 353 -356.

蔡文华,张辉,徐宗焕,陈惠,林俩法,谭宗琨.荔枝树冻害指标初探[J].中国农学通报, 2008, 24(9): 353-356.

[8] PANG Ting-yi. Frostbite low temperature index and selection of planting environment escaping cold for fruiters such as litchi[J]. Journal of Guanxi meteorology, 2000, 21(1): 12-14.

庞庭颐.荔枝等果树的霜冻低温指标与避寒种植环境的选择[J].广西气象, 2000, 21(1): 12-14.

[9] DU Peng, LI Shi-kui, WEN Fu-guang,ZHOU Shi-huai. Agrometedrologicai hazard risk analysis of four main fruit trees in Zhujiang delta of South China[J]. Quarterly Journal of Applied Meteorology, 1995, 6(Suppl.): 26-32.

杜鹏,李世奎,温福光,周世怀.珠江三角洲主要热带果树农业气象灾害风险分析[J]. 应用气象学报,1995,6(增刊): 26-32.

[10] GE Quan-sheng, ZOU Ming, ZHENG Jing-yun. Integrated assessment of natural disaster risks in China[M]. Beijing: Science Press, 2008: 102-232.

葛全胜,邹铭,郑景云. 中国自然灾害风险综合评估初步研究[M].北京: 科学出版社, 2008: 102-232.

[11] XU Jian-hua. Mathematical methods in contemporary geography[M]. Beijing: Higher Education Press, 2004: 224-250.

徐建华. 现代地理学中的数学方法[M]. 北京:高等教育出版社,2004: 224-250.

自然灾害综合风险评估范文第7篇

[关键字]地质灾害 评估 程序 方法

[中图分类号] P694 [文献码] B [文章编号] 1000-405X(2013)-3-210-2

诸如滑坡、泥石流等地质灾害,不仅会造成建筑物的破坏,而且还会造成巨大的人员伤亡和经济损失,2010年甘肃舟曲的特大泥石流灾害造成的巨大创伤依旧让我们心头隐隐作痛。所以,如何科学合理地预测地质灾害的风险性、建立完善的灾害评估信息系统是摆在我们面前不容忽视的重大命题。

1 地质灾害的内容与分级

地质灾害指的是在地球表层对人类生命财产和生存环境造成强烈破坏的岩土体移动事件,如崩塌、地震、火山、滑坡、泥石流、地裂缝、地面崩塌、地面沉降、土地沙漠化和水土流失等,它往往是由自然或人为作用造成的,且多数情况下由两者共同作用造成。

地质灾害的分级是根据受灾体和灾害体的主要特征指标从而划分级次,以此来反映灾害程度,它主要包括灾变分级和灾度分级两种。灾变分级主要是根据灾害的活动程度来划分,包括灾害规模和活动频次两个方面,其中灾害活动是由自然环境变异所导致的,这种变异程度越高,灾害活动就越强烈,所造成的破坏也就越大。灾度分级则根据灾害活动造成的破坏损失程度来分级,包括死亡人数和经济损失两个方面,这种分级结果反映的是灾害事件发生后可能造成的破坏损失程度。按照上述两种分级方式,地质灾害通常可划分为特大灾害、大灾害、中灾害和小灾害。

2 地质灾害评估研究的发展概况

二十世纪六十年代以前,地质灾害的研究仅限于灾害的机理和预测的研究,侧重于调查和分析地质灾害的形成条件等,之后国际上一些发达国家开始进行灾害的评估工作,到了九十年代,针对国际减灾十年计划行动,许多西方国家开始开展灾害危险性的风险评估工作,并开始围绕风险评估问题进行深入研究。GIS问世以后,计算机的制图制印问题得到解决,灾害评估研究得以充分利用空间分析、制图功能和可视技术等先进手段,灾害评估水平得到更进一步的提高。

近年来,灾害评估的科学性更加成熟,评估手段由传统单纯的统计分析和成因机理分析发展到多种结合了社会经济条件的评估方法,评估过程由定性评估发展为定量评估或半定量评估。灾害评估在对灾害的成因机制、发生规律及其影响评估等方面的研究基础上,减灾的理论研究也获得了长足发展。

3 地质灾害的评估程序及方法

在地质灾害的评估过程中,应当依据《地质灾害危险性评估技术规范》对地质灾害活动的危险程度以及灾害发生区受灾体的可能破坏程度来进行地质灾害的危险性评价与灾害区易损性评价,由此进一步分析预测地质灾害的预期损失,进行地质灾害的破坏损失评价。其目的是通过地质灾害各项指标来定量化地分析地质灾害的主要特点和破坏损失程度,从而为规划和实施地质灾害防治工作提供更准确的参考依据。

3.1 地质灾害风险评估

地质灾害的风险评估应依据《技术规范》首先需要确定相关区域在一定时间段内的特定强度的灾害发生概率或重发期,从而获得灾害发生的超越概率,并获得灾害强度和频率的相对关系,据此确定地址灾害的灾害模型。其次,地质灾害风险评估还要确定可能受灾区域和它所包含的主要建筑、固定设备和内部财产,另外还有该区域的人口数量和分布以及经济发展水平等。再次,风险评估需要进行灾害风险区价值模型的建立和风险损失的估算。最后,根据灾害风险区风险损失的大小来划分风险等级,进而确定不同风险等级的空间分布并绘制风险图。

地质灾害风险主要的评估方法包括资料分析、实验模拟、数学模型和遥感技术等。风险评估相关资料包括自然界资料和历史文献资料两类,在风险评估中主要通过数理统计的方法来整合资料。实验模拟则是在一定的研究基础上模拟地质灾害的发生、演变规律,通过排除混杂因素的干扰来揭示地质灾害更加深刻的演变机理,从而为灾害的风险预测提供依据。地质灾害风险评估还可以通过建立适当的数学模型,如模糊数学、概率模型以及动力学模型等,从而对灾害风险进行评价。而遥感技术主要采用遥感GIS法,通过数据管理和模型预测来服务于灾害的调查以及灾害的动态检测等。

3.2 地质灾害损失评估

依据《地质灾害勘察规范》对地质灾害的危害程度进行评估。地质灾害损失评估包括两个方面,即建立灾害损失评估的指标体系和给出灾害损失评估的定量方法,通常根据灾害评估指标来建立适当的评估模型,从而对灾害破坏程度及其造成的损失进行评价。地质灾害损失评估通常依据灾害发生的时间划分为灾害发生前的预评估、灾害发生过程中的监测性评估以及灾害发生后的实测性评估三种。

如果将地质灾害的灾情等级划分定义为模式识别问题,在地质灾害损失评估过程中就可以应用模式识别的有关方法进行灾情评价。在这方面,我国比较广泛应用的研究有任鲁川的模糊模式识别理论、李祚勇基于物元分析的灾情评估模型和杨仕升的通过不同灾情的灰色关联度给出不同灾情的比较法等。受灾威胁人数少于三人,且经济损失不足100万元的为小危害;威胁人数达到3至10人,经济损失处于100万元至1000万元的为中等危害;大于这两种情况的为大危害。

3.3 地质灾害生态环境评估

根据《地质灾害危险性评估技术要求》判定地质环境,生态环境型的地质灾害往往属于累积过程引起的渐发性灾害,比如河道淤积和土壤流失等。目前对地质灾害的生态环境评估还没有形成成熟的模式,这是地质灾害评估方面的一个崭新课题。目前采用的地质灾害生态环境评估方法主要分为两类,其一,将灾害对生态环境的影响转化为经济损失从而计算后给出定量评价结果,其二,建立比较完善的生态环境评估指标体系,利用统计分析方法对灾害生态环境影响作出评价。

3.4 地质灾害具体评估方法补充介绍

(1)层次分析法。由于影响地质稳定性的因素众多,其中大多数因素都会对稳定性的评价造成影响,这就影响了对地质灾害的进一步分析。层次分析法不仅能用于单一灾点的稳定性评价,还能用于同一地区多灾点的综合评价,具有因素具体和结果可靠的优点,但这种方法在过程比较复杂,对各因素进行区分判断时比较困难。

(2)工程地质量化评价法。随着工程地质研究中不断引进模糊数学等一些不确定数学方法,工程地质量化评价方法开始成为地质灾害评估方法中的一员,它包含了经验类比和统计思想,但由于这种评价法以定性描述和分析为主,所以在应用时难以建立统一的评价标准。

(3)模糊综合评判模型。模糊综合评判法适用于单灾点的灾情评估,它是综合多个指标后对灾情等级状况进行评判的一种方法,往往对灾情的描述更加深入和客观。实践表明,模糊综合评判模型的评价结果较为可靠合理、模拟效果较好。

(4)遥感和地理信息系统。在地质灾害评估中,通过建立数学模型和数据库,能够借助计算机来实现数据的提取、编辑和更新更加信息化和精确化。但遥感数据并不足以反映灾害的社会经济特征,所以在应用GIS和数学模型对灾害进行评估时,还需要加强地质灾害地区的实地调查工作,使两者紧密结合起来,从而使评估结果更加客观和可靠。

总之,随着地质灾害评估理论和实践的不断发展,评估方法和评估体系也日趋完善。我们应该加强灾害评估系统的建立和完善,组织行之有效的减灾工作,并充分利用计算机技术和GIS技术,推动地质灾害评估向模型化、定量化、现代化方向不断发展。

参考文献

自然灾害综合风险评估范文第8篇

【关键词】突发公共事件;经济影响;综述

突发事件指突然发生,造成或者可能造成重大人员伤亡、财产损失、生态环境破坏和严重社会危害的紧急事件。非常规突发事件是指前兆不充分,具有明显的复杂性、潜在次生衍生危害性和破坏严重性,采用常规管理方式难以有效应对的突发事件。随着社会经济的发展,非常规突发事件发生的频率和强度逐年提高,严重影响了经济社会的可持续发展,对非常规突发事件影响的研究现状进行综述异常重要。

一、国外研究现状

发达国家在灾害研究开始较早且处领先地位。如美国、日本在20世纪50年代开始投入大量人力、物力,对自然灾害进行研究。Brannen(1954)对1953年德克萨斯经历的大灾难进行了研究;Kunreuther和Fiore(1966)、Hirshleifer(1966)研究了灾害与发展的关系;Nelson 和Winter(1964)、Kunreuther(1968)、Dacy和Kunreuther(1969)的评估模型都具有开创性作用。Kates(1971)、Tierney(2001)运用调整跨学科综合研究的分析框架,强调不同风险类别的判别、理解决策过程和社会脆弱性;Cole(1994)运用社会核算矩阵模型估计出灾害对区域经济的生产、家庭、政府、企业等方面的综合影响;Rose、 Benavides、Chang、Szczesniak和Lim(1997)说明了投入—产出模型在综合工程模拟与调查数据方面反映灾害条件方面的有效性,包含空间特征的线性规划模型解释了通过市场或者行政手段进行资源分配可以达到效用最大化; Cohen和Noll(1981)解释了政府参与设立减缓措施标准的基本原理;Cornell和Tagaras(1986)开发了联合可能性模型,分析大坝修建失败的相互依赖性;Berke,Kartez和Wenger(1993)探讨了在灾难以后一段时期内可持续发展的条件;Authony Fish、David Fullerton、Nile Hatch和Peter Reinet(1995)利用东海湾市政设施区(EBMUD)旧金山水利系统的模拟模型得出大型的城市储水区应对干旱的方法;Lester Lave和Tunde Valvanyos(1998)认为风险收益分析可以有效地作为风险管理工具加以运用;Kleindorfer和Kunreuther(1999)对完善建筑法规以及相应的风险基础保险政策的经济影响做了经验分析;SungbinCho、Peter、Gordon、James、Richardson、Shinozuka和Sthphanie(2001)阐述了基础设施状况、交通网络与双区域投入—产出模型相结合能够更精确的测度灾害影响;George Horwich(2002)认为神户大地震后日本迅速恢复的主要因素包括相对较少的死亡人数,转移城镇人力资源的能力和交割导向的市场反应。Johannesburg(2012)提出了全新的突发事件应急管理方法。西方学者对自然灾害影响的评估模型如表1-1所示。

西方国家政府已经认识到突发事件管理的重要性。如美国联邦紧急事务管理局(FEMA)是联邦应急管理的核心协调机构,通过减缓、预备、响应和恢复重建等一系列应急程序协调各部门、机构减少各种突发事件对经济、社会的破坏。英国内阁2001年在内阁办公室设立了非军事意外事件秘书处,以协调各个部门的紧急应变工作。秘书处还负责确定突发事件处理过程中的轻重缓急,改善各级政府、各公共和私营部门,以及志愿者的应对能力。日本政府建立了从中央到地方的管理体制,政府在首相官邸建立了全国“危机管理中心”,并针对国家安全、社会治安和自然灾害等不同危机类型建立了不同的危机管理机制。

资料来源:根据国家社科基金委员会网站统计。

二、国内研究现状

在学术层面上,我国初期研究着重从经济学的角度研究灾害预测、防治、控制和善后过程中的规律性。包括处理灾害经济问题的基本原理,治理灾害及变害为利措施的经济效果的指标体系,提高除灾、治灾和救灾经济效果的评价方法,不同区域的最优决策体系等。近年来,灾害影响评估显现了向定量以及模型分析方向发展的趋势,但主要以单灾种的直接经济损失研究为主,而作为国民财富重要组成部分的自然资源与环境损失却往往被忽视。如刘芳芳等(2005)分析了灾害评估的系统组成和灾害评估的基本过程,从性质分类上总结了灾害评估的内容和方法。黄崇福教授(2006)介绍了自然灾害风险分析的理论和方法,包括致灾因子分析、承灾体研究、损失风险评估等主要内容。高庆华等(2007)分析了自然灾害直接经济损失评估的基本模式和方法、自然灾害评估指标体系和标准,并对中国地震、地质、洪涝、气象等重大自然灾害分类评估。赵悦(2007)把模糊数学中的模糊综合评价技术与模糊聚类技术应用到具体的地质灾害评估中。武汉工业学院(湖北省)非传统安全研究中心的学者也较早涉足灾害经济损失评估领域,并取得了较好的成果,杜为公(2011)对防灾减灾征用补偿、自然灾害经济损失评估方法进行了尝试性研究。我国重视对突发事件影响的研究,据不完全统计,1996年至2012年国家社科基金相关项目共28项,另有重大专项课题和招标课题。如表1-2所示。

在实践层面上,由于重大的自然灾害不断出现,如1998年特大洪水、2003年SARS事件、2004年禽流感事件、2008年冰雪灾害、2008年汶川地震,以及频繁发生的矿难等,使灾害评估、防灾政策的研究更具实践性。我国灾害研究与管理部门已建立了用于单灾种研究的灾害信息管理系统,开始关注应急监测与评估研究及相应技术,如水利部、科学院的实时洪水监测系统及水灾风险评估系统,中国科学院与国家气象局的台风、暴雨、洪涝灾害信息及减灾系统,中国科学院、国家教委所属有关科研、教学部门的应急气象卫星对小区域自然灾害进行应急评估的技术系统等。我国在灾害预测、工程减灾、灾害管理及灾害立法等方面取得了可喜成就。同时开展了自然灾害形成综合机制研究和综合预报,以及综合减灾的理论方法研究。

三、研究现状评述

国外研究存在的许多不足主要表现在:涉及的评估因子及数据的采集与测算与我国国情有很大差别。国内的研究多是研究经济损失,而对基于自然、经济和社会因素的非常规突发事件影响预评估方法研究较少。

参考文献:

[1]张政宏,陈曦.我国自然灾害应急管理体系问题研究[J].价值工程,2010,3.

[2]张显东,梅广清.西方灾害经济学研究的历史回顾[J].灾害学,1998年第4期.

自然灾害综合风险评估范文第9篇

刘吉夫,北京师范大学副教授,早年从事地震地质研究,曾于2002年考入中国地震局物理研究所攻读博士学位,师从著名地球物理学家陈颐院士。毕业后前往北京师范大学做博士后研究,师从现任副校长史培军,精力也转向地震灾害基础研究。

2008年5月12日,汶川地震!彼时,刘吉夫的博士后研究尚未出站,但震后不久,就在史培军教授的带领下,先后参加了科技部抗震救灾专家组和国家减灾委――科技部抗震救灾专家组,多次奔赴地震现场开展地震灾害损失评估工作,并参与完成了汶川地震灾害损失评估报告。

在“十一五”国家科技支撑计划的支持下,刘吉夫率组对“灾情综合研判与风险分析技术研究”之子课题“地震灾情综合研判与风险分析技术研究”开展了攻关工作,希望能够通过整合多源数据,在地震危险性分析、人口和建筑物、生命线工程易损性研究和损失评估的基础上,综合研判地震的灾情发展趋势,分析其可能诱发的地质灾害、洪水灾害等次生灾害风险,研制灾情综合研判与风险分析系统,建立一套快速反应、运行可靠、准确决策的灾情综合应急研判与风险分析技术体系。同时,通过研究地震转移安置的快速评估方法、优化模型和效益评估模型,开展地震转移安置快速需求与资源供给评估、优化和效益评估,为应急救灾决策提供服务。如果该研究圆满完成,将会实现地震灾情综合研判与风险分析领域的两大创新,即上述建立一套科学的“地震灾情评估与风险分析系统”以及“地震灾情综合研判和风险分析系统”。

但是,尽管目标明确,刘吉夫所面临的难题却不会因此而减少。从数据获取上来说,由于我国目前数据共享机制匮乏,获取高质量的历史灾害数据和实时灾情尚有一定难度。再加上我国人口分布不均衡、建筑物结构种类多样,生命线工程数量众多,需要开展大量实地调查研究,难度较大。另外,次生灾害(地质灾害和洪水灾害)灾情评估和风险分析、地震灾害损失评估模型集成也是他需要攻克的重大技术难题。

玉树:调研与沟通一般重

2010年“4・14”玉树地震之后,作为国家减灾委现场灾害损失评估组专家的他,又在第一时间赶到灾区。

为了满足国务院迅速查明一线情况的要求,刘吉夫一行6人,克服了高原缺氧等困难,对灾区人员伤亡、医护措施、建筑物和基础设施破坏等众多情况进行了细致周密的调查,终于在一周之内将地面460多个点的现场资料全部搜集齐备。在刘吉夫的认知中,玉树地震比较特殊。一是地处高原高寒地区,严重缺氧;二是玉树是一个少数民族群居地,其中尤以藏族为主,占了少数民族人数的95%;三是玉树位于三江源自然保护区内,灾后重建中对生态保护的要求比较高。到玉树,他和工作组的伙伴们闯过了“高原反应”的第一关,又开始面临着新的问题一沟通。“如何在一个少数民族地区开展工作,我们并没有充足的经验。所以,真正开展工作的时候,我们发现不是很了解藏族同胞,同样地,他们也不是很了解我们。当时,、医疗队、志愿者,还有我们的地震监测工作队等,进驻了几万人,大多数都是汉族人,大家彼此之间都需要一个沟通和适应的过程。”刘吉夫举例说,“到玉树后,我们需要进行现场的调查和评估,但是必须有藏族导游随行,不然,由于语言和文化差异,我们很难与之交流。”

为了改变这种状态,刘吉夫想了很多办法,比如将自己携带的干粮送给藏族孩子等等。逐渐地,他们同藏族同胞之间的关系融洽起来。而看到他们很累或者因为爬山透不过气的时候,藏民们也会热心地将从废墟里挖出来的奶茶、牦牛肉等送给他们。在那种物资缺乏的时刻,他们最终也没有接受那些食物,却对藏民们的情谊深表感动。他认为,这种沟通不仅是开展震后调研的关键,也是进行灾后重建的必备因素。

而关于玉树地震倒塌房屋数目可观,刘吉夫在国家减灾委论坛上提出了这样的观点:“玉树地区的房屋多为藏族建筑,其主体用木、黄泥砌成,屋顶却是用水泥钢筋浇筑成形形的款式,是典型的重屋顶而轻墙。这种头重脚轻的建筑,稍微有些风吹草动,就容易倒塌。另外,采挖冬虫夏草是玉树地区的重要经济来源。据说,挖一个月的冬虫夏草可以卖到八九万。四五月份,正是采挖季节,所以,高山峡谷河流两边的房子一栋挨着一栋,房屋密度很大,人也很多,地震一来,整个儿跟多米诺骨牌似的,根本没办法疏散。”

在严密的调研结果和深刻的思考基础上,刘吉夫撰写出玉树地震灾害损失评估报告。至此,他已两次成功应对地震灾害,这不仅向世界展现了北京师范大学在灾害科学研究领域的先进水平,而且汶川地震灾害损失评估报告和玉树地震灾害损失评估报告获得国务院审议通过后,也为国家制定灾后恢复重建规划提供了关键的科学依据。

震后:将预防提上日程

身临两大地震现场后,刘吉夫想得最多的问题就是预防。

“我国大陆处在欧亚地震带和环太平洋地震带的包围之中,构造比较特殊,很多地震在世界上是独一无二的,因此,我国的地震研究很有特色,也吸引了国外很多灾害学家的关注。可以说,在理论和方法上,我们已经发展得很成熟,但是技术和工程领域却不是很出色,今后,我们应该对此有所侧重,为后代造福。”他认为,正因为中国地震的特殊性,更要加强地震预防教育,要从学生抓起,逐层深入。

汶川地震后,受成都教育局所托,刘吉夫在地震预防上投入了很大的精力,并撰写了两部中小学防灾减灾教材,希望能够通过汶川地震的教训,将互助互救的技能提高起来,贯彻到中小学生的头脑中,防患于未然。“从整体上来说,其实,本科和研究生阶段也应该设置安全课,否则,从整个安全教育体系上就会出现断层。只有小学、中学、大学的课程形成完整健全的灾害预防体系,才会产生更好的效果。”以北京师范大学为例,该校在防灾减灾方面就有很多的实战经验,既有减灾与应急管理研究院、地表过程与资源生态国家重点实验室,也有地理学与遥感科学学院、环境学院等,课程设计上比较系统,形成了深厚的理论和方法基础,且在该领域人才辈出,完全具备进行防灾减灾高等教育的能力。

对于防灾减灾,刘吉夫总是强调“意识”,只有加强防范意识,才能培养出强大的防范能力。这种重视,不应该单纯是某个人或某些人的重视,而应该是社会主流意识上的重视。“相对于安全生产,显然,我们对防灾减灾的重视程度还不够充分。防灾减灾意识的提升,不是朝夕可至的,它需要一个潜移默化的过程。”

自然灾害综合风险评估范文第10篇

关键词:农业气象灾害;风险评估;研究现状;存在问题;发展方向

中图分类号S165+.25文献标识码A文章编号1007-5739(2009)14-0269-02

风险分析在近20~30年来得到迅速发展,并已广泛应用于生物、医学、环境、技术应用和工程等领域。但针对某种农业气象灾害风险评估的研究较少,现有的成果也不很完善。今后农业气象灾害的风险评估,应该向哪个方面发展,是从事这一方面研究的工作者所要考虑的问题。因此,笔者对前人研究的成果进行总结和分析,找出其优缺点,以便在今后的工作中,扬长避短,少走弯路,更好地服务于农业生产。

1风险评估研究现状

1.1国内研究现状

农业气象灾害风险评估的国内研究,有李世奎、霍治国、王道龙等[1]主编的《中国农业灾害风险评价与对策》一书,此书以风险分析技术为核心,探讨了农业自然灾害分析的理论、概念、方法和模型。但是,有关农业气象灾害风险评估理论的基础研究仍相当薄弱。邓国等[2]提出用解析概率密度曲线法估计粮食产量序列的风险概率,对中国粮食产量不同风险类型进行了分区研究。薛昌颖等[3]利用河北及京津地区1949~2001年的冬小麦实际产量资料,选取历年减产率的变异系数、历年平均减产率和减产率风险概率作为评价指标,估算了干旱气候条件下河北及京津地区历年冬小麦产量灾损的风险水平。黄崇福等[4]针对湖南省各县市1979~1993年的灾情资料时间序列短、数量少的情况,引入模糊数学方法,对干旱等农业自然灾害进行了风险估算,并通过专题图直观地展示了风险的分布及其空间变化趋势。经文献检索,在风险评估方面,农业气象灾害风险评价标准还缺乏统一的认识和实践检验,实用性和可操作性强的风险评价模型甚少。

朱自玺等[5]做了小麦干旱风险评估技术和方法的研究,他们从降水资料出发,先按降水负距平绝对值的大小不同划分为不同的干旱等级,再求出不同干旱等级发生的概率,以此为基础建立了小麦气候干旱风险指数模型Ic=α1Is+α2Ie,式中Is为全生育期风险指数,Ie为小麦拔节期风险指数,α1、α2分别为其权重系数。然后又从作物需水量和供水量出发,按作物缺水程度不同划分为不同的干旱等级,算出不同干旱等级出现的概率,以此为基础建立了作物干旱风险指数模型Id=α1Is+α2Ie+α3Im,其中Is、Ie和Im分别为小麦全生育期、拔节期和灌浆期的作物干旱风险指数,α1、α2和α3分别为其权重系数。最后在气候干旱模型和作物干旱模型的基础上,建立了综合干旱风险指数模型I=(Ic+Id)/2,其中Ic为气候干旱风险指数,Id为作物干旱风险指数,并在此基础上对华北平原冬小麦干旱风险进行了评估和区划。中国农业大学的王素艳[6]做了北方冬小麦干旱风险评估及风险区划研究,对北方冬小麦干旱特征进行了详细分析,以此为基础对北方地区的光温和气候生产力进行了评估,建立了风险评估指标体系,并进一步做了北方冬小麦干旱灾损风险区划,这是对小麦干旱风险评估和区划的一次系统和详细的研究。

1.2国外研究现状

在国外的风险评估研究中,往往根据研究的侧重点将模型分为社会风险、经济风险、环境风险、潜在风险及综合风险等类型,各个类型内部又包含应用于不同领域的多个估算模型。以社会风险为例,所谓社会风险是指相对于某一给定的区域,或某一给定的人群,由某种灾害所引起的受损害的人数与其发生频率之间的关系。这种关系常用FN伤亡频率图表示。至于其评估模型,有Piers提出的AWR模型[7],Carter提出的SRI模型[8]及HSE提出的COMAH模型[9]等,其中COMAH模型主要应用于土地利用与规划方面。美英等国是国际上最先提出风险理论和应用的国家。美国学者WilliamJ.Petak和ArthurA.Atkisson在《自然灾害风险评价与减灾对策》一书中对美国主要自然灾害的风险分析进行了详细的论述。该书总结了美国主要自然灾害的风险与损失期望值,并在风险决策,特别是灾害管理政策的制定和减灾效益分析方面进行了详细的论述,但针对农业灾害的风险评估技术基本没有涉及[10]。日本继美英之后也比较注重风险评估和区划的研究,其针对强,注重实效,取得了令人瞩目的成就。日本于1998年建立了风险分析协会,其研究重点在环境和环境恶化方面。他们认识到,由于使用了现代科学技术,使原本脆弱的环境更加恶化,原本复杂的世界带来更多不确定性[10]。总体上,国外学者在风险分析研究方面多侧重于经济领域,对具体的某一种农业灾害风险分析的研究还不多见。

2风险评估中存在的问题

2.1风险评估指标中存在的问题

经文献检索,在国内农业气象灾害风险评估方面,一般有干旱风险评估、涝洪风险评估、冻害风险评估等。但在风险评估指标上,尤其是在干旱风险评估指标方面,虽然指标很多,但在评估中实用的指标很少,几乎所有关于干旱灾害风险评估文献中,都用降水负距平作为干旱灾害风险评估指标,即从某地某一时段(作物一个生长周期、某一生长段、年、季、月、旬、周或规定的天数内)的降雨量(观测值或预报值)与该地区该时段内的多年平均降雨量相比较而确定作物干旱程度,并在此基础上进行作物产量灾损程度、作物干旱灾害风险综合评估和区划等一系列工作。用降水负距平作为作物干旱评估指标,有一定的局限性。因为作物干旱灾害受多种因素的影响,其中包括作物田地土壤墒情的好坏、土壤性质、当地地下水位的高低、某一时期大气降水量的多少、人为水分补给量的多少、作物当时的表现症状等。其中跟作物干旱有最直接、最大关系的就是土壤墒情是否适宜,即土壤含水量的多少。在短期内,某一时段降水偏少,如果前期降水量偏多,则土壤墒情也会较好,作物并不一定发生干旱;或者地下水位较高,或者人为进行了灌溉,作物地块土壤墒情也不会差,作物也不会发生干旱。长时期的干旱,是由于大气环流的影响,导致降水量偏少所致,才有可能导致土壤干旱。因此用降水负距平作为作物干旱灾害评估指标,干旱时期越长,评估结果才会越准确。而对于短期干旱或干旱期间采取了灌溉措施,用降水负距平作为作物干旱评估指标评估的结果准确性较低,缺乏科学性。特别是近些年,随着农业生产条件的提高,灌溉面积的增大,再单纯的用降水负距平来评估作物干旱发生的风险情况,则不但短期干旱评估不准确,恐怕连长期干旱评估的结果都不可靠了。用土壤墒情作为作物干旱评估指标,因为作物根系直接生活在土壤中,是从土壤中而不是从大气中吸收生长发育所需的水分,土壤墒情的好坏直接影响到作物的生长状况。土壤墒情良好,作物生长顺利,表现较好;土壤墒情较差,作物生长不良,表现出干旱症状,并进而影响产量。不管用何种方式补充土壤水分,只要土壤墒情较好,作物就不受干旱影响。因此,用土壤墒情作为作物干旱灾害评估指标,既克服了用降水负距平作为干旱评估指标的缺点,又克服了农业生产水平的影响,无论是对短期干旱或长期干旱评估都会较为准确。

2.2风险评估及区划中存在的问题

在农业气象灾害风险评估方面,通过查阅文献发现:人们进行风险评估的内容大多集中在较大的方面,如对中国的粮食产量风险进行评估和区划,对总的农业气象灾害风险进行估算,对华南南部的热带果树的农业气象灾害进行风险评估等。这些风险评估的对象都是针对整体农作物和果树,单一的对某一种农业气象灾害,或某一种农作物的农业气象灾害,或某一种果树的气象灾害进行系统化风险评估和区划的成果少之又少;且在对总的农业气象灾害进行风险评估时,所用的评估资料基本上都只是建立在粮食作物产量的基础上,对影响粮食作物产量的气象要素考虑较少。在农业气象灾害风险评估和区划的研究成果方面,所用的评估指标有待改进,现有的成果也不很完善。

自然灾害综合风险评估范文第11篇

引言

农业灾害的发展虽由不可抗拒的自然因素决定, 但通过深入探究,认识灾害发生和发展规律,可以通过监测预警采取措施,减少农业灾害损失。

一、农业气象灾害评估研究

在农业生产中影响农业产量以及农作物产量最大的就是农业气象灾害,因此对此项所造成伤害进行了农业气象灾害评估。

(一)作物模型评估方法

随着科技的不断发展和进步,人们将信息技术与农业气象灾害研究进行了有效结合,而且在农业气象灾害研究的过程中建立了作物模型进行定量评估。进行作物模型评估的好处是直观的看出农作物的生长过程、发育时期各个阶段的温度变化、对土壤进行分析以及降水量,而且还可以对天气进行实时监管,从这些优势中显现出其较强的机理性。

(二)综合模型评估方法

综合模型评估方法就是综合受灾的程度、受灾的范围、抵抗能力、作物对灾害的敏感度和社会生产力水平等多种因素进行评估,然后依据其建立灾害评估指标机制。在构建农业气象灾害评估的综合模型评估进行定量、定性评估时,可以结合模糊数学方法、层次分析法、回归分析、灰色聚类分析以及BP神经网络等多种方法进行综合评定。一些学者在实际建立综合模型评估中采用了逐步筛选聚类分析法和产量逐级分离模拟的方法,以便于其建立受灾等级查询和受灾程度分析。

(三)灾害风险评估方法

实施灾害风险评估方法的好处是可以对已存在的危险因子在一定年限内的可发生性以及危险程度进行预测,这样就可以预知其危险程度、危害性的大小以及社会承受灾害的能力。在对农业气象灾害进行灾害风险评估的同时还要实施灾害风险管理,这样做的好处是可以对以预测到的灾害进行科学有效的防控和处理,将灾害的程度降低到最小化,保证其在社会的承受范围之内。

二、现状分析

当前,世界上农业气象灾害对农业危的影响评估的根据往往是农业气象灾害体系,中国在改革开放之后,经济得到了飞速发展,对于农业气象灾害的评估技术越来越先进,在20世纪80年代,有了质的飞跃,国内的一些专家学者以大田实践为前提,对相关资料进行深入地分析,并且以相关的研究成果作为根基,构建了多种数学模型用于评估不同的农业气象灾害。在全球气候变化的新形势下,对于气象灾害的评估工作显得更为重要,当前我国对于气象灾害的评估主要运用了3种评估模式,分别是综合模型评估、作物模型评估、农业气象灾害风险评估。下面对这3种评估模式进行简要分析:

①综合模型评估,这种评估方式的着力点往往放在气象灾害的危害级别、对农作物的影响程度、农作物的抵御能力、当前社会的生产力水平等等,在对这些要素分析的基础上,成功建立一个灾害评估指标体系,并且,结合了众多的数学方法,例如回归分析、模糊数学方法、层次分析法等。从定性与定量的角度评估气象灾害对农业的危害性,气象灾害对农作物造成的损失是采用综合模型进行定量评估的依据。相关的单位对于粮食损失的计算考虑的因素往往是绝收面积、成灾面积、受灾面积3种。

②作物模型评估,我国主要采用的是CCSODS模型,这种模型最大的特征是具有很强的通用性与机理性,并且非常实用,目前普遍运用于我国一些基层的农业管理者身上,能够为农作物的种植提供改进方案。

③农业气象灾害风险评估,这种评估方式的着力点是气象灾害的具体要素,例如灾害的危险程度、对其的预测与减灾,这些要素往往具有变动性,考虑的因素众多,在上世纪九十年代我国开始对此技术进行运用,发展到现在,对此技术的运用更着重于灾害影响评估的风险性,并且运用了中队的数量化技术方法。

三、加强气象为农业防灾减灾的有效措施

(一)建立适应现代农业发展的观测站网

气象部门要根据近几年来农业结构和农业种植结构的情况,农行生产布局变化对农业防灾减灾气象服务要求的变化,建立起区域性的观测网络。针对气象不能为小区域农业减灾防灾服务的现状,要建立起高时空密度、自动化和多要素的现代化气象综合检测网络,对相关的气象资料进行实时、准确的监测,提高气象检测的能力。

(二)提高对灾害的预测和预防能力

灾害的预测和预防体系是气象部门加强农业防灾减灾服务的重要环节,只有对灾害进行准确的预测和预报,才能对灾害做出及时的预警和采取可行的防灾减灾措施。因此气象部门要根据现代农业发展的实际情况和新农村建设要求,开展针对性的灾害预警工作。在做好对常规天气预测准确、及时的同时,也要重点做好对灾害性天气的预警,针对当地的农业特色,做好防旱、防洪、防涝以及防冻等农业气象的灾害预防措施。除此以外,气象部门还要适当增加适合农业生产的气象服务,针对不同农作物与农作物的不同生长阶段的发育要求,对农民进行有效地指导。

(三)完善农村气象体系建设

气象科技服务是为农民服务的一项工作,深入农村,了解农村地区的实际需求,针对不同板块开发出适用的农业气象服务。让气象信息第一时间出去,明确气象部门主动传递信息的责任,及时更新和气象信息。健全村级组织为农民服务的制度,让专职的气象员在农村收集气象信息,并通过电视、广播或者黑板等载体,及时告知当地农民天气情况。同时,还可以加强通过报纸、广播、电视以及网络等公共媒体,为农民及时传达气象信息,让农民能够在第一时间了解到气象的变化。除此以外,利用短信信息、短信专题等渠道,也可以为农民及时的传递气象信息。为了提高农民自己识别气象的能力,还可以深入农村,加强对气象科技知识的宣传,让农民也了解和掌握到相关的气象知识。

(四)农业生产气象灾害防御与调控

农业气象灾害的防御是一个系统工程, 需要在综合监测的基础上, 建立一个防灾减灾的综合应变决策服务系统,针对不同的灾种需要采取不同的防御技术或几种防御技术组合使用才能达到防御的目的。

(1)农业干旱、涝渍灾害防御与调控

应用农业生产气象信息服务保障系统, 根据不同气候类型地区、不同作物及其不同生育阶段灾害的发生规律和危害机理, 重点发展利用气象信息的非工程性节水农业技术,根据农业生产气象信息,建立防灾抗灾与农业增产相结合的基础体系。

(2)作物低温灾害防御与调控

利用农业生产气象信息数据库,推广新型增温、助长、促早熟的制剂及不同气象条件的制剂使用技术, 形成投入少、效果明显、可操作性强、便于推广应用的综合防霜技术体系。

(3)不利气候环境的长期宏观调控

从降低风险、趋利避害的角度研究农业生产主要气候灾害对农作物的影响和风险, 为防灾减灾宏观调控和风险管理提供科学依据,研制根据气候资源、农业生态环境动态变化和短期气候预测结果主动防御不利气候环境的宏观调控技术。

四、未来发展方向

由于所处国情的限制,我国对于农业气象灾害评估存在一定缺陷不足为奇,总的来说,对于农业气象灾害的评估,呈现出了蓬勃发展的势头,未来的发展方向也有一定的势头表现。

首先,将会越来越重视对作物模型的应用,大家都知道,作物模型能够有效地模拟农作物具体的生理步骤,能够更好地探析农作物与外部环境、外部事物之间相互作用的关系,将农作物整个生长的过程都全面的展现出来,作物模型的应用意义重大,在以后对此技术的应用也会越来越多,而模型的设计也会面向客户,紧紧围绕简单、精准的准则。其次,健全对农业气象灾害风险的评估,将会有越来越多的新技术、新理念引入其中,依据对灾害形成原因的分析,更深入地探究灾害形成存在的危险性、预防、承受灾害能力等。建立较为统一的评估标准。最后,综合评估技术将会越来越多样化,农业气象灾害对农业的影响往往无法估量,以往对灾害损失的计量只是关注直接性的经济损失,对于经济、生态环境的影响往往却忽略了,因此,在今后对于综合评估技术的研究也会走向多样化。

自然灾害综合风险评估范文第12篇

[关键词]雷击自然灾害;风险评估;必要性;重要性

[中图分类号]TU856 [文献标识码]A [文章编号]1672-5158(2013)06-0415-01

一、雷电自然灾害概况

近年来人类社会与自然界之间的矛盾愈加尖锐,各种极端天气也频频发生,例如持续暴雪干旱,全球气候变暖等,自然灾害以其不可抗力已成为我们研究的课题。常见的自然灾害有雷电、地震、火山喷发、泥石流、海啸和台风等,其中气象灾害因为在我国种类多,发生频率高给经济活动和人民生活造成了不小的经济损失。迈入信息时代之后,电子电器日渐普及,雷电灾害一旦发生不仅会使电子器件瘫痪而且还会使依赖电子信息等的工作中断,例如使飞机航线和火车停运,通讯和计算机系统短路,在油田和炼油厂这个危险高发地还会造成爆炸和火灾,甚至是扰乱军队作战,人类一旦遭遇雷击还会有生命危险,对于雷电造成的人员财产损害时有发生,因此它被列为除台风和暴雨外危险性最高的气象灾害。我们如果能科学安装避雷设备,同时采取有效工作对雷电进行预测那势必会对防灾减灾产生积极的影响和作用。

二、开展雷击风险评估工作的必要性

(一)城市发展的必要性。城市化脚步的不断推进,城市面积不断扩大,各种钢筋混凝土建筑拔地而起,高楼大厦一方面是现代都市的标志另一方面也给自然灾害提供了“可乘之机”,为什么这样说呢,昕了下面的陈述相信你会明了。为了节省空间很多建筑物都是用金属管道和线路相连的整体布局,即使是有避雷针也只是不堪一击的,但雷电是可以无孔不入的,他们可以透过金属管和线路以电波的形式扩展到相关联的一个区域,直接对电器和人身造成危害,让人防不胜防。为此一个综合全面应对雷电的防护体系亟待建立,以适应不断变化的雷电灾害形式,综上所述开展的雷击风险评估也正是为适应当代的防雷工程而应运而生的,这一体系能对雷电风险和成因及防护措施进行更加直观科学的分析和评价。

(二)法律法规和政策导向的必要性。由于气象灾害在我们国家造成的损失较大,所以在很近以前立法机关已经制定了关于气象灾害相关的法律法规,例如以《中华人民共和国气象法》的为首的《气象灾害防御条例》、《防雷减灾管理办法》及《国务院办公厅关于进一步做好防雷减灾工作的通知》等,透过这些文件我们也不难发现国家在防范雷电灾害工作上的政策倾斜。2008年总书记在大会上强调说“我们必须把自然灾害预测预报、防灾减灾工作作为关系经济社会发展全局的一项重大工作,进一步抓紧抓好”,同时他在党的十七大报告中也强化了减灾防灾工作的工作,国家领导人如此重视,这也凸显了开展雷击风险评估工作的必要性。

三、开展雷击风险评估的作用

(一)雷击风险评估可以科学的划分防雷类型帮助科学选址。如果工程项目在投建前开展有效的雷击风险评估设计便能在以后使用中减少不必要的雷电带来的损失,例如学校的选址经过评估和测算后有的即使是不安装防雷装置,因为它没有任何防雷设计上的失误所以也不会出现学生被雷电击死的可能,更不会出现学校选建在山顶高树下的失误,这在将来都是存在巨大安全隐患的。一些工程建设项目在经过了评估、然后科学论证,可以把原有划定的三类防雷调整为二类防雷或者二类防雷调整为三类防雷,这样会大大节省资金的投入,减小工程成本,以求建在最合适的位置,采取最节省且最有效的防雷类别系统。

(二)雷击风险评估能减小灾难发生的损失。利用雷击风险评估可以准确的获得目标所在地雷电电流强大小和雷电发生规,可以对雷电散流分布特征、主导方向进行预测,为灾难的发生做好应急工作提供技术支持。这一评估不单单仅限于建筑群上的防雷电,还包括了对工业控制系统、电视系统、信息安防系统、通讯电力和火灾报警系统的保护。经评估可以把这些与生产生活紧密关联的系统的建设提出科学建议并提供SPD浪涌保护器的合适型号和规格,不仅可以弥补现行设计的缺失也且避免了资金投入大却设防不到位的后果。

四、开展雷击风险评估的重要性

城市化步伐的不断推进,城市安全工作愈来愈凸显了,为了保障城市健康发展的,人民能够在其中安全放心生活,不怕自然灾害特别是雷电威胁,做好雷电风险评估是非常重要的,对于生活中存在的雷电威胁我们应切实做好此项工作。

小结:由以上可知做好雷击风险评估工作是关系到社会公共安全的大事,它涵盖的内容广,涉及的范围大面广,肩负的责任重,因此把开展雷击风险评估工作放在生产生活中的重要位置是很有必要的。气象等防灾减灾部门要严格按照国家的《防雷装置设计审核和竣工验收规定》落实本职工作,另外按照《防雷减灾管理办法》科学判定组织雷电减灾,但并不是所有的技术和系统都是完美无缺的,即使是精确的雷击风险评估系统如果不经过精确的测算,那建立的模型就会存在误差,误差越大往往会给防雷作业带来越大的困难,评估只是一种防御手段,如果完全依赖于它也是不明智的,所以在实际的工作中我们还是要遵循全面护防和综合治理的原则,明确开展雷击风险评估工作是非常科学使用且重要的,各级政府部门也要给予配合和帮助,使防雷电工作扎实稳健的推进。

参考文献

自然灾害综合风险评估范文第13篇

关键词:暴雨洪涝;ArcGIS;江苏省;风险评估;样条插值法;

中图分类号: TU996 文献标识码: A 文章编号:1009-3044(2014)22-5380-05

1 概述

暴雨评估标准是指空中降落到地面的水量每日达到和超过50mm的降雨量。2003年 6月12日入梅后,江苏境内主要发生4次降雨过程,12个暴雨日,且降雨强度大、范围广。全省累计平面降雨量为403毫米,均超过历史最高水位,造成了不可估量是损失,故广大学者认为进行暴雨洪涝评估刻不容缓,具有重要意义[1-2]。

目前研究风险评估的方法很多,近些年研究方法有:何[3]基于 GIS 的新疆降水空间插值方法析。袁湘玲[4]利用层次分析法对黑龙江省的雷电灾害进行了风险区划,形成了黑龙江省雷电灾害区划,其区划的最小单元是市。其中大多数致灾因子都是基于几十年的降雨量对或者降雨频次对区域进行风险评估,但是由于时间跨度太长,影响的因素以及可变因素太多,再加上利用克里金插值法[5-6]进行处理造成一定的误差。

所以本文利用1957-2007年期间的日降雨量,选取2003年6月12日至2003年7月21日一次特大洪涝作为研究内容。在致灾因子数据处理方面借助ArcGIS9.3中的样条函数插值中的张力样条空间插值法,将总降雨量、日均降雨量、每日最大降雨量的点量数据插值转化为栅格数据再结合灾害评估方法、层次分析法、ArcGIS空间处理方法、加权综合评价法,以县为单位,公里为栅格进行评估。基于该方法进行研究有助于江苏省开展防灾减灾的工作,从而降低由洪涝带来的损失。

2 数据研究方法

2.1 层次分析法

层次分析法是将与决策总是有关的 元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。层次分析法比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。其用法是构造判断矩阵,求出其最大特征值。及其所对应的特征向量W,归一化后,即为某一层次指标对于上一层次某相关指标的相对重要性权值。对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标(CI)、随机一致性指标(RI)和一致性比率(CR)做一致性检验。若CR

2.2 数据规范化方法

2.3 加权综合评价法

3 暴雨洪涝风险评估

3.1 暴雨洪涝风险评估模型建立

3.2 致灾因子危险性评估

3.3 承灾因子易损性评估

3.4 孕灾因子敏感性评估

江苏地处江淮平原,地形以平原为主,江苏省的平原面积7万平方公里,占全省面积的70%以上,主要有苏南平原、苏中江淮平原、苏北黄淮平原组成。江苏地形地势低平,河湖较多,平原、水面所占比例较大,成为江苏一大地理特点。该文选取两个考虑因子作为敏感性评估,一个是坡度图(C7) ,另一个是河流分布图(C8) 。步骤1.在ArcGIS9.3的环境中提取坡度并按自然等级重分类。河流按缓冲的距离来形成缓冲区,离河流越近的地方危险系数越高给予赋值。其中坡度分级1°-7°每隔0.6分别赋予1到10,河网缓冲1km、2km、3km、4km、5km,分别赋予1到5。步骤2.利用层次分析法得到C7、C8的权重分别为0.667、0.333。步骤3.利用加权综合评价法得到孕灾因子敏感性评估图。从图3可以看出孕灾因子敏感性等级比较高的地区是江苏的北部,因为首先整个江苏地势平坦,东北部靠海而且河网十分密集尤其是盐城、连云港一带,其次是宿迁、徐州一带。敏感性等级比较低的是江苏的南部,因为南部河网的分布不是特别密集,敏感性等级由北至南逐次减少。

3.5 抗灾因子安全性评估

抗灾因子安全性评估主要选取以下的指标:财政收入(C9) 、园林绿化面积(C10) 、市政投资(C11) 这三者。三者的综合情况反映了一个地区的面对灾害的抗灾能力,以及当地政府面对灾害抗灾救灾的灵活程度。

步骤1.利用最大最小规范法去除上述三个变量的纲量。步骤2.利用层次分析法确定C9、C10、C11三者的权重分别为:0.2385、0.1365、0.6250。步骤3.最后利用加权综合评价法并利用ArcGIS中的自然间断分级得到江苏省地区的抗灾因子安全性评估图。从图4可看出,等级分1到5级,级数越高代表越安全,江苏省的抗灾能力比较强的地区集中在苏南,主要是因为苏南经济比较发达尤其是苏州、无锡、常州、南京,而且政府在抗灾方面的措施做的比较完善,苏中地区扬州、泰州、南通经济实力稍微弱于苏南地区

故此抗灾能力稍微减弱,由上图可看出抗灾能力由南至北逐渐减弱。

3.6 暴雨洪涝灾害风险评估

暴雨洪涝灾害风险评估是基于致灾因子危险性、承灾因子易损性、孕灾因子敏感性、以及抗灾因子安全性四者的一个综合评估,主要利用下述公式:

[FDRI =(WH*VH)( WE*VE) (WS*VS)[WR*(10-VR)] (11)]式中FDRI代表综合评估值,WH 、WE 、WS 、WR 分别代表上述四者的权重由表2可知,分别为0.4092、0.1451、0.3345、0.1112,VH、VE、VS、VR代表其规范化后加权叠加的值,权重见表1。由此可得最终的暴雨洪涝灾害最后的风险评估图。由图5可知,最后将暴雨洪涝风险灾害评估图进行划分,受灾情况严重的地区是南京与苏北一带,尤其是宿迁、淮安、扬州、泰州、南京、连云港、盐城、镇江等地为重,其主要原因是因为这些地区地处洪泽湖及淮河下游地区以及长江下游地区,发生暴雨洪涝风险比较高。将上述情况与本次洪涝灾害相比对,发现情况较为吻合,表明此方法能够较为准确的反应出整个江苏省的暴雨洪涝风险评估状态。

4 结论与讨论

本文通过致灾因子危险性、孕灾环境敏感性、承灾体易损性及抗灾因子安全性4个评价因子,对江苏省暴雨洪涝灾害的风险进行评估与区划做了初步规划。根据分析结果可以得出以下结论:

1) 江苏省暴雨洪涝风险区域差别较大,这主要是由于省内的地形地状、气候河流、财力物力、人口密度以及农业耕地面积比重等特点决定的。2) 从致灾因子来看,暴雨强度最大的地区在宿迁市、盐城市、淮安市、扬州市、南京市这些下河地区和沿江大部分地区以及滁河、秦淮河附近的地区,东南地区相对减缓。3) 从承灾因子来看,其中易损区主要集中在江苏南部,尤其是苏州、南京、常州、无锡、镇江一带,越往北易损性越低。4) 从孕灾因子来看,风险较高的主要集中在盐城、连云港一带,其次是宿迁、徐州一带。5) 从抗灾因子来看,抗灾能力较低的地区主要是在苏北地区,徐州、宿迁、连云港、盐城一带。将上述4个评价因子按公式(11) 能到到最终的风险评估图。

参考文献:

[1] Shi P J,Juan D U,Meng-xin J I,et al.Urban Risk Assessment Research of Major Natural Disasters in China[J].Advances in Earth Science,2006,21(2):170-176.

[2] Zhang Hui,Zhang Jiquan,Han Junshan.GIS- based assessm ent and zoning of flood /waterlogging disaster risk:a case study on middle and lower reaches of Liaohe River[J].Journal of Natural Disasters,2006,14(6):141-146.

[3] He Yan,Fu Deping,Zhao Zhimin, et al.Analysis of spatial interpolation methods to precipitation based on GIS in Xinjiang[J].Research of Soil and Water Conservai-on.2008,15(6):35-37.

[4] Yuan Xiangling,Ji Hua,Cheng Lin.Risk zoning of regional lightning disaster in Heilongjiang Province based on analytic hierarchy process (AHP) model[J]. Torrential Rain and Disasters.2010,29(3):279-283.

自然灾害综合风险评估范文第14篇

关键字:地质灾害;防治措施;预测评估

Abstract: Objective To evaluate the construction site within the scope of the land suitability evaluation, prediction and prevention of geological disasters, ensuring the smooth construction of the projects, and the project examination and approval of construction land and the prevention of geological disasters and provide scientific basis for. The project evaluation work tasks and requirements are: the geological environment characteristics that construction area; risk analysis of geological disasters in various demonstration project area, situation assessment, forecast evaluation and comprehensive evaluation; puts forward the measures and suggestions for prevention and control of geological disasters, and to make the construction site suitability evaluation conclusion.

Key words: geological disasters; prevention measures; evaluation

中图分类号:F407.1文献标识码:A文章编号:

一、工程概况

拟建的常山县城区生猪定点屠宰场位于常山县南侧,场地北靠G320国道(见交通位置图)。用于常山县城区生猪定点屠宰场建设,拟建物主要包括单层屠宰车间及2层职工宿舍及管理用房等相关配套设施,采用钢筋混凝土框架结构,无地下工程,场地已基本平整至最终102.0~106.0m标高左右。

二、工程地质条件

本场地尚未进行岩土工程勘察,场地已经开挖形成若干段边坡,坡面出露的岩体分布结构明显。结合沟谷地段调查结果,按岩土的成因时代、岩性特征,评估区内地层可划分4个工程地质层,5个亚层。

①素填土:分布于场地内回填地段,呈黄褐色,松散~稍密,稍湿,厚度变化较大,约0.1~3.0m,局部地段可达6.0m,工程力学性质较差;

②含碎石粉质粘土:分布于山体沟谷地段表部,黄褐色,主要由碎石及粉质粘土组成,碎石含量一般20~30%,中密~密实状。层厚2.0~5.0m,工程地质性质一般。

③含角砾粉质粘土:分布于山体表部,黄褐色,主要由角砾及粉质粘土组成,角砾含量一般10~20%,中密状。层厚0.5~3.0m,工程地质性质一般。

④-1全风化粉砂质泥岩,灰黄色,可塑。岩石风化强烈,呈粘土状,结构尚可见,局部夹强风化碎块。层厚0.5~2.0m,工程地质性质一般。

④-2强风化粉砂质泥岩,灰黄或紫红色。岩石风化较强烈,呈碎块状,结构仍可见,节理、裂隙发育,局部填充粘性土。层厚1.0~5.0m,工程地质性质较好。

④-3中风化粉砂质泥岩,紫红色粉砂岩、泥质粉砂岩与含砾粗砂岩互层。中~微风化,砂质结构,块状~层状构造。岩石坚硬,致密,节理、裂隙不发育,厚度较大,工程力学性质较好。

三、地质灾害危险性现状评估

根据《技术要求》,地质灾害危险性划分为大、中、小三级(表3-1):

地质灾害危险性分级表 表3-1

1、山体自然斜坡稳定性

评估区东西南三侧为剥蚀丘陵区,山体呈浑圆状,大致呈北西南东走向,高程一般101.0~183.0m,山体自然地形坡度一般15~25°,地层岩性为奥陶系上统长坞组(O3c)泥质粉砂岩,岩石完整性较好。上覆残坡积层厚度一般为0.5~3.0m,植被发育,以灌、乔木为主,自然斜坡稳定性良好(照片3-1),未发现崩塌、滑坡及泥石流等地质灾害地表无地面塌陷、地裂缝及地面沉降等地质灾害。自然斜坡稳定性好,地质灾害危险性小。

照片3-1评估区自然斜坡现状

2、现状边坡稳定性

评估区内现状边坡主要为场地挖方边坡,边坡分布于场地东西南三侧(照片3-1、3-2、3-3),整体边坡长约1226m,坡高一般3~14.0m,最大高度约17.0m,坡度一般为50~65°,坡体岩性为残坡积层及全~中风化泥质粉砂岩,残破积层厚度一般0.3~3.0m;全风化粉砂质泥岩一般层厚0.5~2.0m;强风化粉砂质泥岩厚度一般1.0~5.0m;下部为中风化至坡脚,岩层产状:125-140°∠70-80°,岩体较破碎,节理裂隙较发育,主要发育两组,分别为节理①:产状280°∠75°,延伸约2~3米,密度1~2条/米,面平直,表部微张;节理②产状40°∠65°,延伸约1~2米,密度5~8条/米,面平直,表部微张。坡面,未进行支护措施,调查时未发现边坡有崩塌、滑坡等灾害,也未发现有发生崩塌、滑坡等灾害的迹象,坡顶未见裂缝,坡面未见渗水等情况;但据现场场地开挖施工人员介绍,边坡在开挖过程中经常出现坡顶土层小规模的坍塌及坡面强、中风化岩体掉块现象,坍塌方量一般在0.1~0.5方左右,目前边坡坡面局部地段存在少量浮石,因此,现状边坡存在崩塌、掉块隐患,边坡现状稳定性一般,现状地质灾害危险性中等。

照片3-1 场地东侧边坡(镜头朝北)

照片3-2 场地西侧边坡(镜头朝北)

照片3-3 场地南侧边坡(镜头朝南)

3、已建工程稳定性现状

评估区及周边人类工程活动主要为工业、民用建筑、道路修建等。工民用建筑一般采用天然浅基础,现场调查,未发现房屋墙体开裂、基础变形等工程地质问题。

道路为硬化道路,路面宽多为8~15m,沥青或水泥路面(照片3-6),采用浅基础形式,调查访问中,自公路运营以来未发现因地基变形导致的路面开裂等工程地质灾害,道路现状稳定性良好,地质灾害危险性小。

照片3-6评估区周边道路、房屋现状

综上所述,评估区现状边坡存在崩塌、掉块隐患,边坡现状稳定性一般,现状地质灾害危险性中等;评估区其他地段及山体自然斜坡、现状工程等稳定性较好,现状地质灾害危险性小。

四、地质灾害危险性预测评估

地质灾害危险性预测评估范围包括拟建工程范围和周边可能引发、危及工程建设安全的区段。本工程场地已基本平整,形成了一定范围的挖方区段(边坡)。现结合工程所处地形地貌、岩性结构构造、人为活动与降水等环境因素,对工程建设可能引发或加剧的地质灾害的可能性预测评估如下:

1、、地基稳定性预测

据项目规划设计思路及本地类似项目(填方区荷载较小)常用的基础方案,位于挖方地段建筑物拟采用天然浅基础形式,以强~中风化基岩作持力层;位于填土较厚地段拟建物采用对填土地基进行地基加固处理。挖方地段天然浅基础,基础持力层主要为强~中风化泥质粉砂岩,力学性质较好,地基稳定性良好;填方地段填土地基加固,由于填土地段材料主要为山体开挖的残坡积土层及风化岩石,填土材料较好,地基加固较为简单,当地类似工程较多,地基加固工艺成熟,效果较好,且上部拟建物荷载较小,类比场地北侧已建的民宅及厂房等类似工程,未见基础沉降变形而引起的墙体开裂、变形等不良工程现象。故预测评估认为,工程建设引发地基基础不均匀沉降或过量沉降的可能性小,危险性小。

2、、基槽开挖稳定性分析

若拟建物基础采用天然浅基础或填土地段进行地基处理后做浅基础,都涉及到基槽开挖的问题。由项目规划情况可知,拟建物主要为单层屠宰车间及2层职工宿舍及办公综合楼等,荷载较小。挖方区基槽开挖深度预计一般为0.5m左右,基槽开挖深度小,组成坑壁的岩土层主要为强~中风化泥质粉砂岩,力学性质好,自稳能力好,且由于开挖深度小,易于处理;因此挖方区基槽开挖引发坑壁失稳的可能性小,地质灾害危险性小;填方区若采用地基处理后作浅基础持力层,预计开挖深度为1.0~1.5m左右,由于填土已进行处理,力学性质有所提高,开挖深度不大,且场地开阔,存在放坡条件,因此填方区基槽开挖引发坑壁失稳的可能性小,地质灾害危险性小;总之,基槽开挖引发坑壁失稳的可能性小,地质灾害危险性小。

五、地质灾害危险性综合分区评估及防治措施

1、地质灾害危险性综合分区评估

现状评估结果表明:评估区现状边坡存在崩塌、掉块隐患,边坡现状稳定性一般,现状地质灾害危险性中等;评估区其他地段及山体自然斜坡、现状工程等稳定性较好,现状地质灾害危险性小。

预测评估结果表明:工程建设引发基础过量沉降、不均匀沉降的地质灾害危险性小;工程建设引发基槽坑壁失稳的可能性小,地质灾害危险性小;场地遭受现有边坡崩塌、滑坡灾害的可能性中等,危险性中等。

综合预测评估:评估区现状边坡存在崩塌、掉块隐患,边坡现状稳定性一般,现状地质灾害危险性中等;评估区其他地段及山体自然斜坡、现状工程等稳定性较好,现状地质灾害危险性小。工程建设引发基础过量沉降、不均匀沉降的地质灾害危险性小;工程建设引发基槽坑壁失稳的可能性小,地质灾害危险性小;场地遭受现有边坡崩塌、滑坡灾害的可能性中等,危险性中等。

2、防治措施

1、对已经形成的人工开挖边坡应进行专项边坡设计,作好坡面的支护和截排水工作,确保边坡稳定。

2、若对填土地段进行地基加固,加固后应检测其加固效果,确保加固后地基土能满足荷载及沉降等要求。

3、场地回填后,山体沟谷排泄受阻,应做好场地内排水措施,确保山体流入场地内的水流能及时排泄。

4、对跨越不同地层的拟建物,应选择同一地层作为基础持力层,避免拟建物因不均匀沉降造成墙体开裂等工程问题。

六、建议

1、加强对工程建设场区地质环境保护,工程建设项目合理布局,尽量减少对地质环境的影响;

自然灾害综合风险评估范文第15篇

引言

辽宁省抚顺市土地上市规划-8#高山路南局部地块建设项目位于抚顺市顺城区,该项目规划总用地面积33077.主要拟建20层以上住宅楼属于高层建筑(楼层≥20层)。评估工作将用地面积适当外扩,确定调查面积146213.评估工作期间收集了以往有关地质、环境地质等资料,进行了现场地质灾害调查,工程地质钻探(41.8m)/3孔,物探勘察(电法剖2条280m)等工作。

1. 地质环境条件

1.1气象水文

评估区地处北温带大陆性季风气候,四季温差大。根据抚顺市气象台近期统计资料,市内年平均气温7.1℃,年平均降水量为755.7mm,丰水期与和枯水期相差约2倍以上。年内降水主要集中在6-9月份,年平均蒸水量1023.85mm。抚顺地区标准冻土深度1.20mm。评估区位于抚顺地区主干河流-浑河2.0km。主要水系为浑河,浑河属于辽河水系,自东向西流经抚顺市区。浑河防洪堤坝,浑河水系对评估区无影响。

1.2地形地貌

评估区内地处低缓丘陵,地貌类型单一,地形条件中等。标高在110.40-128.5m,相对高差18.1m左右。区内地层岩性简单,基底由太古界混合花岗岩层组成,地表均由杂填土层所覆盖。

1.3构造及地震

评估区地处于中朝准地合胶辽台隆铁岭-靖宇台拱西部,抚顺凸起北部,地质构造复杂程度简单,岩石沉积较为稳定,第四系覆盖层下未发现有断裂构造存在。据国家地震局2001年出版的第四代《中国地震动峰值加速、地震动反应谱特征周期区划图》及《辽宁省地震震中及地震烈度区划图》,本区地震活动强度小,为频率低的弱震区。区内位于峰值加速度为0.10g分区范围内和反应谱特征周期为0.35s区域,基本烈度Ⅶ。

1.4岩土工程地质特征

评估区内岩土体为土体与岩体两类:1.土体主要由杂填土组成,杂填土:杂色由粘性土及碎石块等组成,散体结构。底层埋深0.2-0.8M.均匀性差,土体的工程性质较差,未经有效处理不宜利用。岩体主要由太古混合花岗岩层组成,根据花岗岩风化程度分为全风化、强风化、中等风化。综上,评估区地层承载力≥200kpa,工程地质条件中等。

1.5人为工程活动的影响

评估区及周边地区经实地调查,主要人类工程活动为挖掘和耕种及废弃建筑工程。对评估区及周边100m范围内的建筑及道路详细调查结果:除局部有人工剥蚀形成的小削坡外,主要为挖掘和废弃建筑人程。

2. 地质灾害危险性现状

根据国土资源部《地质灾害危险性评估技术要求(试行)》,地质灾害危险性现状评估是根据评估区地质灾害类型、规模、分布、稳定状态、色害对象进行危险性评价;对稳定性或危险性起决定作用的因素作较深入的分析,判定其性质、变化、危害对象和损失情况。

评估区位于抚顺市顺城区内,建设场地据浑河经2.0km,浑河防洪大堤为一级堤坝;评估区距矿区允许开采边界4.0km左右,不受采煤影响。评估区位于浑河以北,地处于低缓丘陵,工程地质条件中等,地质构造简单,评估区内无地面及地下采矿活动;人类工程活动一般,不具备发生泥石流、滑坡地质灾害的地形地貌条件,也不具备发生地裂缝、地面塌陷与地面沉降等地质灾害的地层岩性、构造条件与人为引发因素。

因此现状条件下评估区不具备地面塌陷、地裂和泥石流、崩塌等地质灾害的发生条件其危险性小。

3. 地质灾害危险性综合评价及防治措施建议

地质灾害危险性综合评估,是指在进行地质灾害危险性现状评估、预测评估的基础上,对评估范围进行地质灾害危险性分级、分区。根据场内地质灾害危险性分级、分区,对建设场地适宜性做出评估,并针对不同地质灾害提出防治的措施和建议。防止建设工程施工及运行期间,引发或加剧、遭受地质灾害,达到预防和治理地质灾害。减免地质灾害对工程造成的损失,维护人民生活和财产的安全。

1.1综合评估原则

综合评估是在现状评估和预测评估的结果基础上,依据国土资源部国土资发[2004]69号文件附件《地质灾害危险性评估技术要求》,对评估区地质灾害危险性进行分区和分级,并对工程建设适宜性进行评估,提出防治地质灾害的措施和建议。

1.2地质灾害危险性分区

评估区现状条件下地面塌陷、地裂缝、地面沉降等地质灾害地质灾害不发育,其危险性小的。

工程建设可能引发和遭受崩(滑)塌的可能性小,其危害性小,危险性为小。

根据现状评估及预测评估结果,综合确定评估区为地质灾害危险性小区。

1.3地质灾害危险性分级

依据地质灾害危险性现状评估和预测评估结论,结合评估区的地质环境条件,对评估区进行地质灾害危险性分级。依据国土资源部颁发的地质灾害危险性分级表,进行划分。详见地质灾害危险性分级表(表1)

表1 地质灾害危险性分级表

稳定性要素

危险性分级 稳定性 危害对象 损失情况

危险性大 差 城镇及主体建筑物 大

危险性中等 中等 有居民及主体建筑物 中

危险性小 好 无居民及主体建筑物 小

评估区地质灾害危险性分级

(1) 评估区现状条件下地质灾害不发育,其危险性为小的级别。

(2) 工程建设引发和遭受崩(滑)塌地质灾害的可能,其危险性为小的级别。

综上,根据现状评估、预测评估和综合评估结果,将预测评估区综合划分为地质灾害危险性不的等级。

2.1建设项目适宜性评估

根据现状评估、预测评估和综合评估结果,确定评估区为地质灾害危险性小区。因此,综合将评估区工程建设引发和遭受的地质灾害危险性划分为小的级别。依据国土资源部国土资发[2004]69号文《国土资源部关于加强地质灾害危险性评估工作的通知》中《建设用地适宜性分级表》(表2),地质灾害危险小的,建设工程适宜性评估结论为:适宜工程建设

表2 建设用地适宜性分级表

级 别 分 级 说 明

适 宜 地质环境程度简单,工程建设遭受地质灾害的可能性小,引发或加剧地质灾害的可能性小,危险性小,易于处理

基本适宜 不良地质现象较发育,地质构造、地层岩性变化较大,工程建设遭受地质灾害的可能性中等,引发或加剧地质灾害的可能性中等,但可采取措施予以处理。

适宜性差 地质灾害发育强烈,地质构造复杂,软弱结构发育,工程建设遭受地质灾害的可能性大,引发或加剧地质灾害的可能性大,危险性大,防治难度大。

2.2地质灾害防治措施的建议

针对崩(滑)塌防治对策及措施:

(1) 对于评估区西侧削坡较大的边坡,应尽量放缓坡度以达到安全边坡角60°或采用多台阶开挖方式;

(2) 对于稳定性较差且无法放坡的边坡应采取支护措施;雨季时定期对然险地段进行观测、检查;

(3) 靠近边坡处修建挡土墙,避免崩、滑塌落的岩土体对建筑物及人员造成损失。