美章网 精品范文 数字信号处理论文范文

数字信号处理论文范文

数字信号处理论文

数字信号处理论文范文第1篇

关键词:二维信号处理

一、随着集成电路的运算速度更快,集成度更高,就有可能耐复杂目益增加均一些多维数字信号处理。

所它在最近才开始出现的一个新领域。尽管如此,多维信号处埋仍然对以下一些间提了解决的办法,这些问题是:计算机辅动断层成术(CAT),即综合来自不同方向的X射线的投影,以重建人体某一部分的三维图,源声纳阵列的设计及通过人造卫星地球资源。多维数字信号处理除具有许多引人注目和浅显易行的应用之外,它还具有坚卖的数学基础,这不仅使我们能了解它的实现情况,而且当新问题出现时,也当及时解决。

典型的信号处理任务就是把信息从一种信号传递到另一种信号上,例如,可将一张照片加以扫描、抽样,并将共存储在计算机的存储器中,在这种情况下,信息是从可变的银粒密度转换戌可见光束,再变成电的波形,最后变戍数字的序列,随后该数字序列用。磁盘上磁畴的排列来表示CAT扫描器是一个比较复杂,经过处理,最后显赤射线管(CRT)的荧光屏上或胶片上。数字处理能增加信息,但可以重新排列信息,使观察者能更方便地理解它.观察者不必观看多个不同测面的投影而可直接观察截面图。

人们感兴趣的是信号所包含的信息,而不管信号本身是什么形式。也许可以概括地说,信号处理涉及两个基本任务一一信息的重新排列和信息的压缩。

二、数字信号处理涉及到用数的序列表示的信号的处理,而多维数字信号处理则涉罚用多维阵列表示的信号的处理,例如对同时从几个传感器所接收的抽样图像和抽样的时间波形的处理。由于信号是因而它可以用数字硬件处理,同时可以将信号处理的运算规定为算法。

促使人们采用数字方法的是不言而喻的。数字方法既有效灵活。我们可以用数字系统使其有自适应性并易于重新组合。可以很方便地把数字算法由一个厂商的设备上转换到另一个厂商的设备上去,或者把专用数字硬件来实现。同样,数字算法也可用来处理作为时间函数或空间信号,数字算法自然地和逻辑算符如模式分类相联系。数字信号能够长时间无差错地存储。对很多种应用而言,数字方法Ⅸ其它方法更为简单,对另外一些应用,则可能根本不存在其他方法。多维信号处理是不同于一维信号处理,想在多维序列上实现的多运算,例如抽样、滤波和交换等,用于一维序列,然而,严格芯说,我们不得不说多终信号处理与一维信弓有很大差别的。

信号处理与一维信号处理还是有很大差别的,这是由三个因素造成的;(l)二维通常比一维问题包含的数据量大得多;(2)处理多维系统在数些上不如处理一维系统那样完备;(3)多维信号处理有更多的自由度,这给系统设计音以一维情况中无法比拟的灵活性。虽然所有递归数字滤波器都是用差分方程实现的,一维情况下差分方程是全有序的,而在多维情况下差分方程仅是部分有序的,冈而就存在着灵活性,在一维情况小,离散传里旰变换CDET)可以用快速傅里叶变换CEPT)算法来计算,而在多维情况下,有多且每一个OFT又可用多种AFT算法来计算。在一维情况下,我们可以调整速率。而且也可以调整抽排列。从另一方面来说,多维多项式不能进行因式分解,而一维多项式是可以进行因式分解的。因而在多维情况下,我们不能论及孤立的极,气、孤立的零点及孤立的根。所以,多维信号处理与一维信号处理有相当大的差别。在20世纪60年代初期,用数字系统来模仿模拟系统的想法,使得一维数字信号处毫的各种方法得到了发展。这样,仿照模拟系统理论,创立了许多离散系统理论。随后,当数字系统可以很好地模仿模拟系统时,人们认识到数字系统同时也可以完成更多的功能。由丁这种认识及数字硬件工艺的有力推动,数字信号处理得到了发展,而且现今很多通用的方法,已成为数字方法所特有的,没有与其等效的模拟方法,在发展多维数字信号处理时,可观察到同一发展趋向。因为没有连续时间的(或模拟的)二维系统理论可以仿效,因而最初的二维系统是以一维系统为基础的,80年代后期,多数二维信号处理都是用可分的二维系统。可分的二维系统与用于二维数据的一维系统几乎没有差别。随后,发展了独特的多维算法,该算法相当于一维算法的逻辑推理。这是一段失败的时期,由干许多二维应用要求数据量很大,且IT缺少二维多项式太分解理论,很多一维方法不能很好地推广到二维上来。我们现在正处于认识的萌芽时代。计算机工业以其部件的小型化和价格日趋低廉而有助于我们解决数据量问题。尽管我们总是受限于数学问题,但仍然认识到,多维系统也给了我们新的自由度。以上这些,使得该领域既富于挑战性又无穷乐趣,电子信息技术的结合之软件结台,传统产业中可用电产信息技术的地方,仍然可以在生产或很低的条件下使用人力或传统机械。电予信息技术应到限制,在不同领域和不同水平有各种原因,但烂有一个共大原因是缺乏认识。没有认识,便没有应层。

事实上,在一维和二维信号处理理论之间有实质性的差别,而在二维和更高维之间,除了计算上的复杂世方耐差异之外,似乎差别较小。

参考文献:

[1]吴云韬,廖桂生,田孝华.一种波达方向、频率联合估计快速算法[J]电波科学学报,2003,(04).

[2]吕铁军,王河,肖先赐.利用改进遗传算法的DOA估计[J]电波科学学报,2000,(04)

[3]刘全,雍玲,魏急波.二维虚拟ESPRIT算法的改进[J]国防科技大学学报,2002,(03).

[4]吕泽均,肖先赐.一种冲击噪声环境中的二维DOA估计新方法[J]电子与信息学报,2004,(03).

[5]金梁,殷勤业,李盈.时频子空间拟合波达方向估计[J]电子学报,2001,(01).

[6]金梁,殷勤业.时空DOA矩阵方法的分析与推广[J]电子学报,2001,(03).

数字信号处理论文范文第2篇

摘要:数字信号处理(DSP)系统由于受运算速度的限制,其实时性在相当的时间内远不如模拟信号处理系统。从80年代至今的十多年中,DSP芯片在运算速度、运算精度、制造工艺、芯片成本、体积、工作电压、重量和功耗方面取得了划时代的发展,开发工具和手段不断完善。DSP芯片有着非常快的运算速度,使许多基于DSP芯片的实时数字信号处理系统得以实现。目前,DSP芯片已应用在通信、自动控制、航天航空及医疗领域,取得了相当的成果。在载人航天领域,基于DSP芯片的技术具有广阔的应用前景。

TheDevelopmentandApplicationsofDigitalSignalProcessing(DSP)-chip

Abstract:Duetothelimitationofoperationspeed,realtimeperformanceofdigitalsignalprocessing(DSP)systemisfarfromthatofanalogsignalprocessingsystemindecadesago.Sinceearly80’s,DSPchipshavebeengreatlyimprovedinthefollowingaspects:operationspeed,computationprecision,fabricationtechnics,cost,chipvolume,operationalpowersupplyvoltage,weightandpowerconsumption.Furthermore,developmenttoolsandmethodshavebeendevelopedgreatly.ModernDSPchipscanbeoperatedveryfast,whichmaketheimplementationofmanyDSPbasedsignalprocessingsystempossible.NowDSPchipshavebeenwidelyappliedsuccessfullyincommunication,automaticcontrol,aerospaceandmedicine.DSPbasedtechnologyhasverypromisingfutureinmannedspaceflightarea.

Keywords:digitalsignalprocessing(DSP);chip;development;application

数字信号处理作为信号和信息处理的一个分支学科,已渗透到科学研究、技术开发、工业生产、国防和国民经济的各个领域,取得了丰硕的成果。对信号在时域及变换域的特性进行分析、处理,能使我们对信号的特性和本质有更清楚的认识和理解,得到我们需要的信号形式,提高信息的利用程度,进而在更广和更深层次上获取信息。数字信号处理系统的优越性表现为:1.灵活性好:当处理方法和参数发生变化时,处理系统只需通过改变软件设计以适应相应的变化。2.精度高:信号处理系统可以通过A/D变换的位数、处理器的字长和适当的算法满足精度要求。3.可靠性好:处理系统受环境温度、湿度,噪声及电磁场的干扰所造成的影响较小。4.可大规模集成:随着半导体集成电路技术的发展,数字电路的集成度可以作得很高,具有体积小、功耗小、产品一致性好等优点。

然而,数字信号处理系统由于受到运算速度的限制,其实时性在相当长的时间内远不如模拟信号处理系统,使得数字信号处理系统的应用受到了极大的限制和制约。自70年代末80年代初DSP(数字信号处理)芯片诞生以来,这种情况得到了极大的改善。DSP芯片,也称数字信号处理器,是一种特别适合进行数字信号处理运算的微处理器。DSP芯片的出现和发展,促进数字信号处理技术的提高,许多新系统、新算法应运而生,其应用领域不断拓展。目前,DSP芯片已广泛应用于通信、自动控制、航天航空、军事、医疗等领域。

DSP芯片的发展

70年代末80年代初,AMI公司的S2811芯片,Intel公司的2902芯片的诞生标志着DSP芯片的开端。随着半导体集成电路的飞速发展,高速实时数字信号处理技术的要求和数字信号处理应用领域的不断延伸,在80年代初至今的十几年中,DSP芯片取得了划时代的发展。从运算速度看,MAC(乘法并累加)时间已从80年代的400ns降低到40ns以下,数据处理能力提高了几十倍。MIPS(每秒执行百万条指令)从80年代初的5MIPS增加到现在的40MIPS以上。DSP芯片内部关键部件乘法器从80年代初的占模片区的40%左右下降到小于5%,片内RAM增加了一个数量级以上。从制造工艺看,80年代初采用4μm的NMOS工艺而现在则采用亚微米CMOS工艺,DSP芯片的引脚数目从80年代初最多64个增加到现在的200个以上,引脚数量的增多使得芯片应用的灵活性增加,使外部存储器的扩展和各个处理器间的通信更为方便。和早期的DSP芯片相比,现在的DSP芯片有浮点和定点两种数据格式,浮点DSP芯片能进行浮点运算,使运算精度极大提高。DSP芯片的成本、体积、工作电压、重量和功耗较早期的DSP芯片有了很大程度的下降。在DSP开发系统方面,软件和硬件开发工具不断完善。目前某些芯片具有相应的集成开发环境,它支持断点的设置和程序存储器、数据存储器和DMA的访问及程序的单部运行和跟踪等,并可以采用高级语言编程,有些厂家和一些软件开发商为DSP应用软件的开发准备了通用的函数库及各种算法子程序和各种接口程序,这使得应用软件开发更为方便,开发时间大大缩短,因而提高了产品开发的效率。

目前各厂商生产的DSP芯片有:TI公司的TMS320系列、AD公司的ADSP系列、AT&T公司的DSPX系列、Motolora公司的MC系列、Zoran公司的ZR系列、Inmos公司的IMSA系列、NEC公司的PD系列等。

通用DSP芯片的特点1.在一个周期内可完成一次乘法和一次累加。

2.采用哈佛结构,程序和数据空间分开,可以同时访问指令和数据。

3.片内有快速RAM,通常可以通过独立的数据总线在两块中同时访问。

4.具有低开销或无开销循环及跳转硬件支持。

5.快速中断处理和硬件I/O支持。

6.具有在单周期内操作的多个硬件地址产生器。

7.可以并行执行多个操作。

8.支持流水线操作,取指、译码和执行等操作可以重叠进行。

DSP芯片的应用

随着DSP芯片性能的不断改善,用DSP芯片构造数字信号处理系统作信号的实时处理已成为当今和未来数字信号处理技术发展的一个热点。随着各个DSP芯片生产厂家研制的投入,DSP芯片的生产技术不断更新,产量增大,成本和售价大幅度下降,这使得DSP芯片应用的范围不断扩大,现在DSP芯片的应用遍及电子学及与其相关的各个领域。

典型应用(1)通用信号处理:卷积,相关,FFT,Hilbert变换,自适应滤波,谱分析,波形生成等。(2)通信:高速调制/解调器,编/译码器,自适应均衡器,仿真,蜂房网移动电话,回声/噪声对消,传真,电话会议,扩频通信,数据加密和压缩等。(3)语音信号处理:语音识别,语音合成,文字变声音,语音矢量编码等。(4)图形图像信号处理:二、三维图形变换及处理,机器人视觉,电子地图,图像增强与识别,图像压缩和传输,动画,桌面出版系统等。(5)自动控制:机器人控制,发动机控制,自动驾驶,声控等。(6)仪器仪表:函数发生,数据采集,航空风洞测试等。(7)消费电子:数字电视,数字声乐合成,玩具与游戏,数字应答机等。

在医学电子学方面的应用如同其它数字图像处理一样,DSP芯片已在医学图像处理,医学图像重构等领域,如CT、核磁成象技术等方面得到了广泛的应用,已取得了令人满意的效果。在助听,电子耳涡等方面也取得了相当的进展(文献[1,2])。国内、外也有关于脑电、心电、心音和肌电信号处理方面基于DSP芯片系统的报道(文献[4~7]),我们对1996年以前国外生物医学工程的部分核心期刊,如IEEETransactionsonBiomedicalEngineering,ComputersandBiomedicalResearch等核心期刊进行检索,有关基于DSP芯片处理系统的报道很少。对国内生物医学工程的核心期刊,如《中国医疗器械杂志》、《中国生物医学工程杂志》、《生物医学工程学杂志》和《中国生物医学工程学报》等刊物进行检索,未见有关基于DSP芯片系统方面的报道。对我所的光盘数据库进行检索,未见有关在航天医学方面应用的报告。

我们认为在生理信号处理领域基于DSP芯片的技术可以解决我们在实际工作中遇到的某些问题,如当生理信号数据量很大(如脑电,肌电等)且处理算法相对复杂时,现有的微机在实时采样、处理、存储和显示方面往往不能满足实际应用要求,而基于DSP芯片的高速处理单元和微机构成主从系统可以较好地解决这类问题。

载人航天领域中信号传输带宽的限制需要对生理数据进行实时压缩;大型实验中对庞大的数据进行实时处理依赖于数字处理系统的构成;载人航天中对数据处理精度,可靠性要求以及功耗、工作电压、体积、重量等方面的限制需要我们在构造处理系统中选择性能优良的芯片。我们认为将DSP技术应用于载人航天领域具有十分重要的意义。

结束语

以DSP芯片为核心构造的数字信号处理系统,可集数据采集、传输、存储和高速实时处理为一体,能充分体现数字信号处理系统的优越性,能很好地满足载人航天领域设备测量精度、可靠性、信道带宽、功耗、工作电压和重量等方面的要求。目前,DSP芯片正在向高性能、高集成化及低成本的方向发展,各种各类通用及专用的新型DSP芯片在不断推出,应用技术和开发手段在不断完善。这样为实时数字信号处理的应用——尤其是在载人航天领域中的应用提供了更为广阔的空间。我们有理由相信,DSP芯片进一步的发展和应用将会对载人航天信号处理领域产生深远的影响。

[参考文献]

[1]李小华,李雪琳,徐俊荣.基于DSP的数字助听器的研究.95年生物电子学[C],医学传感器等联合学术会议文集,北京,1995:438~439

[2]候刚,徐俊荣.用于植入式多道电子耳涡的一种数字实时语音特征分析系统的研究[M].生物医学工程前沿,合肥:中国科技大学出版社,1993:471~476

[3]邱澄宇,何宏彬.用于心电信号数据压缩的数字信号处理器[M].生物医学工程前沿,合肥:中国科技大学出版社,1993:463~466

[4]VijayaKrishnaG,PrasadSS,PatilKM.ANewDSP-BasedMultichannelEMGAcquisitionandAnalysisSystem[J].ComputersAndBiomedicalReserch,1996,29:395~406

数字信号处理论文范文第3篇

为了加强教学过程中学生学习的主动性、激发学习动力、培养正确的学习和思考方式以及加深对学习内容的理解,教学改革加强了对数字信号处理课程中所涉及的相关科技史内容的介绍。虽然教材也并没有这部分内容的介绍,但是通过互联网上的维基百科、百度百科等百科网站,以及国外大学中可供下载的数字信号处理课程课件,授课教师将所授课的课件内容进行了丰富,凡是涉及到有相关科技史的内容,都在教学中加以说明与介绍。具体的教学内容与教学方法改革如下:

1.1科学家成长经历的介绍

科学家之所以可以提出被广泛接受和应用的理论、公式、方法等成果,与他们的成长经历是分不开的。教学改革中添加了对科学家的家庭背景、成长经历、就学学校、对他产生影响的导师这些内容。比如在傅里叶变化的教学中,授课教师介绍了约瑟夫傅里叶因为幼年父母双亡,所以很小便被送入天主教本笃会接受教育,之后考入巴黎高等师范学校,毕业后在军队中教授数学,27岁时他到巴黎高等师范学校教书。这些经历对他后来傅里叶变换的提出起到了关键作用。

1.2科学成果所在年代的历史背景

获得科学成果所在年代的历史背景也是非常重要的内容。所在历史年代的特殊性给了科学家们特定的环境、氛围、机遇等等,使得他们有机会提出新的理论和方法。比如傅里叶所在的年代是18世纪末,当时正是拿破仑东征时期,傅里叶跟随拿破仑军队东征,被任命为下埃及的总督。由于英国舰队对法国人进行了封锁,所以他受命在当地生产军火为远征部队提供军火。这个时期,他向开罗埃及学院递交了几篇有关数学的论文。1816年他回到巴黎,六年后他当选了科学院的秘书,并发表了《热的分析理论》一文,此文是建立在牛顿的热传导理论的速率和温度差成正比的基础上。

1.3中外相同历史时期的对比

将中外历史进行对比,更有助于学生展开联想,容易想象和理解科学家所处时代的环境,从而更好地理解学习内容。仍以傅里叶为例,授课教师介绍了从十七世纪中后期到十九世纪欧洲科技史的发展,在数学课中提到的其他数学家,比如牛顿、拉普拉斯、柯西这些人与傅里叶的前后关系。同时傅里叶所在时期是中国的清朝时期,当时中国的情况、科技的发展又是怎样的。这些对比既增加了学生听课的兴趣,又便于他们理解内容。

2教学反馈与体会

通过对数字信号处理课程引入比以往教学中更多的科技史内容这一探索,授课教师获得了很多正面的反馈,对教学方法改革有了更为深切的体会,积极意义有以下三个方面:

2.1激发了学生的学习兴趣

科技史方面的介绍明显的激发了学生的学习兴趣。关于科学家具体人物的背景介绍更加吸引学生的注意力,大家会更加专注的去聆听授课教师的课程内容,有时会主动提出问题,讨论科学家的经历对他们发表成果的影响。而且课程当中不断回顾这些科技史的内容,会周期性的刺激学生,将暂时失去注意力的学生重新拉回到课堂上来。

2.2培养了学生正确的思考方法

科技史的介绍更加清楚的讲清楚了科学家是如何一步一步推演出最终结论的。传统的教学方式直接给出最终的结果、定理、定律,而新的教学方法更加符合科学发展的自然规律,从最初始的一个新想法,一直讲到最终理论的形成。这一思考方法更有利于学生的思考过程。未来学生在自己学习、从事科研活动中,会应用到这些正确的思考方法,更为容易的取得成果,推动科技进步。

2.3加深了对所学知识的理解

科技史的相关介绍增加了学生的学习热情,让他们有了更为清晰的学习思路,从而获得更好的学习成果。课堂互动、平时测验与期末考试的成绩,都反映出了教学改革之后学生对知识的理解更加深入、透彻,更好的掌握了数字信号处理的许多知识点。学生们也明显对与科学家直接相关的学习内容有更好的记忆力。

3结论

数字信号处理论文范文第4篇

关键词: 《数字信号处理》 教学方法 教学优化

1.引言

随着电子技术及计算机技术的飞速发展,数字信号处理的新理论和新技术层出不穷,目前它已成为应用最快、成效最显著的学科之一。《数字信号处理》已经成为我校通信工程专业的一门专业基础课,它是多门课程相互连接的桥梁和纽带,实现了从理论到实践的相互过渡,对于培养学生理论分析和综合应用能力有非常重要的作用。但是该课程理论性比较强,概念抽象,[1]对数学基础要求也比较高,容易使学生感到乏味,学生对该课程普遍有畏难情绪。因此笔者结合江苏大学通信学院的教学特点,对数字信号处理教学方法作了深层的探讨,在传统教学手段的基础上,开发了多媒体教学辅助系统,充分发挥了现代教学手段的优势;并将Matlab软件用于教学,将抽象的概念感性化,以形象生动的手段来展示理论内涵;采用实验和教学相结合的形象教学,培养学生的学习兴趣,充分调动学生的学习积极性。

2.教材和教学内容的选择

2.1教材选择

目前“数字信号处理”的教材很多,笔者选用了东南大学吴镇扬教授编写的《数字信号处理》第二版。[2]该书对信号处理的基础理论和基本算法进行了充分的论述与讨论,条理清楚,深入浅出,有利于学生更牢固地掌握,是一本很实用的教材。该书还很好地处理了和“信号与线性系统”的关系,在保持课程完整性的同时压缩重复内容。在内容取舍上,结合数字信号处理技术的发展做了精心的安排。

2.2教学内容

“数字信号处理”课程理论性较强,对数学基础要求较高,学生普遍反映抽象、难学。[3]针对这种情况,为在60学时(含实验10学时)内有效完成数字信号处理的知识点的讲授,笔者对内容做了合理安排,讲授沿两条主线进行,精简部分内容,如表1所示。

一条是信号与系统的时、频域分析,包括离散系统的时域分析、z域分析、傅氏变换,FFT及利用FFT进行频谱分析;另一条是数字滤波器的设计与实现,包括IIR数字滤波器的设计、FIR数字滤波器的设计,以及这两类数字滤波器的实现结构和各种滤波器结构的误差分析。对教材中关于DSP应用方面,如芯片介绍这一节的内容,将并入到另一门课“DSP芯片原理及应用”这门课中讲授。

3.教学方法优化

“数字信号处理”是一门数学理论较强的课程,其特点是公式多,概念比较抽象,比较枯燥,难度大。要获得较好的教学效果,我们需要采取一些技巧和方法。

3.1多媒体教学手段和传统教学手段的并用

基于本课程的特点,在教学过程中教师可以采用板书和多媒体教学相结合的讲课方式,以板书为主,多媒体为辅。板书主要是针对一些课程中的基本原理和方法推导证明,这样可以使讲课方式更灵活、师生互动性更强,使学生跟随教师的思路来领会学习的要点和难点,学起来比较容易。而对于一些需要形象理解、图形举例演示的部分,教师可以采用多媒体教学方法,利用图像、视频等多种形式进行互动教学。[4]比如介绍采样定理的时候,在推导采样定理的同时,采用动画的方式,演示一个模拟信号经过采样前后,时域和频域的变换关系,使学生更深刻地理解采样定理,实现对该知识点的融会贯通。

在设计幻灯片格式时我们应注意以下几点:

(1)选择容易看清的字体和字号。PowerPoint默认的中文字体为宋体、英文字体为Times New Roman,为保证坐在教室最后一排(尤其角落处)的学生看清演示,中文选用加粗黑体,英文选用加粗Arial,字号在18 points和28 points之间。

(2)选用深蓝色背景,字体颜色采用对比度较高的颜色。为了便于学生使用,将演示文稿制作成适于打印的.pdf文件。

(3)由于学生同时听讲和看幻灯片,注意力容易分散,会感觉跟不上讲课思路或对于幻灯片内容印象不深。为解决这个问题,既可以利用动画效果逐步展示内容,又可以制作内容精练、布局合理、便于识记的幻灯片。

3.2在教学中应用Matlab软件

Matlab是DSP教学中的标准仿真软件,它能轻松完成系统分析、信号处理中的大量计算和绘图工作,并可生成教学所需的多媒体素材。[5]例:已知一连续正弦信号的频率为150Hz,取时间长度为0.1s,采样频率分别取为500Hz,1000Hz,5000Hz,20000Hz,仿真结果分别如图1―4所示。

3.3课堂讨论与练习

课堂目前是本科生进行理论学习的主要场所,课堂教学方法的改革应放在重要位置。笔者采取“启发式教学和研究型学习”的教学方法,从研究问题入手,将数字信号处理的一些重要理论构建过程展现出来,同时提出新的问题,以便让学生进行思考和研究。比如介绍滤波器理论时,笔者首先提出在通信系统构建的主要模块,在系统最前端,其次为了选择有效信号,引入滤波的概念,提出滤波器理论。

在课程的理论教学中,笔者针对教学难点和重点提出问题,定期和不定期地在课堂中进行讨论,请学生事先准备好,上讲台发表见解。

4.结语

《数字信号处理》是一门非常重要的课程,因此在适应素质教育对电子信息专业人才培养的要求下,笔者结合我校实际情况对该课程进行优化改革。实践证明,随着通信技术、电子技术和计算机技术的飞速发展,实现对《数字信号处理》的教学优化,有利于提高课时效率,有利于拓宽专业知识面,有利于培养和加强自身系统设计能力和实践能力,有利于加强自身素质教育的课程改革。

但是,如何在学习过程中发挥自身的主动性,将更多方案应用于学习, 使学生的学习效果达到最优,还有待进一步探索和实践。采用Matlab仿真软件来优化课堂教学,不仅丰富了教学内容,而且加深了学生对理论的理解;使公式的推导不再枯燥,且算法易于实现;使理论与实际紧密结合,更锻炼了学生的实践能力。

参考文献:

[1]陈嘉.《数字信号处理》的优化设计探讨[J].信息技术与课程整合.

[2]吴镇扬.数字信号处理[M].北京:高等教育出版社,2004.

[3]刘会衡,田玲. 数字信号处理课程教学方法改革与实践[J].教学研究,2008,31,(3).

数字信号处理论文范文第5篇

关键词:创新人才;数字信号处理;教学方法;探索

“数字信号处理”课程是工科信息类专业的一门专业基础课,我院电子信息科学技术专业和电子信息工程专业以及特色试验班开设了这门专业基础课.我们选用的是丁玉美主编的《数字信号处理》教材.由于这门课程,理论内容比较多,概念比较抽象[1,2],因此对于学生来说理解和掌握起来比较困难,此课程是在“信号与系统”课程的基础上进行的,数学概念多,如果学生在“信号与系统”课程中掌握和理解的知识不牢靠,对本课程的学习将会更加吃力,需要我们积极的探索更加有利于学生的科学教学方法和实践方法.本文结合我院电子信息专业特色实验班的“数字信号处理”课程教学和教改工作,分析了本课程存在的一些问题,探索更加有益于教学的教学方法,并通过对比采用本文的教学方法前后特色试验班学生的成绩,实践表明采用本文提出的教学方法,可以提高特色试验班“数字信号处理”课程的教学质量,取得了比较好的效果,为其他专业课程的教学研究提供了有意义的研究方向.

1“数字信号处理”课程教学存在的问题

随着信息化技术的发展,数字信号处理的发展也日新月异,理论和技术方面不断创新,成为多学科相互连接的桥梁和纽带[3-5].要使“数字信号处理”课程的知识内容跟上时代的发展,必须克服在当前的教学教改中存在的一些问题.根据当前教学实际,我校特色试验班主要存在以下一些基本的问题,急需探索新方法进行解决.(1)数学知识的基础不牢靠影响学生对本课程的学习和运用,需要学生对数学的基础知识熟练掌握.由于本课程的许多内容和实际的工程应用直接相关,充分运用好信号处理的知识,需要使用数学工具对实际工程中的一些采集的数据进行分析和处理.(2)特色试验班学生许多是从其他的非电子类专业中招收的学生,甚至是招收其他学院的学生,因此特色实验班中的学生对电子信息方面的基础专业课程的基础知识掌握参差不齐,比如“信号与系统”,这门课程是“数字信号处理”的前置课程,使“数字信号处理”课程的教学难度加大.(3)“数字信号处理”课程的部分内容和其他课程的内容有一定的重复,比如“信号与系统”课程等,存在重复浪费教学资源以及教师之间缺乏沟通等问题,需要对特色实验班的课程进行整合优化,提高不同专业背景的特色实验班学生的学习效率.(4)“数字信号处理”课程的概念抽象,难于理解,需要探索比较形象化的教学方法来提高教学质量.(5)“数字信号处理”的教学内容比较多,但是特色实验班安排的课时有限,需要探索合理的进行主要教学内容的教学方法.

2“数字信号处理”课程教学方法研究

针对我校特色试验班学生存在的一些基本问题,本文探索了一些教学方法,并在特色试验班中进行了相关的教学,主要体现在以下几个方面:(1)加强数学基础知识的引导,采用形象化的教学方法.针对特色试验班学生的数学基础参差不齐的问题,我们在教学的过程中,进行相关基础知识的引导,补充了相关的知识点,给学生提醒一些参考内容,使这部分学生能够课前学习相关的数学基础,不至于使学生因本课程涉及的数学基础知识不足而不能掌握本课程的内容.同时,我们针对课程中的数学公式多而且概念抽象的特征,提出了采用形象化的教学方法,将复杂的数学公式形象化,将抽象的概念形象化,我们通常考虑运用波形图或者框图的方法来实现形象化.例如在涉及到数学公式:f1(t)=a0+∑∞n=1(ancosw1t+bnsinw1t)的讲解过程中,就采用框图标定其中的分量的方法来加强理解,如图1所示.又比如我们在“数字信号处理”课程教学过程中由于FFT变换的理解比较困难,可运用相关软件,演示将一正弦信号进行FFT变换前后的波形图进行对比,让学生更加清晰的理解FFT变换的内涵和物理意义.(2)整合优化两课程的教学内容,避免重复教学,优化教学资源.对于特色实验班学生的这两门课程可考虑合并为一门课程,安排好教学内容,提高教学质量.由于两课程之间存在一定的重复,不仅理论教学方面存在重复,而且实践教学也存在相关问题,本文提出了优化两课程的整合方案,节约了大量的教学时间.优化整合两课程后的教学内容如表1所示.(3)注重理论联系实践,结合科研,注重电信专业的专业需求.“数字信号处理”课程的内容学习,要充分考虑特色试验班学生专业的知识结构特点,重点讲授在电子信息领域实用性强的内容.着重培养特色试验班学生理论联系实践的动手能力和创新能力.我们在针对特色试验班的教学过程中加入了适当的实践环节,主要运用Matlab软件以及origin软件进行相关信号的处理与分析.比如我们在实验环节加入了横向项目:中石化武汉分公司水力除焦监测系统研究的内容,对采集信号进行分析处理,可以用MAT-LAB编写相关程序进行FFT变换,提取信号的特征,分析信号的频谱特性,如图2所示,通过运用MATLAB得到的采集的声信号频谱图.通过实际项目,让学生深刻体会本课程的工程应用,加深对理论知识的理解,也可培养学生的学习热情,从而提高教学质量.(4)加强对“数字信号处理”课程虚拟网络实验室的建设,充分利用网络资源.为提高特色试验班学生的数字信号处理课程的教学质量,充分利用网络资源,建立了数字信号处理网络虚拟实验室.了数字信号处理课程虚拟实验室主要由身份验证、网络课堂、网络测试以及实验方案几个模块构成,提供登陆管理、作业管理、作业提交、远程实验、实验范例、实验论坛等栏目和功能,供学生网络学习使用.(5)加强我校特色试验班“数字信号处理”课程的双语教学,提高学生综合竞争力.

3结语

我校特色试验班的“数字信号处理”课程虽然存在一些问题,但是运用本文探索和研究的教学方法,极大提高了学生学习的积极性和主动性,提高了学生实践分析能力,培养了创新能力,使“数字信号处理”课程的教学质量明显得到提高.

作者:钟东 陈春 单位:湖北科技学院电子与信息工程学院 湖北科技学院体育学院

参考文献:

[1]OppenheimAV,SchaferRW,BuckJR.Discrete-TimeSignalProcessing[M].SecondEdition.Prentice-Hall,Inc,1999.

[2]SanjitKMitra.DigitalSignalProcessing-AComputer-BasedApproach[M].ThirdEdition.TheMcGraw-HillCompanies,Inc,2005.

[3]高军萍,王霞,李琦,等.数字信号处理课程教学改革的探索与体会[J].南京:电气电子教学学报,2007,29(2):19-21.

数字信号处理论文范文第6篇

【关键词】数字信号处理 DSP Builder 教学实践环节

【基金项目】论文由“上海理工大学‘精品本科’系列研究项目”专项资助。

【中图分类号】G642.0 【文献标识码】A 【文章编号】2095-3089(2016)35-0231-01

数字信号处理是一门的重要专业基础课,由于理论性很强、比较抽象,对于听课的学生和授课的教师均是一个难点。为了能让学生深入的体会和学好数字信号处理的理论知识,教学实践环节是必不可少的。

1.数字信号处理教学实践环节的现状

目前在数字信号处理课程的教学实践环节中,较为普遍的是采用MathWorks公司的数学分析软件Matlab,学生通过Matlab软件编程对数字信号处理的理论知识进行仿真和验证,这种通过纯粹软件编程进行仿真验证的实践方法仍然是比较抽象的,不利于学生对所学知识的深入理解,也不利于理论联系实践。

国内一些高校开始采用Matlab编程与可编程逻辑器件相结合的方法来进行该课程的实践教学,这种将软、硬件平台相结合的方法是一个很好的尝试,但它需要学生在熟悉可编程逻辑器件的基础上,熟练进行硬件描述语言(HDL,hardware description language)的编程,这样就容易使学生在掌握软件使用和熟悉硬件平台等方面花费过多的时间,从而忽视了对数字信号处理课程本身一些重要理论和概念的理解与掌握,达不到教学实践目的。因此,需要对本课程教学实践的方法进行探索和改革。

2.教学实践方法的改革

2.1教学实践方法的思路探索

需要找到一种简单易行的方法,使得数字信号处理的理论算法可以在硬件上得以实现,并且可以通过嵌入式测量软件(如:QuartusII中的SignalTapII Logic Analyzer)对信号的处理结果进行实时在线观测,那么学生必然会对所学的理论知识能有更生动的体会和更深刻的理解,增强学生的学习兴趣,提高学生理论联系实践的能力。

鉴于学生在前期课程中已学习过可编程逻辑器件FPGA的相关知识,而FPGA是一种实现数字信号处理的通用硬件器件,如果能够通过一种简单的操作将数字信号处理的理论算法在FPGA器件中得以直接实现,那么就能起到事半功倍的学习效果。

2.2 DSP Builder工具软件的特点

在数字信号处理中Matlab是用作算法开发和仿真的软件,而DSP Builder通过Matlab中的Simulink模块将Matlab的算法开发和仿真与硬件描述语言(HDL)的综合、仿真和Altera开发工具整合在一起,实现了这些工具软件的集成,从而使学生在进行系统级设计、算法设计和硬件设计时共享同一个开发平台,并且不需要过多关注硬件设计方面的知识和硬件描述语言的编程,同时,DSP Builder是作为Matlab中Simulink模块的一个工具箱出现[1],使得学生可以通过Simulink图形界面调用DSP Builder工具箱中的提供Altera知识产权核(IP core, intellectual propert core)MegaCore进行DSP系统设计,因此学生只需要掌握Simulink的使用即可,并不需要花过多的精力熟悉DSP Builder的使用。

2.3 DSP Builder应用于教学实践

应用DSP Builder在教学实践中进行基于FPGA的DSP系统开发,整个设计流程是基于Matlab的Simulink模块,DSP Builder和QuartusII的,包括从系统描述到硬件实现都可以在一个完整的设计环境中完成,构成了一个自顶向下的设计流程。它主要分为以下几步[2, 3]:

(1)利用Simulink模块、DSP Builder模块以及IP核模块Matlab的Simulink模块中对DSP系统进行建模,只需双击系统中的模块就可以对该模块进行参数设置,同时可以基于Simulink平台仿真验证所搭建DSP系统的功能。

(2)利用DSP Builder具箱中的Signal Compiler模块,将Simulink模块文件(.mdl)转换成RTL级的VHDL硬件描述语言代码描述以及用于综合、仿真、编译的TCL脚本。

(3)在得到VHDL文件后,设计者仍然可以通过Signal Com?鄄piler自动调用综合工具和编译工具。目前DSP Builder自动流程中支持的综合器有QuartusII, Synplify和Leonardo Spectrum。综合后产生的网表文件送到QuartusII中进行编译优化,最后生成编程文件和仿真文件,即利用生成的POF和SOF配置文件对目标器件进行编程配置和硬件实现,同时生成可分别用于QuartusII的门级仿真文件和Modelsim的VHDL时序仿真文件以及配套的VHDL仿真激励文件,可用于实时测试DSP系统的工作性能。另外,设计者也可以在Simulink外手动调用其他C合工具和编译工具。

(4)针对第二步中生成的VHDL,利用自动生成的Modelsim的TCL脚本和仿真激励文件所做的仿真为功能仿真,而当由QuartusII编译后生成的VHDL仿真激励文件和Modelsim的TCL脚本进行的仿真为时序仿真。

(5)最后将QuartusII生成的配置文件下载到目标器件中,形成DSP硬件系统。

2.4教学实践的实施步骤

(1)教授学生使用DSP Builder进行基于FPGA的DSP系统开发的过程。

(2)设计出利用DSP Builder进行数字信号处理教学实践的典型题目。

(3)让学生将Matlab中编写的数字信号处理算法,直接在FPGA器件中得以实现。

(4)对信号的处理结果进行实时测试,解决数字信号处理中的实际问题,切实做到理论联系实践。

3.教学实践的效果

在数字信号处理的教学实践中,应用DSP Builder在FPGA器件上实现数字信号处理的算法,使学生在设计过程中摆脱了繁琐的具体硬件设计,将更多的精力关注在数字信号处理算法设计的实现上,对所学数字信号处理的理论知识能有一个更生动的体会和更深刻的理解,增强学生的学习兴趣,提高学生理论联系实践的能力,取得了良好的教学效果。

参考文献:

[1]杨守良. Matlab/simulink在FPGA设计中的应用[J]. 微计算机信息,2005(8):[98].

数字信号处理论文范文第7篇

关键词:《数字信号处理》;教学改革;应用型本科院校

中图分类号:G642.0 文献标志码:A?摇 文章编号:1674-9324(2013)25-0030-02

一、引言

近年来,随着信息技术的不断发展,数字信号处理技术得到了迅速发展和广泛应用,已经广泛应用到图像处理、医学信号处理、信号检测和识别等各个领域[1]。《数字信号处理》课程也成为了电子信息工程、通信工程等专业重要的专业必修课,目的是让学生掌握数字信号处理的原理和方法,为图像处理、语音信号处理、随机信号处理等后续课程打下良好的理论基础。该课程理论性较强,公式推导较多,需要学生有一定的数学基础。对于应用型本科院校的学生来说,由于其数学基础相对薄弱,往往不能很好地掌握数字信号处理的基本原理,深刻领悟其实际意义,更难将其应用于今后的工作和学习中。因此,应根据应用型本科院校的特点和需求,对《数字信号处理》课程进行教学改革[2-4]。

笔者根据应用型本科院校的特点和需求,针对《数字信号处理》教学中存在的问题,对该课程教学改革中的一些问题进行初探,从教学内容和教学方法上进行教学改革,以满足应用型本科院校的人才培养目标。

二、传统教学中存在的问题

《数字信号处理》课程具有理论性强、数学公式推导较多、理论较抽象的特点。对于应用型本科院校的学生来说,由于其数学基础相对薄弱,很容易对该课程产生恐学、厌学的情绪。而该课程传统的教学手段往往以板书教学为主,在授课中进行大量的公式推导和抽象的理论学习,使很多学生不能很好地掌握数字信号处理的基本原理和方法,无法领会其精髓,难以将其用于今后的学习工作中,无法达到该课程教学应有的教学目的。另外,在实验教学中,以验证性实验居多,缺乏灵活性和创造性,缺少具有实际工程背景的设计内容,使实验教学无法达到希望的效果。

三、教学内容的改革

应用型本科院校的学生不同于一般本科的学生,往往数学基础相对薄弱,就业去向更多的是技术支持和应用,而不是一本学生的深造和研发。因此,在应用型本科院校的《数字信号处理》课程教学中,应根据应用型本科院校学生的来源和就业去向,合理的设定教学内容,突出实用性,加强理解及运用。

1.选择合适的教材。目前《数字信号处理》课程广泛采用的教材是清华大学出版社出版程佩青编著的《数字信号处理教程》,但是对于应用型本科院校的学生来说,这本书的理论性过强,不够清晰易懂。因此在选择教材的时候,要根据学生整体水平选择相对简单、清晰、易懂、重点突出的教材进行教学。为此笔者选择相对简单易学的西安电子科大出版社出版高西全编著的《数字信号处理》作为教材。同时,参考其他经典教材,博采众长,制定适合应用型本科院校学生学习的教学内容,在保持理论的完整性的同时,使教学内容层次清晰,重点突出。

2.合理设置教学内容。《数字信号处理》课程理论性较强,存在大量的公式推导,容易使学生感到抽象和枯燥。在设置教学内容的时候,应尽量避免和简化公式推导,着重说明其基本原理和物理意义,并注意联系实际,激发学生的兴趣。

3.应合理配置学时。对于重点内容和基础原理,如离散傅里叶变换、Z变换、滤波器的设计等内容,加大学时,打好基础,并充分与实际结合,使学生能够学以致用。对于非重点内容,如快速傅里叶变换等,减少学时,着重使学生了解其基本原理,掌握其思想和精髓。对于边缘内容,如分裂基、格型滤波器等,简述其思想和原理,让学生对这部分内容有一定了解,以备今后用时能够深入学习。

四、教学手段的改革

1.强调数学公式的物理意义。《数字信号处理》课程教学内容中大量的数学公式及推导,非常容易导致学生的恐惧心理。在进行这些部分的授课时,应先强调其物理概念,尽量使用画图、多媒体演示等方式形象地让学生对公式和理论有感官认识,再讲解数学公式及推导部分,这样学生理解起来就容易多了,才能够准确深入地掌握数字信号处理的基本原理,而不是面对一堆复杂抽象的公式。

2.在课堂教学中引入MATLAB软件。MATLAB软件是一种功能强大、使用简单的工具软件,广泛地应用于教学和科研中,其自带的数字信号处理工具箱,更为其应用在数字信号处理课程的教学中创造了有利的条件。应用MATLAB可以很容易地进行信号和系统的傅立叶变换分析、卷积运算、滤波器设计、信号滤波等工作,使学生可以直观地看到各种原理和方法的过程和结果,有利于学生对原本枯燥和抽象的理论产生感官印象,加深理解。

3.引入多媒体教学手段。多媒体教学是教学手段改革的主流,具有生动、形象、直观和信息量大等特点,恰当地使用多媒体教学手段,能够很大程度上提高授课的效果和效率。针对本课程涉及数学知识较多,公式推导烦琐的特点,笔者采用板书授课和多媒体授课相结合的授课方式,充分发挥多媒体教学的优势。例如,采样定理中的信号采样及恢复这部分内容,其概念比较抽象,数学公式又比较烦琐,如果仅使用板书教学,只能够画出一些特殊采样频率的恢复效果,不仅耗时、效率低下,而且学生理解起来也比较困难。在介绍这部分内容时,笔者采用多媒体课件动画演示的方法,将不同采样频率下,信号采样及恢复的全过程用课件中的动画形象地表现出来,使学生能够轻松掌握,加深理解,记忆深刻,同时也激发了学生的学习兴趣。

五、实验教学的改革

实验教学是课堂教学有力的辅助,对学生消化、巩固和应用所学知识具有非常重要的作用。对于实验教学的改革,应降低验证性实验的比例,增加综合设计性实验,通过建立通信信号、语音信号和图像信号库,设计若干选作实验,为学生提供必要的实验条件和基础,并尽量把最新的教学和科研成果引入到实验中去,激发学生的学习兴趣,使学生认识到学习的目的并不仅仅是理论的学习、公式的推导和习题的计算,而是要把理论应用于实践,为己所用。

六、结语

本文根据应用型本科院校的特点和需求,针对《数字信号处理》教学中存在的问题,对该课程教学改革中的一些问题进行初探,从教学内容和教学方法上进行改革,并取得了良好的教学效果,对应用型本科院校的《数字信号处理》课程教学起到了一定的借鉴意义。

参考文献:

[1]罗忠亮.地方性本科院校《数字信号处理》的教学改革[J].韶关学院学报(自然科学),2009,30(3):141-146.

[2]王冬霞,李波,孙福明,周军.应用型本科院校《数字信号处理》的教学改革与探索[J].辽宁工业大学学报(社会科学版),2010,12(6):112-113.

[3]郑海峰.独立学院《数字信号处理》教学改革思路[J].科技咨询,2010,(20):184.

[4]张丽丽.贾亮.“数字信号处理”课程教学的改革与实践[J].中国电力教育,2012,(34):70,76.

数字信号处理论文范文第8篇

【关键词】数字信号处理;发展;应用

前言

数字信号处理的简称是DSP,是一种通过数字信号芯片,将图片、声音、视频等模拟信息转化为数字信息的一个过程。在这一过程中,采用数字方式对模拟信号进行压缩、变化、过滤、识别,最终转化为实实在在的数字信号。21世纪是一个数字化的时代,数字信号处理技术得到广泛应用,为人类生活提供了方便快捷,同时为提高国家综合国力奠定了基础。

1、数字信号处理

数字信号处理的原理其实就是利用数字芯片对信号进行分析和处理。数字信号处理技术被广泛应用的原因不仅是其具备处理速度快和运行灵活的优点,而且具备极强的抗干扰能力,不受乱码影响。因此,人们要开始重视起数字信号处理技术的发展,利用数字信号处理技术来达到方便生活的目的。

相比一般信号处理技术,数字信号处理技术无论在设备还是技术方面,都具有高效率传播、造价成本低廉、运行方式精确灵活、抗干扰能力强等特点。对于一些模拟信号来说,数字信号的这些特点是无法超越的。数字信号处理技术得以快速发展的前提是具有一套完整的数字处理理论,在某种程度上具有提高和促进数字信号处理技术发展的作用。如果把数字信号处理技术比作一棵树,那么数字理论就是肥沃的土壤,数字信号处理实践就是新鲜的空气。树木离开了土壤和氧气都不能存活。只有将数字信号处理的理论与实践结合起来,才能从根本上提高数字信号处理的可靠性和稳定性。另外,数字信号处理技术能将各种参数存储起来,并且通过微机控制和数字设定对参数进行调整。这样一来不仅减少了调节量、调节点和调节电位器,而且能够长时间使得参数保持不变,大大提升了系统稳定性。综合数字信号处理的各种优点,人们要对其给予足够重视,造福人类生活。

2、数字信号处理在生活中的应用

在各种高新技术发展的今天,数字信号处理在生活中得到了广泛应用。数字信号处理得到不断发展的原因主要有两个:市场需求的发展和集成电路的发展。下文就针对数字信号处理在生活中的各种应用做了具体分析。

2.1在音响设备上的应用

在以前,人们主要是利用磁片和唱带等方法进行音乐娱乐活动。唱片的主要原理是对声音进行模拟震动,以此来在唱片上刻出槽纹路径来记录声音。录音机磁带的工作原理是利用磁头在磁带上震动对声音进行模拟信号记录,最终记录下声音。自从数字信号处理技术的问世,人们对音乐的追求不再仅仅局限在磁带和唱片上,开始向数字化信号处理技术发展。第一张CD硬盘的出现就是数字信号处理技术发展的起源,不再依靠对声音模拟刻录,而是利用数字技术对声音进行了重现,极大丰富了人们业余生活。

2.2数字化摄像的出现

在1991年的时候,柯达公司推出了世界上第一部照相机,标志着数字信号处理技术正式应用于数码摄像中。早在数字信号处理技术发展前,美国就利用这项技术实现了卫星对太空照片进行传递,后来被普通人民应用。随着数字技术的不断创新,后来数字照相机问世了,打破了原有利用胶带进行照相的模式,开创了一个全新局面。数字照相机相比于传统的光学照相机,能够利用光敏半导体对图像进行数字处理和信号转换,从而以很小的容量存储在照相机内。另外,数字照相机对于图片的处理也比较方便,可以在打印机上打印图片,在电脑上将一些不需要的照片删除。目前,数字信号处理技术逐渐成为了相机制造的核心技术,受到了广大消费者的青睐。

2.3在电视机和接收机上的应用

数字信号处理技术作为数字化信息技术的重要产物,在发展过程中不断成熟,向为客户提供更高质量、功能更强大、操作方式更简便的数字电视服务发展。因此,在这一背景下,数字电视机和接收机被研发出来了。数字电视机的工作原理其实是通过在家中安装电视机顶盒来接受电视台发出的视频信号,从而对视频信号进行调码、解码、编码,最终在用户数字电视机上呈现出视频。对比原有的模拟信号传输,这种数字信号处理技术与传输方法,不仅使客户在家中就能享受到更加安全、便捷的电视机服务,而且又保证了数字电视机画面的清晰度和声音洪亮度,备受数字电视机用户喜爱。另外,数字化电视机的抗干扰能力更强,不易受到天气问题而影响视频信号的接收。

2.4在汽车电子方面的应用

随着城市化的不断发展,汽车已成为了人们日常生活中代步的主要工具。汽车电子应用也逐步发展起来,然而这些发展都离不开数字信号处理技术的帮助。汽车电子系统中的红外线、雷达、监控设备等都需要数字信号处理技术对数据进行分析,才能达到维护汽车电子系统的目的。近几年来,人们对汽车的安全问题给予了高度重视。为此,汽车电子研究将汽车防冲撞功能和与安全行驶相关的内容列为重点研究对象。数字信号处理技术就能为汽车电子研究解决好这一难题。图像进过相机拍摄后,利用数字信号处理技术对图像进行过滤和处理,就能在汽车驾驶电子系统中清晰显示出来,以此为人们安全出行提供可靠保障。

3、对数字信号处理未来前景的展望

为了迎合更多人的消费需求,数字信号处理技术不断发展,向低能耗和个性化发展趋势靠拢。首先,相关数字化处理技术人员可以将几个数字信号处理芯片、电路单元、专用处理单元集中到一个芯片上,最终形成一个数字信号处理系统集成电路。这样一来不仅缩小了体积。而且便于携带。美国作为一个在全球应用数字信号处理技术最广泛的国家,已经将这项技术应用于企业生产、家庭生活和交通行业等方面。

随着各种数字化产品的应用:数码相机、智能手机、平板电脑,大大刺激了市场对数字信号处理技术的需求。从目前发展情况来看,数字信号处理技术主要向这几方面发展:与单片微型计算机相结合,构成双核平台,大大提高数字化产品质量;改进数字信号处理系统内核整体结构;提升数字信号处理运算速率和降低功能损耗。

结束语

通过以上分析可得知:数字信号处理技术对人类生产和生活都具有重要作用,为人们生活带来了极大方便。随着全球化发展进程的加快,数字信号处理技术取得了突飞猛进的进步,实现了多方面领域的目标,为构建富强、民主、文明、和谐的社会主义国家贡献了一份力。但是,数字信号处理技术在发展过程中也存在着不足,需要科研人员不断研究和创新,期待我国的数字信号处理技术在世界的舞台上发光发彩。

参考文献

[1]彭红.数字信号处理的发展与应用[J].改革与开放,2010,12:109.

[2]丽娜.数字信号处理的发展与应用[J].才智,2014,07:287-288.

数字信号处理论文范文第9篇

【关键词】MATLAB;GUI;数字信号处理

1.引言

数字信号处理,是现今应用成效最显著、应用领域最广的新科学之一,国内外各高校均开设了数字信号处理课程。这门课程相应的特点是:公式特别多、性质的推导复杂繁琐、概念性的东西比较多,还需要以信号与系统等诸多课程为基础,被很多同学认为大学最难的课程之一,学生因跟不上老师的进度和本身对学习内容的理解不到位而对这门课程失去兴趣。传统的教学模式已经远远满足不了新时代教学的需求,在计算机技术快速发展的今天,计算机辅助教学己经逐步成为教师授课的主要方式。MATLAB为数字信号处理课程的教学提供了很大的实验帮助。很早之前,国外就开始把交互式软件MATLAB用于数字信号处理的教学中,并采用功能强大的系统开发平台。本文利用MATLAB的图形界面设计工具(GUI),以数字信号处理理论知识为基础,设计了与课堂教学、实验内容相配套的辅助工具。该辅助工具可用于《数字信号处理》课程的实验辅助教学、课堂教学演示,也可作为学生课后自学平台,真正的将实验内容融入教学过程中。

2.MATLAB GUI简介

GUI是当今计算机软件的发展趋势。MATLAB为表现其基本功能而设计的演示程序demo是使用GUI的最好范例。MATLAB全面支持GUI编程,可自行设计窗口、菜单、对话框、滑动条等。在MATLAB的命令窗口中运行guide,即进入交互式编程。Guide可以根据用户GUI的版面设计过程直接自动生成M文件框架,这样就简化了GUI应用程序的创建工作,用户可以直接使用这个框架来编写自己的函数代码。

GUI设计可以采用两种方法,一种是利用GUIDE工具进行设计。这种方法的优点是上手容易;缺点是对于有些复杂功能的实现比较困难。另一种方法是基本代码法,即在M文件中用MATLAB代码写出所有的图形对象控件所对应的代码,通过各个参数的控制可以灵活地实现所需要的功能。这种方法的缺点是上手困难;优点是功能强大,可以实现许多复杂的功能,而且调试程序也比较容易。

3.基于MATLAB GUI的数字信号处理仿真平台的构建方案

5.结论

此仿真平台的制作是为了能够更方便地进行数字信号处理的辅助教学,此平台使得教学的内容更加直观,理论知识更容易理解,所以能够有效地提高教师授课的效率。通过此仿真平台,不仅能够激发学生对数字信号处理课程的学习兴趣,还能够加深对理论公式等知识的理解。此外,有了这样一个可以在计算机上操作的仿真平台,不仅使学生容易掌握那些比较抽象的数字信号处理知识的内容抽象,而且使教师的教学内容更形象化、生动化。本系统拥有友好的MATLAB GUI界面设计,用丰富的画面、简洁的文字将数字信号处理中抽象的实验内容展现在学生面前,提高了学生的学习主动性和积极性。

参考文献

[1]程佩青.数字信号处理(第三版)[M].北京:清华大学出版社,2007.

[2]罗华飞.MATLAB GUI设计学习手记[M].北京:北京航空航天大学出版社,2002.

数字信号处理论文范文第10篇

【关键词】数字信号处理;教学方法;电子信息专业

一、《数字信号处理》课程的教学内容

1.1合理处理教材内容

目前,有关《数字信号处理》课程的参考教材很多,有些教材不仅理论性强,而且难度也比较大,很难适用于工程教育为背景的学习能力相对较弱的学生。依据具体的教学需求,需要有目的、合理的选用教材内容。具体而言,为适应学生的特点,课程讲解需要从离散时间信号处理内容讲起,并且在课程复习的过程中重点强调离散时间信号的知识点。依据讲解滤波器的设计,讲授有限冲激响应等,以求帮助学生掌握课程内容,弥补课程学时少、内容多的缺陷。

1.2精心组织教学内容

《数字信号处理》的内容理论性较强,晦涩难懂,大多数的概念涉及到了大量数学公式的推导,此外,学生们普遍的反映教学内容枯燥无味、难以接受。为了让学生在有限的课时内理解掌握好数字信号处理的基本知识点,并且重点对信号处理授课内容进行了精心的选择及安排,对部分详细内容进行精简,重点讲授关键的理论和重点的内容。最后采用专题的形式讲解数字信号处理在实际工程信息处理中的应用,这一做法避免大量冗长复杂的推导公式,丰富了教学内容,在一定程度上提高了学生的学习兴趣。

1.3实验教学和理论教学同步进行

数字信号处理课程教学中只有理论和实践同步进行才能够达到理想的教学效果。针对课程具体内容涉及信号的产生与采集、信号的FFT(FastFourierTransformation即快速傅氏变换)分析、滤波器设计等等。这要求学生在熟悉数学处理工具Matlab软件的情况下对图像信号进行采集,并且对信号进行回放、显示、缩小及放大。而后对不同频率、不同幅值的信号进行FFT谱分析,针对图像的内容、画图说明谱的含义,最后对信号进行滤波,并比较信号在滤波前后的频谱的变化。

二、提高学生学习《数字信号处理》课程的兴趣

2.1多元化教学手法的应用

《数字信号处理》课程在长久以来因内容抽象、理论性强,常常采用“灌输式”的课堂教学方式进行授课。这种“灌输式”的教学方式使得学生处于被动的接受地位,缺乏积极学习的主动性。因此,在具体的教学过程中一方面应当重视问题的难以程度,注重启发式的教学,进而激发学生的求知欲;另一方面注重理论结合实际,学生密切联系实际应用,通过具体的实验和实际案例对问题进行探究,尽量减少课堂上繁琐的数学推导,采用板书加多媒体辅助式的教学方式进行教学,由浅入深进行教学,学生只有听得明白,才会有成就感、才会感兴趣。

2.2将理论内容可视化

目前,国际上许多学校采用Matlab的仿真方法来完成数字信号处理教学的相关理论教学,Matlab仿真方法的运用能够将理论与实践教学进行有机地结合,可做到基本原理和基本运算可视化、可操作化。这里所提到的可视化及可操作化是国外大学中所提供出的一种可以在我们理工科教学中进行应用的、很好的思路及解决方法。对于课程布置的具体实验而言,具有大型化、系统化的发展趋势,难度比较大,可使得学生对复杂的理论进行动手操作,可提供具体的解决问题的方法和能力,这一做法能够促使学生较为深刻地掌握和理解信号处理课程中所学习到的内容。

2.3从工程中来到工程中去

具体举例而言,实际工程中DFT(DiscreteFourierTransform即离散傅里叶变换)和FFT技术在电话拨键的双音频号的具体应用,让学生找出学习的重难点,建立学习目标。这一做法被看作为从工程中来;此外,大学生的电子制作竞赛中,DSP竞赛或学生科研立项中选择与数字信号处理相关的课题去进行开发研究,由学生进行全程参与,这就是到工程中去。

三、结语

数字信号处理课程因其理论性强,一直以来不受学生喜爱,因此要想提高教学水平,增强学生的学习兴趣,就需要在教学内容、教学手段及实验教学上不断进行尝试与探索。此外,还要不断地完善理论教学内容,更好地应用于实践中。

作者:王峥 刘盾 单位:天津职业技术师范大学

参考文献

[1]梁快;赵明富.“信号与系统”与“数字信号处理”两课教学整合[J].电气电子教学学报,2007(5).

数字信号处理论文范文第11篇

关键词:数字信号处理;Matlab;LabVIEW

中图分类号:G43文献标识码:A文章编号:1009-3044(2012)16-3902-04

Application of Matlab and LabVIEW in Digital Signal Processing Course

GUAN Cheng-bin, XING Fu-cheng, FANG Wei, CONG Yu

(Department of Electronic and Information Engineering, NAAU, Yantai 264001, China)

Abstract: To resolve the problem that digital signal processing course is nonobjective, full of theory, and it is difficult for students to ac cept, the methods of programming the demos of digital signal processing with Matlab and LabVIEW are studied. The methods are intro duced with examples. The characters of the two languages are compared and analyzed. The practices show that by teaching with the dem os, the goals are made sure, the perceptual knowledge is improved, the theory study effect is consolidated. It is significative to train the stu dents’practice consciousness and ability.

Key words: digital signal processing; Matlab; LabVIEW

数字信号处理利用数学的方法和数学模型对信号进行处理,在计算机技术以及数字信号处理器件高速发展的今天,数字信号处理技术的应用越来越广泛,如音频处理、图像处理、雷达声纳信号处理等都大量使用了数字信号处理技术。因此,越来越多的高等院校的相关专业开设了数字信号处理这门专业基础课。[1]

数字信号处理本身的特点决定了其是理论性很强的课程,内容抽象、公式繁多[2],如果在授课过程中为讲理论而讲理论,往往使学生感到枯燥乏味,抓不住重点,教学效果很不理想。根据作者多年的教学经验,在教学过程中引入实例教学,安排了大量的课堂演示,往往会取得事半功倍的效果。首先可使学生明确理论学习的意义、作用;其次,增强了学生的感性认识,对理解概念,促进理论学习具有重要作用。进行数字信号处理的实例演示需要编写数字信号处理程序,以往常用的编程软件,如C语言、VB语言等,没有现成的数字信号处理函数及工具,开发周期长,且代码复杂,不利于学员通过代码理解原理。而Matlab和LabVIEW这两种更高级的编程语言具有上手快、编程简单、具有专门的数字信号处理工具箱等优势,故我们采用了这两种语言进行演示程序的开发。

1 Matlab和LabVIEW语言简介

1.1 Matlab语言简介

Matlab语言以矩阵运算为基础,具有可靠的数值计算功能、强大的绘图功能,最重要的是具有丰富的数字信号处理函数工具箱。和传统的C语言、VB语言等编程语言相比,其语言体系简单易学。将Matlab语言应用于数字信号处理演示教学中,具有以下几个突出优点:

1)Matlab语言具有很强的数值和符号计算功能,支持向量和矩阵运算,它的编程语言几乎就如同我们平时书写公式,非常易于学习和使用,程序代码很容易被学生接受和理解,因此学生可以通过代码和现象的对比分析掌握所学处理方法[3,4]。

2)Matlab语言可方便快捷的输出二维或三维图形、图像、声音、动画等结果,给学生以感性的认识[3,4]。如对实际的声音信号进行数字信号处理的方法进行处理,并通过声卡对处理前后的声音分别播放,使学员通过听觉辨别处理前后信号的不同。

3)Matlab具有丰富的数字信号处理函数库[5],涵盖了经典信号处理理论的大部分内容。数字信号处理课程中涉及的算法都有对应的函数,如快速傅里叶变换函数fft、基于窗函数的FIR滤波器设计函数fir1、多采样率信号处理的信号抽取函数downsample等,有了这些库函数就可以通过简单的代码实现复杂的运算,大大方便了演示程序的设计。

1.2 LabVIEW语言简介

数字信号处理论文范文第12篇

关键词:数字信号处理;教学改革;探索

作者简介:蔡超峰(1980-),男,河南长葛人,郑州轻工业学院电气信息工程学院,讲师;姜利英(1981-),女,河南郾城人,郑州轻工业学院电气信息工程学院,副教授。(河南 郑州 450002)

基金项目:本文系2010年郑州轻工业学院研究生教育教学改革项目“《数字信号处理》课程教学改革与实践”(项目编号:01005)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)02-0102-02

“数字信号处理”主要研究用数字方式进行信号处理,即利用计算机或专用数字处理设备对信号进行分析、变换、综合、滤波、估计与识别等处理。随着电子技术及计算机技术日新月异的发展,数字信号处理的新理论和新方法层出不穷,地位和作用也越来越突出。然而,“数字信号处理”这门课程具有概念抽象、理论性和实践性强等特点,教与学均有一定难度。在长期的“数字信号处理”教学工作经验总结的基础上,笔者提出一些对该课程的改革措施:重视基本概念、基本理论的教学,利用多媒体技术和Matlab软件将抽象的理论以易于理解的形式加以演示,从而激发学生的学习热情和积极性,最后,通过课后练习题、实验、课程设计等方式引导学生利用Matlab软件实现对数字信号的处理,使他们更加深入地理解数字信号处理的基本理论,提高他们分析、解决实际问题的能力。

一、教学内容的优化

在课时有限的条件下,精选教学内容就显的尤为重要。在理论教学方面,傅里叶变换是本课程的核心内容,然而学生在先修课程“信号与系统”中已经学习过傅立叶变换,因此他们会认为该部分内容不是新内容,反倒容易忽视对该部分内容的学习。因此该部分内容的教学应当受到足够的重视。傅里叶变换包含了连续信号和离散信号的傅里叶变换,内容非常丰富。教师在重点讲述离散时间傅里叶变换的同时,也把连续傅里叶变换、连续傅里叶级数以及离散傅里叶级数的内容综合进来,并把离散傅里叶变换作为离散傅里叶级数的一个拓展来看。这样会使学生更加深刻地理解时域周期与频域离散、时域非周期与频域连续之间的对应关系。在讲述傅里叶变换性质的时候,教师把各种变换的性质融合在一起对照着介绍,并通过大量的例题着重强调这些性质的应用,从而为后面有关章节做铺垫。在讲述快速傅里叶变换(FFT)时,笔者着重讲述FFT算法的原理和依据,即第一是充分利用WN因子的周期性、对称性和可约性,第二是任何N点DFT运算都可以分解为两组N/2点DFT运算。对于具体的FFT算法,授课时不做讲授而是让学生自学掌握,节省了宝贵的学时。

在实验教学方面,精选了4个实验:序列的相关与卷积、基于FFT的频谱分析、IIR、FIR数字滤波器的设计。其中前两个实验属于验证性实验,后两个实验属于设计性实验。对于第一个实验,不但要求学生编程计算两个序列的互相关和卷积,还要求学生知道互相关与卷积之间的关系并进行验证,从而加深对这两种运算的理解。对于第二个实验,重点要求学生知道理利用FFT计算序列频谱的方法并正确绘制频谱图。对于第三、第四个实验,不但要求学生按照给定的技术指标正确设计滤波器,还要求他们利用所设计的滤波器对给定的音频信号进行滤波,通过比较滤波前后的音频信号检验所设计滤波器的实际性能。这几个实验难度逐渐增大,基本上覆盖了本课程的主要内容,符合学生学习掌握知识的一般规律,有助于加深学生对课堂获得的理论知识的理解。

二、教学方法的改进

教师在教学过程中一定要重视和学生的互动,不能采用过分偏重讲授的教学方法。只有这样才能充分调动学生的积极性、主动性和创造性,实现讨论式、启发式、研究式的教学方法。本校对教学方法的改进主要体现在以下三个方面:

第一,上好绪论课。绪论课主要介绍数字信号处理的概念、数字信号处理系统的一般模型以及数字信号处理的发展历史、应用和实现方法,绪论课授课效果的好坏直接影响学生对课程的直观感受、兴趣和学习积极性。在讲述绪论课时首先对课程内容做一个总体的概述,然后以脑电信号分析为例,介绍脑电信号的采集、滤波、变换、特征提取、识别等处理过程,最后重点介绍基于脑电信号分析的脑机接口系统设计及其应用前景,做到内容充实生动活泼,从而吸引学生的注意力。

第二,着重讲述概念、原理及工程应用,淡化公式推导。对于一些非常重要的概念和定理,比如抽样定理,会通过公式推导的方式让学生深入理解该定理的来龙去脉。在讲述相关函数时,重点介绍如何利用相关函数解决实际问题,比如利用自相关函数检测信号中隐含的周期性以及利用互相关函数检测不同电极上EEG信号的相关性。对于一般性的内容,比如傅里叶变换的各种性质,其证明过程则交给学生在课下进行。这样既可以把授课时间集中在课程最重要的内容上,同时又锻炼了学生的自主学习能力。

第三,把课堂讲授、课堂讨论、课外答疑和实验研究紧密结合起来,做到知识传授与能力培养并重。在讲述傅里叶变换时,引导学生讨论连续傅里叶变换、连续傅里叶级数、离散时间傅里叶变换、离散傅里叶级数、离散傅里叶变换的异同,最后由老师进行总结。在讲述滤波器的设计时,一方面引导学生从理论上理解IIR和FIR这两类滤波器各自的优缺点,一方面指导学生通过实验自主设计滤波器并对实际信号进行滤波处理。

三、教学手段的丰富

对教学手段的丰富体现在两个方面:

第一,重视多媒体教学。“数字信号处理”这门课程包含大量的公式和图谱。如果仅靠板书往往令老师疲惫不堪,而且还浪费了大量宝贵的时间。此外,板书内容很难做到精确和生动,还容易使得学生产生厌烦心理,导致教学目的难以达到,教学质量难以保证。多媒体技术作为一种新型的教学手段,既能够节省时间增加课堂容量,使教学内容更充实,又能够提高老师和学生之间的互动性,因此得到了越来越广发的应用。在制作多媒体课件时以公式和图表为主,尽量避免在课件里罗列大段的文字,以免令学生产生厌烦情绪。在授课过程中,不能忽视老师和学生之间的交流,可以通过提问的方式和学生进行互动,决不能让多媒体课件取代了老师的作用,以致挫伤了学生的学习积极性和主动性。在教学中最好将多媒体教学和板书教学有机结合起来,针对不同的教学内容加以区分。例如,对于抽样定理的讲述,既进行板书推导,又利用课件对抽样过程、过抽样及欠抽样进行动态演示。

第二,引入Matlab软件。Matlab是美国MathWorks公司开发的一款功能强大的科学计算软件,学习和使用非常方便。该软件把广泛应用于各个学科领域的数值分析、矩阵计算、函数生成、信号处理、图形及图像处理,建模与仿真等诸多功能集成在一起,为使用者提供了一个高效的编程工具及丰富的算法资源,其软件的开放性也为学生进行理论学习、习题演算、算法推导提供了一个强有力的工具。Matlab软件中的信号处理工具箱是一个内容丰富的信号处理软件库,本课程中的大部分理论和算法都可以在该工具箱中找到对应的文件,是学习、应用数字信号处理工具箱的一个非常好的工具。

Matlab软件在教学中的应用主要体现在两个方面。在课堂上,老师可以利用Matlab软件对课程中的理论和算法进行验证演示,这样能够更加生动直观地揭示出这些理论和算法的本质。例如,在讲授应用离散傅里叶变换对连续信号进行频谱分析时,理解计算过程中所出现的各种现象及相应的解决办法尤为重要。在课堂上利用利用Matlab软件演示了混叠现象、截断效应和栅栏效应等现象,并详解这些现象出现的原因及相应的解决的办法,起到了事半功倍的效果。在课下,老师可以通过作业和实验引导学生利用Matlab软件,让学生针对某一专题进行自主研究,从而提高他们的学习兴趣和解决实际问题的能力。例如,把一个频率固定的正弦信号作为噪声加入到一段音频信号中,要求学生自行制定技术指标并设计滤波器滤除其中的噪声信号,并通过对比滤波前后的音频信号检验所设计的滤波器是否符合要求。实践表明,这种方式能极大地调动学生的学习积极性和主动性,效果非常好。

四、结论

在“数字信号处理”课程的教学过程中,优化教学内容,突出关于傅里叶变换的内容,着重讲授基本概念和基本理论,淡化公式推导,做到知识传授与能力培养并重。借助于多媒体技术和Matlab软件,将课程中的相关理论和算法以易于理解的可视化形式加以演示,从而激发学生的学习热情和学习兴趣,使他们更加深入地理解数字信号处理的基本理论,取得了比较好的教学效果。

参考文献:

[1]胡学友,王颖,胡云龙.“数字信号处理”教学改革与实践[J].高教论坛,2007,(3):67-69.

[2]张赛男.《数字信号处理》课程教学研究[J].科技信息,2010,(5):195-196.

[3]胡广书.数字信号处理理论、算法与实践[M].第二版.北京:清华大学出版社,2009.

数字信号处理论文范文第13篇

关键词:数字信号处理;教学新模式;作业方式

作者简介:林爱英(1969-),女,河南汤阴人,河南农业大学理学院,讲师;贾树恒(1977-),男,河南驻马店人,河南农业大学理学院,讲师。(河南?郑州?450002)

中图分类号:G642.0?????文献标识码:A?????文章编号:1007-0079(2012)26-0049-02

“数字信号处理”是从20世纪60年代以来,随着信息学科和计算机的高速发展而迅速发展起来的一门新兴学科。随着超大规模集成电路的出现和迅猛发展,数字信号处理在理论和应用方面不断地发展和完善,在越来越多的应用领域中迅速取代传统的模拟信号处理方法,并且还开辟出许多新的应用领域。[1]这些新兴的领域包括生物医学工程、声学、雷达、地震、通信等,各个领域都需要大量高素质的数字信号处理研发人才。目前“数字信号处理”作为通信、电子、控制、生物医学等专业的专业基础课程,已经越来越受到学术界和大专院校的高度重视,并达到高度发展和逐步完善的水平。

“数字信号处理”是一门实用性强、理论内容丰富且涉及知识面广的课程,该课程的特点是理论性强、抽象概念多、起点高、难度大、数学推导严密。随着数字信号处理理论、方法和技术的飞速发展,现代信号处理进入了新的发展阶段。随着学科发展,传统“数字信号处理”课程的教学模式在教学实践中已显现出不相适应的问题。[2]因此,近年来国内部分高校开始了对“数字信号处理”传统的课程内容和教学模式进行改革。

一、传统“数字信号处理”教学模式及其存在的问题

1.教学内容过度重视理论推导,不注重理论和实践相结合

“数字信号处理”是一门以算法为核心的理论性很强的学科,传统的教学主要是讨论算法和理论的推导,[3]而与实际的联系很少或基本没有。这样就使得数字信号处理的有关概念显得非常抽象,学生很难把教材中所讲的数学函数与实际的波形联系起来,给学习带来了很大的困难,这在很大程度上影响了本课程的教学效果。

2.教学手段过于单一,过分依赖多媒体教学

多媒体教学具有信息量大、形象直观的特点,[4]的确在很大程度上优化了课堂结构,目前已成为教学手段改革的主流。但不能忽视的是由于过分依赖多媒体教学,使得老师的精力过多花在课件制作的形式上,却忽略了课件的内容,使得教学质量严重下降;其次,因为多媒体教学的信息量大,容易出现“满堂灌”的现象,老师成了讲课的机器,与学生的互动性大大降低;再有,强调多媒体教学的同时,忽略了传统板书的作用,使得学生对课程的重点把握不清楚。需要强调的是多媒体仅仅是传统教学基础上增加的一个特殊的教学工具,只有充分利用多媒体教学的优点,克服其缺点,才能达到提高教学效果的目的。

3.作业模式非常单一,基本上都是采取课后习题的书面作业形式

作业作为教学的重要环节,它不仅仅是课堂教学的补充与延伸,同时也是教学信息反馈的重要途径。[5]作业可以有效地检验教与学的效果;通过作业,教师可以与学生共同探究、讨论、体验与交流等。传统作业基本上都采取课后习题的书面作业形式,这就使得传统作业模式单一、机械训练,给学生造成了抄袭作业、“复制”作业的不良习惯,导致了学生懒于思考、探究问题的行为,不利于不同层次学生发展的需求,阻碍了学生自主、合作、探究学习意识的发挥。

二、改进传统的“数字信号处理”教学模式,创建教学新模式

“数字信号处理”是一门涉及许多学科而又广泛应用于许多领域的新兴学科,目前已成为发展最为迅速、应用最为广泛的学科之一。“数字信号处理”作为电子信息学科的一门专业基础课,是一门理论性和工程性都很强的学科,是联系数字电路、信号与系统、通信原理、图像(语音)信号处理、模式识别等课程的纽带,对于培养学生理论分析能力和实践能力有非常重要的作用。显然传统的“数字信号处理”教学模式已经越来越不适应学科飞速发展的需要,为此笔者在充分研究传统教学模式和教学实践的基础上,提出了创建“数字信号处理”教学新模式的理念。新的教学模式主要涵盖以下几个方面的内容:

1.改进传统的以单向性知识传授为主的教学方式,实施学习与研究融为一体的研究型教学方式

数字信号处理论文范文第14篇

关键词:《数字信号处理》;教学方法;Matlab;多媒体教学

中图分类号:G642.41 文献标志码:A 文章编号:1674-9324(2013)37-0057-03

《数字信号处理》是电子信息类专业重要的专业基础课,它是将信号以数字方式表示并处理的理论和技术。它的任务是使学生获得数字信号处理方面的基础理论、基本算法和DSP软硬件开发的基本技能,培养学生分析问题和解决问题的能力。

《数字信号处理》一般是在大三的第一个学期或第二学期开课,它的先修课程是信号与系统,学生掌握了连续信号与系统的时域、频域及复频域分析方法,进一步掌握和了解数字信号与系统的分析方法,特别是数字滤波的设计以及在MATLAB中的实现。教师在教学过程中,需要把凝聚在课本上的知识、方法、技能深入浅出地传授给学生。同时,为了提高教学效果,教师需要善于抓重点,知识结构层次要分明,对不同的学生,要因材施教。针对这门课程的应用性、创新性、实践性等特点,以及数字信号处理本身的飞速发展,需要对教学大纲的内容进行修改和完善,在不动摇基本理论、基本概念、以及基本分析和设计方法的前提下,优化理论知识结构,加强实验操作技能训练,特别是诸如数字滤波器设计等综合能力的训练。

另外,利用多媒体教学手段和校园网络数字化平台的建设为教学提供新的活力,从而使课堂教学内容更加丰富,增加上课信息量的传递。在课时不断压缩的情况下,提高学生的主观积极性,从而使教学质量和教学效率得以提高。具体可从以下几个方面进行改进。

一、多种教学手段结合使用

1.《数字信号处理》是一门实践性和理论性都很强的专业课,在教学过程中,为提高学生学习的积极性,采取理论教学和实验实训教学相结合的教学方法,使学生真正做到学以致用。传统的理论教学,是以灌输式方法为主要方式进行教学的,为了赶学习进度,老师整堂课都是不断地讲解,这样使学生的积极性得不到充分发挥。为充分发挥学生的主观能动性,应采用启发式教学方式,即老师讲解只占课堂时间的40%,学生和老师的互动(如例题与习题的解答)占30%,课堂上现场实验操作与仿真占30%。通过对基本原理知识的讲解、习题的解答、以及实物仿真操作训练,使学生在掌握基本理论知识的基础上,学会分析和解决问题的方法、能力,同时也调动同学的主动参与意识,让学生亲自享受到自己的学习成果,真正发挥教学相长优势。

2.开展黑板板书、网络资源共享和多媒体课件教学相结合的多形式授课方式。对《数字信号处理》中一些基本定理和基本结论,如DFT的性质,FFT算法原理等,需要利用黑板板书进行推导和证明,让学生一步步沿着老师的思路得以理解和说明;而对于一些需要图示举例、演示、以及形象理解的知识点,如循环移位、循环卷积等,可通过多媒体(声音、图像、视频、动画等多种形式)形象生动的教学方式进行互动教学;而对于课后的习题、相关背景知识的介绍以及课堂内容的扩展部分,则充分利用校园网络教学平台,建立《数字信号处理》课程的主页,上传相关课程资源,建立答疑和讨论空间。

3.将数字信号处理、Matlab语言以及DSP技术有机地结合起来,使同学们在学习了有关信号处理的理论知识后,通过算法语言进行软件仿真,并在DSP硬件平台上得以实现。这样,学生在学习过程中能将所学的知识融会贯通,并将基础课、专业基础课和专业课有机地关联起来,使学生摆脱大学各课程独立性的错误观念,从而提高教学质量。

二、理论算法与工程实践紧密结合

1.实验教学是培养学生理论联系实际,提高自身基本操作技能的重要手段,是培养与就业结合的适用型人才不可缺少的重要部分。在完成了课堂的理论教学内容的学习后,要想真正做到学以致用,学生就必须进行实验学习和训练,把课本中学到的知识用到实际的设计和工程中。实验项目是以工程案例为背景,如:用FFT对信号作频谱分析、人体心电图信号的噪声处理、数字信号处理在双音多频拨号系统中的应用等,充分发挥学生的主观能动性。实验训练可加深学生对所学课本知识及原理的理解,同时也培养了学生独立分析问题能力,提高编程设计和调试的基本技能,增强学生的动手能力。

2.加强课程设计中数字信号处理与DSP技术的紧密结合。学生灵活运用所学的数字信号课程知识,通过对一个较小的数字信号处理去应用系统的设计与开发,如语音信号的滤波、语音信号频谱分析、电力系统的谐波分析等。在课程设计尾声阶段,教师现场检查学生设计的硬件和软件调试结果,根据学生完成课程设计任务的情况,以评分细则依据公平、客观地评价学生成绩。学生通过某个工程案例的设计、调试和撰写设计报告,掌握信号处理算法设计和DSP软硬件设计的完整过程,学会Matlab和DSP开发坏境的操作、程序编写与调试。对学生进行信号处理方面的工程综合训练,训练学生的综合设计能力、程序设计及调试能力和产品设计的创新能力,培养学生运用所学的理论知识独立地解决实际问题的能力。为学生发挥创造思维能力、解决实际问题提供了广阔的设计舞台。

3.着力培养学生创新实践能力。进行基于DSP处理器的信号处理系统软硬件设计培训,并与全国大学生电子设计竞赛结合,培养学生创新精神及工程设计实践能力。课程由教师讲授、学生课外自学、竞赛实战题目制作、论文写作、题目测试点评等环节组成。

三、现代教育技术的应用

1.让学生通过先进的网络技术学习国外著名大学的相关数字信号处理课程的一些相关知识,同时学习国外课程综合大作业的考核方式,鼓励同学利用业余时间选择合适的课题,利用所学的知识提出问题、分析问题并解决问题,最后写出综合报告,真正做到学以致用。

2.设置不同理论层次和不同知识模块的课程班。在基本要求不降低的条件下,把Matlab仿真语言引入课程中,使学生以一种生动形象的方式练习学到的理论知识,深刻领会基本概念和基本原理。实践课上,分别开设了软件实验项目(以Matlab语言仿真为主的软件实验)、硬件实验项目(以DSP开发为主的硬件实验)以及软硬结合的综合实验(Matlab语软件仿真和DSP硬件开发)等几个层次,保证不同基础的同学能有更好的选择。

四、改革课程的考核方式

改革课程考核方式中的单一性以及先教授再考核的传统方式,变笔试考核为理论考核和设计实践考核的结合,采取边教授边考核的办法。

《数字信号处理》课程教学内容多、时间短,除离散信号与系统的时域、频域、复频域分析外,还重点阐述了数字滤波器设计等综合性知识,这些都需要学生了解、掌握并能利用MATLAB进行仿真试验。要在课堂教学中完成教学大纲要求的基本知识点的训练和应用有一定难度,教学任务很重。如何在有限的教学时间内完成基本教学内容,又兼顾该门课程的专业性、综合性及工程实践性,同时又能考核学生对专业难点、横纵向知识点的逻辑掌握是核心关键的问题。为解决课程教学中的矛盾,在课程考核中,带领学生把部分课堂搬到具体的实际设计中,让学生亲历课程中的理论内容和实际的结合,由此轻松记忆教学中的难点和重点。再从学生“教”和“学”的过程中,解决教学中专业性、综合性及实践性的问题,同时亦可解决时间短、教学内容多的问题。《数字信号处理》是综合性和理论知识特别是数学知识很强的课程,该课程前小半部分的内容已在前修的《信号与系统》中涉及过。但《数字信号处理》是以时域离散信号为处理对象,与连续信号与系统中的计算方法大相径庭。例如,《信号与系统》中大量用到了积分,而在数字信号处理中就是迭分(累加求和),信号与系统中的微分,在数字信号处理中就变为差分等,很多学生很难一下子转变观念。此外,《数字信号处理》中的DFT、DTFT、FFT三者变换之间的联系和区别更是难中之难。

该课程传统的考核办法常常是先讲授所有的知识点再统一综合考核——闭卷考试。这种方法虽能在最后的考试成绩中反映学生对该课程某些难点和重点知识的掌握,却忽略了《数字信号处理》知识多样性的特点,特别是实际设计部分。因此,在考核时,只顾及所谓的“重点、难点”而舍弃“综合性、多样性”是不够完善的。我们应该每讲解一个独立知识点就进行及时的考核检验,这种边讲授边考核的方式既能更好地检验每位学生对小知识点掌握的深度,又不影响该知识点与整个课程的联系。

参考文献:

[1]张丽丽,贾亮.“数字信号处理”课程教学的改革与实践[J].中国电力教育,2012,(34):70-76.

[2]蓝会立,廖凤依,文家燕.“数字信号处理”课程教学改革与实践[J].中国电力教育,2012,(3):86-87.

数字信号处理论文范文第15篇

关键词:信号处理;CDIO;集成电路设计与集成系统

中图分类号:G642.0 文献标识码:A

文章编号:1005-913X(2013)02-0117-02

一、引言

目前信号处理相关课程在国内外诸多高校都是本科教育主要课程群之一,但该类课程存在理论性较强,数学公式和数学概念较多。学生在学习中不能理解其实质和用途,很难将其与实际问题相结合,并运用相关工具来解决实际的工程问题。集成电路设计与集成系统(以下简称集成)专业中信号处理类课程占有相当大的比重,如何提高学生解决实际工程问题的能力是本专业亟待解决的问题。目前多个高校开始实施针对信号与系统或数字信号处理的课程改革,所涉及到的课程改革都是在不改变现有课程体系结构上的教学改革,没有结合各自专业的特点,如集成专业的数字信号处理的侧重点应与其他专业的数字信号处理的侧重点不同。

CDIO 工程教育模式是近年来国际工程教育改革的最新成果。CDIO 代表构思(Conceive) 、设计(Design) 、实现( Implement) 和运作(Operate) ,它以产品研发到产品运行的生命周期为载体,让学生以主动的、实践的、课程之间有机联系的方式学习工程,培养学生的解决实际工程问题的能力。[1,2,4]信号处理是集成专业的一个重要研究方向,目前国内开设集成专业的高校还没有开展该专业的CDIO工程教育研究与实践。本文以CDIO工程教育理念为指导,以集成专业的教学计划为基础,对集成专业信号处理相关课程进行优化整合、构建集成专业信号处理课程群。所建课程群可作为本专业CDIO工程教育培养模式下的二级CDIO项目,为本专业实施CDIO工程教育奠定基础。另外该项目的成功实施对改善该专业的培养模式,提高该专业学生的实践能力具有重要意义。

二、信号处理课程群构建的指导原则及方法

实施基于CDIO教学理念的集成专业教学改革,[3]其中最重要的环节是建立该专业的CDIO项目。包括:一级项目、二级项目和三级项目。本文所涉及的内容主要是为了建立一个该专业的二级项目,该二级项目是以信号处理课程群为载体,让学生掌握关联性较强的课程之间缺乏知识的继承性和连贯性。将各个课程中涉及的知识点有机结合。笔者以CDIO工程教育理念为课程群构建的指导思想,采取理论结合实践的研究方法,构建出能突显本专业特色的信号处理课程群。

(一)以CDIO 理念为指导,构建本专业信号处理课程群

按照CDIO 教学改革理念,对照现行大纲,构建以信号与系统、数字信号处理、基于FPGA的系统设计与应用高级数字IC设计为主线的课程群。增加实践和工程应用环节,重新统筹理论教学内容,去除课程间知识的重复和冗余,构建出融传授知识、培养能力、提高素质为一体的课程群。

(二)理论结合实践,先试点试验再逐步推广

在构建课程群时采用探究式研究方法。以小班为试点进行实验,积累经验再逐步推广。对于整个课程群的构建也要先从个别课程开始,逐步扩建到整个课程群。

(三)建立有效反馈机制,及时修正课程群构建中的不足

在构建课程群的过程中,要动态调整教学内容。为此要建立一套有效的反馈机制。积极听取授课教师和听课学生的意见和建议,归纳总结及时进行调整,逐步实现课程群构建的最优化。

(四)考虑本专业的特点,突显本专业特色

所构建的信号处理课程群要与本专业的教学计划紧密结合,以构建本专业信号处理方向的二级CDIO项目为目的。充分体现CDIO的教学理念和本专业的特色。

三、主要研究内容及取得的成果

构建该专业信号处理课程群,建立该专业CDIO工程培养模式下的二级项目。需要解决以下主要关键性问题:一是在构建的课程群中如何充分体现CDIO理念;二是课程群知识点的优化整合;三是设计贯穿整个课程群的案例。为了解决以上问题,本了以下研究工作。

(一)以CDIO工程教育模式的项目构建为标准,构建课程群

本文拟构建出集成专业信号处理课程群,该课程群包括:信号与系统、数字信号处理、数字IC设计、基于FPGA的系统设计与应用和高级数字IC设计。信号与系统和数字信号处理是本专业的学科基础课;数字IC设计和基于FPGA的系统设计与应用是本专业的专业平台课;高级数字IC设计是本专业的专业方向课。课程群中课程之间的关系如图所示。所构建的课程群也可作为本专业CDIO教学改革的一个CDIO二级项目。

(二)课程群教学内容优化整合

课程群所涉及的各科课程内容既具有自身的完整性,又有一定的交叉,课程内容相互关联、相互渗透。如果每门课程都强调课程内容的系统性和完整性,必然造成内容多学时少的矛盾,单门课程的教学改革很难收到理想效果。本课程群所设计的课程中内容涉及集成电路设计的整个环节,从算法到架构好后到实现。其中信号与系统和数字信号处理属于算法领域,数字IC设计属于架构领域,基于FPGA的系统设计与应用和高级数字IC设计属于实现领域。对于一个数字系统的设计需要用到上述所有课程中涉及到的知识。但本身课程之间又有相互重叠的内容。构建该课程群时,笔者充分考虑了课程群内课程的关联性,重新统筹了理论教学内容,去除了课程间知识的重复和冗余,并增加实践和工程应用环节。

(三)以Matlab和FPGA为实现手段设计贯穿整个课程群的案例

该课程群中大量的理论和结论都是通过数学推导的方式得到,所以学生往往过于注重公式推导或证明,而不能理解其实质和用途。缺乏运用工具来解决实际的工程问题的能力。本文以Matlab作为信号处理算法的验证的工具,FPGA作为信号处理VLSI实现的验证工具。充分利用其各自的特点,以二者为该课程群的实现手段设计贯穿整个课程群的案例。所设计案例要涵盖课程群的全部重点知识点,并且可以遍历集成电路设计的设计流程:系统设计、算法设计、仿真验证、硬件描述语言建模及FPGA验证。

(四)以《数字信号处理》为载体,设计了该课程群下的CDIO三级项目

以该课程群作为本专业二级CDIO项目,则该课程群下可构建出若干三级CDIO项目。以《数字信号处理》作为构建CDIO三级项目的试点课程,设计了该课程群下的三级CDIO项目。设计的案例包括:基于Matlab的FFT IP设计和无限冲激响应数字滤波器设计等。

本文以提高学生解决工程问题能力为目构建了信号处理课程群,旨在解决原有信号处理相关课程重理论、轻实践的问题。以CDIO工程教育理念为指导思想,在现有集成专业信号处理课程群的基础上,构建了该专业信号处理课程群。所构建的课程群可作为本专业CDIO工程教育改革中的二级CDIO项目。所构建的信号处理课程群充分体现了集成专业的专业特点,注重信号处理算法分析设计的同时,注重其VLSI的验证与实现。

参考文献:

[1] 顾佩华,沈民奋,李升平,等.从CDIO到EIP— CDIO—汕头大学工程教育与人才培养模式探索[J].高等工程教育研究,2008(1).