美章网 精品范文 移动通信技术论文范文

移动通信技术论文范文

移动通信技术论文

移动通信技术论文范文第1篇

(一)第一代——模拟移动通信系统

第一代(即1G,是thefirstgeneration的缩写)移动通信系统的主要特征是采用模拟技术和频分多址(FDMA)技术、有多种制式。我国主要采用TACS,其传输速率为2.4kbps,由于受到传输带宽的限制,不能进行移动通信的长途漫游,只是一种区域性的移动通信系统。第一代移动通信系统在商业上取得了巨大的成功,但是其弊端也日渐显露出来,如频谱利用率低、业务种类有限、无高速数据业务、制式太多且互不兼容、保密性差、易被盗听和盗号、设备成本高、体积大、重量大。所以,第一代移动通信技术作为2O世纪80年代到90年代初的产物已经完成了任务退出了历史舞台。

(二)第二代——数字移动通信系统

第二代(即2G,是thesecondgeneration的缩写)移动通信系统是从20世纪90年代初期到目前广泛使用的数字移动通信系统,采用的技术主要有时分多址(TDMA)和码分多址(CDMA)两种技术,它能够提供9.6-28.8kbps的传输速率。全球主要采用GSM和CDMA两种制式,我国采用主要是GSM这一标准,主要提供数字化的语音业务级低速数据化业务,克服了模拟系统的弱点。和第一代模拟移动蜂窝移动系统相比,第二代移动通信系统具有保密性强,频谱利用率高,能提供丰富的业务,标准化程度高等特点,可以进行省内外漫游。但因为采用的制式不同,移动标准还不统一,用户只能在同一制式覆盖的范围内进行漫游,还无法进行全球漫游,虽然第二代比第一代有更大的带宽,但带宽还是很有限,限制了数据的应用,还无法实现高速率的业务,如移动的多媒体业务。

(三)第三代——多媒体移动通信系统

随着通信业务的迅猛发展和通信量的激增,未来的移动通信系统不仅要有大的系统容量,还要能支持话音、数据、图像、多媒体等多种业务的有效传输。第二代移动通信技术根本不能满足这样的通信要求,在这种情况下出现了第三代

(即3c,是thethirdgeneration的缩写)多媒体移动通信系统。第三代移动通信系统在国际上统称为IMT一2000,是国际电信联盟(1TU)在1985年提出的工作在2000MHz频段的系统。与第一代模拟移动通信和第二代数字移动通信系统相比,第三代的最主要特征是可提供移动多媒体业务。

二、第四代移动通信系统的概念

4G也称为广带接入和分布网络.具有超过2Mb/s的非对称数据传输能力.对高速移动用户能提供150Mb/s的高质量的影像服务.并首次实现三维图像的高质量传输它包括广带无线固定接入、广带无线局域网.移动广带系统和互操作的广播网络(基于地面和卫星系统).是集多种无线技术和无线LAN系统为一体的综合系统.也是宽带lP接入系统.在这个系统上.移动用户可以实现全球无缝漫游.为了进一步提高其利用率.满足高速率、大容量的业务需求.同时克服高速数据在无线信道下的多径衰落和多径干扰等众多优势。

三、4G的关键技术

1.OFDM技术。它实际上是多载波调制MCM的一种.其主要原理是:将待传输的高速串行数据经串/并变换,变成在N个子信道上并行传输的低速数据流,再用N个相互正交的载波进行调制,然后叠加一起发送。接收端用相干载波进行相干接收,再经并/串变换恢复为原高速数据。

2.多输入多输出(MIMO)技术。多输入多输出(MIMO)技术是无线移动通信领域智能天线技术的重大突破。该技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率,是下一代移动通信系统的核心技术之一。MIMO系统采用空时处理技术进行信号处理,在丰富的散射环境下,空分复用MIMO系统(如BLAST结构)可以获得与天线数成正比的容量增长,从而极大地提高频谱效率,增加系统的数据传输速率。但是当散射程度欠佳时,会引起信道间的空间相关,尤其在室外环境下,由于基站的天线较高,从而角度扩展较小,其空间相关难以避免,在这种情况下MIMO不可能获得所期望的数据传输速率。

3.切换技术。切换技术能够实现移动终端在不同小区之间跨越和在不同频率之间通信以及在信号质量降低时如何选择信道。它是未来移动终端在众多通信系统、移动小区之间建立可靠通信的基础。主要划分为硬切换、软切换和更软切换.硬切换发生在不同频率的基站或不同系统之间。第4代移动通信中的切换技术正朝着软切换和硬切换相结合的方向发展。

4.软件无线电技术。软件无线电是将标准化、模块化的硬件功能单元经过一个通用硬件平台,利用软件加载方式来实现各种类型的无线电通信系统的一种具有开放式结构的新技术。通过下载不同的软件程序,在硬件平台上可实现不同功能,用以实现在不同系统中利用单一的终端进行漫游,它是解决移动终端在不同系统中工作的关键技术。软件无线电技术主要涉及数字信号处理硬(DigitalSignalProcessHardware,DSPH)、现场可编程器件(FieldProgrammableGateArray,FPGA)、数字信号处理(DigitalSignalProcessor,DSP)等。

5.IPv6协议技术。3G网络采用的主要是蜂窝组网,而4G系统将是一个基于全lP的移动通信网络,可以实现不同类型的接入系统和通信网络之间的无缝连。为了给用户提供更为广泛的业务,使运营商管理更加方便、灵活,4G中将取代现有的IPv4协议,采用全分组方式传送数据的IPv6协议。

四、发展趋势

目前,4G移动通信还只处于实验室研究开发阶段。具体的设备和技术还没有完全成型,后续的软件开发还没有启动。这都会给4G的发展带来很多难题,有待人们深入研究。但未来移动通信必将具有文中描述的这些基本特征:高速率、高质量的数据传输,完全集中的服务。无所不在的移动接入,高智能的多样化的用户设备。随着新问题、新要求的不断出现。第四代移动通信技术将会相应地调整、完善和进一步发展。我们相信,不远的将来,人们将会不受时间、地点限制,可以自由自在地利用移动网络获取和传递信息,从而使人们的学习、工作、生活发生更深刻的变化。

参考文献:

[1]张重阳.数字移动通信技术[M].西安:江西科技大学出版社,2006.

[2]唐兴.移动通信技术的历史和发展趋势[J].江西通信科技,2008(2).

[3]张献英.第四代移动通信技术浅析[J].数字通信世界,2008(6).

移动通信技术论文范文第2篇

1.1国外发展现状

近年来,4G通信技术在国外发展迅速。全球名气较大的的移动手机制造商大多来自于欧洲,他们以强大的通信技术水平,垄断了一大半的移动通信市场。2009年,瑞典首先推出了4G网络,到目前为止,瑞典仍然是全球4G网络速度最快的国家,它的通信技术依然保持在全球的领先行列。美国作为科技大国,近年来也比较重视移动通信技术的发展。目前,美国的移动电话的普及率已经达到了一半以上。但是,由于美国使用的频谱资源与大部分的运营商使用的并不相同,这大大影响了美国网络的下载速度,使其与下载速度较快的国家之间还存在一定的差距。

1.2国内发展现状

与同为亚洲国家的日本、韩国相比,我国移动通信技术的发展要慢得多。其中,我国香港地区的4G通信技术发展迅速,网络速度排名全球第二。同时,在香港地区,大多数网络都具有了4G服务功能。在大陆地区,4G通信技术主要被三家电信运营商所使用。随着我国政府对4G技术的不断关注,4G逐渐走进了我国人民的生活。由于4G技术具有极快的访问速度,吸引了各大运营商的关注。但是近两年,微信业务的推出给各大运营商造成了巨大的挑战,传统的通信技术受到了极大的冲击,而传统技术带来的利润也随之有所下降。因此,各大运营商在争先恐后的使用4G通信技术的同时,也不能忽视这些挑战所带来的问题。所谓挑战即为机遇,随着越来越多的人使用网络,各个运营商为了提高流量带来的收入,必将加快4G技术使用的脚步。

24G移动通信技术的特点

2.1具有较快的数据传输速度

随着生活频率的不断加快,人们越来越适应快节奏的生活。因此,在进行网络数据传输的过程中,人们也不断的追求着高速度,力求节约不必要的传输时间。与3G通信技术相比,4G技术具有的比较明显的特征是具有较高的数据传输速度。它的无线访问速度较快,大约为100Mbbit/s。从理论上讲,它的传输速度比3G技术快了20倍,更加符合现代人的需求,为使用网络了人们节省了网络访问的时间,使得人们能够更加及时的获得自己所需要的资讯。

2.2具有较强的抗干扰能力

一般来讲,4G通信技术都是使用正交分频多任务技术。这个技术的优势在于,在保存传统通信技术原有的服务的基础上,增加了多种服务,使得通信技术的服务范围大幅度增加。同时,在进行大范围服务的同时,可以使得系统的性能表现为最佳状态,更好地投入到使用中去。此外,4G通信技术具有较强的抗干扰能力,极大程度上阻挡了信号的干扰,具有很好的降噪能力。

2.3具有较高的智能性

通常来说,信号在传输过程会遇到不同的环境,有些传输的环境具有一定的复杂性,这就需要较好的通信技术,将信号良好的传输出去。4G移动通信技术具有较高的智能性,能够极大程度上保证信号的传送和接收。同时,在操作传输上,4G通信技术也具有较高的智能性。此外,4G技术具有较好的覆盖功能,可以在必要的时候,进行高速变频数据的输出。

34G移动通信技术的发展趋势

3.1交互性干扰控制技术的不断发展

交互性干扰有效控制技术是4G移动通信技术中的关键技术,在4G移动通信技术的发展中起到了重要的作用。它主要使用交互的方式,有效的将通信设备之间的相互干扰降到最低。在传输过程中,当不存在其他信息的情况下,保证了通信信号传输的稳定性。同时,使移动信号的传输质量也得到了极大的提高。因此,基于交互性干扰控制技术的优势,在未来发展过程中一定会得到更好的利用,最大程度的发挥其特点,不断提高与改进,从而使得4G通信技术上升到更高的水平。

3.2多用户自由检测和识别技术得到广泛利用

多用户问题是移动通信技术发展过程中的重要问题之一,对移动通信技术的发展产生了巨大的影响。由于多用户的存在,大量的干扰信号也会不断产生,从而使得原本传输的信号受到极大的影响,降低了整个信号传输的质量。因此,在未来4G通信技术的发展中,必须引进多用户自由检测和识别技术,增加基站的信息容量。同时,运用多用户识别技术,还能够扩大原来的信息覆盖范围,减少通信设施的建设。多用户识别技术的广泛利用,将会不断提高信号传输的质量,确保通信信号的正常输入与输出。

3.3自我愈合型网络技术的兴起

一般来讲,4G移动通信技术中都存在着智能处理器。通过智能处理器中的智能化设备,能够有效地发现通信系统中出现的故障,及时的处理问题。引进具有重构功能的自我愈合型网络技术,可以在4G通信技术中加入特殊的问答装备,通过问答方式,可以将智能处理器中所发现的问题进行分析,将错误的问题筛选出来,及时进行改正。通过这种技术,网络中的各种不正常状况都可以及时得到排除,从而确保了移动通信的正常运行,维护了网络的稳定性。

3.4无线功能的逐步稳定化

无线功能的稳定性,是衡量通信技术质量的重要因素之一。因此,为了4G移动通信技术的发展进步,必须做好移动设备的节能工作。同时,必须引进无线电自动接收技术,将移动通信技术的损耗降到最低。此外,损耗的降低也减少了能源的使用,与可持续发展相呼应,在保护环境的同时,实现了节能减排的目的,更好地适应了绿色发展的全球趋势。

4结论

移动通信技术论文范文第3篇

类似于固定中继系统,移动中继系统由基站、移动中继和用户终端组成。其中,基站和移动中继之间的链路为回程链路(BackhaulLink),移动中继和用户终端之间的链路为接入链路(AccessLink)。若基站和用户设备之间的信道状况良好,还可以考虑直连链路(DirectLink)。移动中继可以选择放大转发和解码转发等模式。由于移动中继具有运动性和随机性,而这种特点与性能密切相关,如何建立合理的移动中继运动模型是移动中继系统研究领域的首要问题。当前研究中有的采用较简单的随机游动模型,或采用二维泊松过程来表示用户终端的放置位置,使用M/M/∞排队模型来表示用户终端的移动性。在实际部署移动中继系统时,需要考虑不同的应用场景。在3GPPR11版本中,高铁是主要应用。在文献[8]中,主要考虑以下两种典型场景:场景1移动中继服务静止用户场景说明如图1所示。在该场景下,中继被安装在交通工具的顶部,中继天线被分别放置在车辆的内外,分别用于和基站与用户终端通信。若不使用中继辅助传输,该场景下的通信将会面临许多问题,如严重的车体损耗,多普勒频移,小区换带来的大量开销等。反之,则可以将较差的信道分为两段传输条件较好的链路,从而很好地解决了该场景下的通信问题。与直接传输相比,中继辅助传输的掉话率明显降低,为车内用户提供较高的吞吐量和较低的小区切换失败率,从而提高了通信质量,改善了用户体验。场景2移动中继服务非静止用户场景说明如图2所示。在该场景下,中继也被部署在车辆顶部,不过其目的不是为了为车内乘客提供服务,而是为街道和公园提供覆盖。闹市区的街道和公园,是行人比较集中的地方,通信业务量大,属于“热点”地区。在经过这些地方的公交车上部署中继,则可以增强覆盖,提高吞吐量,具有实际意义。

2移动中继系统中的关键技术

2.1信道建模与估计对于移动中继来说,由于其移动的特点,而且可能是高速移动,因此研究的首要问题是移动中继的信道建模问题,主要包括回程链路和接入链路的建模。不同链路的信道模型与各网络节点采用的天线数目、中继的转发模式和中继的运动模型密切相关,信道建模的准确度会极大地影响系统性能。如文献[9]分析了不准确的路径损耗模型对移动中继系统性能的影响。此外,基站到移动中继的信道会随着车辆的运动而急剧变化,同时车辆的运动会引起多普勒频移问题,因此在实际的移动中继系统中采用合适的信道预测和估计方法也是非常必要的。如文献提出了一种采用在车辆顶部使用预测性天线的信道预测和估计方法,从而较好地解决了移动中继的信道估计问题。

2.2中继选择在实际的移动中继系统中,可能会存在多个移动中继。现有研究表明,根据信道状态信息选择一个最好的中继进行协作,可以较低的复杂度获得满分集增益。因此,机会中继选择技术是移动中继系统中的关键技术。信令开销是中继选择算法的首要考虑因素。对于快速移动的用户,基于信噪比的方案会产生大量的信令开销,而基于位置或距离的选择方案在高速场景下开销较小,因而适用性更强。上述方案都是基于单个参数的选择,实际信噪比和时延等参数会同时影响中继选择,为此,文献[13]提出了一种具有服务质量(QoS)保证的多参数联合中继选择算法。由于信令开销和系统复杂度与每个目标用户的候选中继的数量成正比,文献[14]考虑了如何减少候选中继的数量而不影响使用中继带来的系统性能增益。文中所提算法限制了每个目标用户的数量从而减少了反馈开销。文献[15]提出了一种三步选择算法。该算法在保持中继增益的同时可以使中继信令开销维持在较低水平。虽然中继选择可以提高系统性能,但是不适宜的选择会引起频繁的中继切换,从而影响系统的整体性能。文献[16]从这个角度出发,提出了使中继活动时间最长和中继切换率最小的两种中继选择算法。研究结果表明,与现有方案相比,所提方案在不降低系统吞吐量的情况下可以获得较低的中继切换率和较长的中继活动时间。

2.3资源分配在中继系统中进行功率和带宽等资源的分配可以有效提高系统资源利用率和系统吞吐量,目前得到了广泛的研究。(1)功率分配。最简单的功率控制方法是开关算法。所谓开关功率控制算法就是给中继分配一定功率或者不分配功率。该算法可以提高小区吞吐量和覆盖范围。文献[17]根据不同的数据速率要求提出了一种最优的功率分配算法。该文献考虑了中继的移动性,建立了移动模型,使用所提出的最优功率分配方案可以提高数据速率。仿真结果表明,在一些实际的数据速率下该算法可以带来3dB增益。文献[18]提出了一种分布式的功率控制算法用以提高平均小区吞吐量。文章考虑了在多小区环境中,通过使用分布式移动中继功率分配方案,与传统的系统相比,平均小区吞吐量得到了改善。同时,也提升了小区边缘吞吐量,因此对小区边缘用户来说,该方案有助于改善其用户体验,是一种较好的解决方案。(2)带宽分配。对于不同的运营商分别安装不同的中继显然并不是高效的,文献[19]基于此提出了共享频谱分配算法来解决此问题。该方案中不同运营商使用相同的移动中继为某一区域内的用户服务,并根据链路质量为不同运营商分配相应的带宽,从而实现了无线资源的有效利用。借助于纳什均衡理论,该方案可以将吞吐量提升近20%。文献[20]以IEEE802.16j系统为研究对象,研究了子信道分配对系统性能的影响。文中提出了重叠子信道分配(OVSA)和正交子信道分配(ORSA)两种方案。研究结果表明,所提方案的小区吞吐量高于不使用中继情况下的吞吐量。文献[21]则利用博弈论理论联合考虑了动态服务选择和带宽分配的问题。为了获得更好的服务质量,移动中继执行基站选择和传输模式的选择,基站则为不同传输模式分配不同的带宽。当移动中继和基站的策略相互影响并且需要作出动态决定时,这将面临着挑战。为解决这个问题,该文提出了一个两层的基于进化博弈和微分博弈的博弈结构。在下层,动态服务选择可以建立为一个进化博弈模型;在上层,基站端的动态带宽分配可以形成一个微分博弈模型,最后得到了一个闭环纳什均衡。数值仿真结果表明了动态博弈带宽分配策略的有效性,并且系统性能和覆盖范围的优势得到了加强。

2.4小区切换在移动中继系统中,由于中继的移动性以及中继一般为多个用户同时服务等原因,如何设计中继高速移动情况下的小区切换策略便成为了一个关键问题,文献此进行了深入研究。在高速运动场景,大量用户很可能需要进行频繁的小区切换,因而如何保证较低的链路失败率和较高的切换成功率,将直接影响用户的通信服务质量和通信体验。对于移动中继系统的小区切换问题,现在比较好的一种方案是使用具有两根分布式天线的移动中继,即在车辆首尾分别装有天线。移动中继通过选择具有较好接收信号质量的天线作为接收天线。当车辆进入重叠区域时,前置天线执行切换至目标基站,后置天线将和服务基站保持连接。当前置天线完成切换后,再由后置天线将工作频率转移至目标基站。如果切换失败,后置天线将执行第二次切换。因此,这种切换方案使通信在切换过程中不会被中断,实现了通信的无缝体验,而且降低了切换失败率,是一种简单实用的方案。

2.5移动中继的其他问题使用移动中继来改善车辆用户的服务质量和吞吐量的效果明显,除了以上提到的关键问题外,仍然有其他的一些问题和挑战需要解决。首先是移动中继的移动性管理问题。这主要包括不同基站间移动中继的切换和不同移动中继间用户的切换。但是,现有LTE系统中没有针对移动中继的移动性支持,因此有必要修改当前的系统结构用以提供有效、可靠的移动性管理。目前,为了支持移动性管理,是在当前的固定中继架构上修改还是提出新的架构尚在讨论中。其次,由于移动中继的使用,干扰管理也是一个新的挑战。中继技术的优势在理论上已获得共识,但在实际部署中中继节点的引入必然导致更加严重的干扰问题。尽管接入链路干扰较小,但对于回程链路来说,不同移动中继间以及中继与宏小区用户间的干扰使问题变得复杂。预测性天线的使用将提高CSI的准确性,从而可以在回程链路中使用高级的干扰避免和干扰消除方案。

3结束语

移动通信技术论文范文第4篇

处理数字信号的过程中,通常情况下都需要将模拟信号转换为数字信号,在处理信号之前,首先需要采集和量化。采集定理又名奈奎斯特采样定理,是美国电信工程师奈奎斯特于1928年提出的,通过采集定理可知,想要在离散信号中恢复出无失真的原始信号,那么采样率至少要达到原始信号的2倍。此后在2004年,华裔科学家T.Tao以及D.Donoho、E.Candes等人通过对比逼近理论和信号稀疏理论的分析,初步提出了压缩感知理论,通过压缩感知理论可知,如果将压缩感知技术用于移动通信系统中,那么即使采用低于奈奎斯特采样定理的采样率,也可以恢复出无失真的原始信号。压缩感知理论的基本思想是:如果信号某个变换域是稀疏的,或者信号是可以压缩的,那么通过与变换基不相关的观测矩阵,能够将变换得到的高维信号投影到低维空间,之后求解最优化问题,就能够在少量投影中重构原始信号。在压缩感知理论框架下,采样率不决定于原始信号带宽,而是重要新信息在信号中的内容和结构决定的,测量值不是信号本身,是高维到低维的投影值,每一个测量值中,都包含着全部样本信号的部分信息,在恢复信号过程中,所用的测量值数目要比奈奎斯特采样定理要求的数目少很多。假设一个N×1维信号s,s包含非零元素K个,s可以通过转换得出N×1维变量x,其转换公式即为:x=覫s式中:覫代表N×N维稀疏变换矩阵,转换得出N×1维变量x之后,就可以计算出M×1维测量信号y,其计算公式如下:y=准x=准覫s=s式中:准代表M×N维测量矩阵,也可称之为随机采样矩阵或者投影矩阵,在上述环节中,覫和准的设计十分重要,对压缩感知技术的实际性能具有很大影响,另外K<M<<N,其中M的取值满足以下条件:M≥Cu2(准,覫)Klog(N)式中:u2(准,覫)代表矩阵覫和准相关性。此外信号重构是压缩感知技术的核心,在取得观测值y的条件下,获取最稀疏解s的过程即为信号重构,为了描述压缩感知理论的信号重构问题,需要运用矩阵理论中的范数知识。

假设定义向量Z={z1,z2,…,zN}的P-范数如下:Zp=Ni=1ΣzipΣΣ1p当P=0时,可以求出向量Z的0-范数,用以表示Z中非零元素的个数。一般情况下,非稀疏信号x通过稀疏转换可得出s,此时压缩感知理论中信号恢复问题就可以转化为线性约束下最小0-范数问题,具体表达式如下:s^=argmin0,s.t.y=准x=准覫s=s上述0-范数优化问题属于非凸优化问题,换言之,在多项式内不能够进行求解,也无法验证解是否有效,这样一来,就需要将其转化为其他范数,例如2-范数或者1-范数,相关资料显示,上述0-范数优化问题可通过求解简单的1-范数来解决,所以压缩感知理论一般采用如下公式:s=argmin1,s.t.y=准x=准覫s=s这样一来,就可以运用线性规划算法等方法来进行处理,在实际工作中,算法有很多中,可以根据具体需要来选择快捷的方法。

2实际应用

分析在实际应用过程中,压缩感知技术有以下几方面特性:

(1)观测信号没有稀疏性,比如OFDM系统频域信道响应等等。

(2)变换观测信号的基坐标,信号在另外的组基下变稀疏,比如频域信号响应经过DFT进行转换,使之在时域上具有稀疏性。

(3)稀疏性是变化的,并且稀疏性是不可知的,这也是使用压缩感知技术的首要条件。有资料显示,经过外场测试多数无线信道在时域上均具有多径稀疏的特点,通过压缩感知技术的应用,将大大减少用户的导频开销。另一方面,目前基站侧天线数目不断增多,无线信道在空域上也具有稀疏性,这也为压缩感知技术未来在移动通信系统中的应用奠定了基础。

3总结

移动通信技术论文范文第5篇

关键词4G移动通信;OFDM;MUD;IPv6

1引言

第三代移动通信系统是能够满足国际电联提出的IMT-2000PFPLMTS系统标准的新一代移动通信系统,要求具有很好的网络兼容性,能够实现全球范围内多个不同系统间的漫游,不仅要为移动用户提供话音及低速率数据业务,而且要提供广泛的多媒体业务。根据ITU的标准,世界各大电信公司联盟均己提出了自己的第三代移动通信系统方案,主要有W-CDMA、CDMA2000、TD-CDMA以及我国提出的拥有自主知识产权的TD-SCDMA。但3G也存在以下几方面的局限性:

不能支持较高的通信速率。3G虽然标称能达到2Mbit/s的速率,但平均速率只能达到384kbit/s。尽管目前3G增强型技术不断发展,但其传输速率还有差距。

不能提供动态范围多速率业务。由于3G空中接口主流的三种体制WCDMA、cdma2000、TD-SCDMA所支持的核心网不具有统一的标准,难以提供具有多种QoS及性能的多速率业务。

不能真正实现不同频段的不同业务环境间的无缝漫游。由于采用不同频段的不同业务环境,需要移动终端配置有相应不同的软、硬件模块,而3G移动终端目前尚不能实现多业务环境的不同配置。由于3G系统以上的局限性,目前,很多公司已经开始着手4G概念通信系统的研究。本文主要介绍4G概念通信的技术特点以及可能采用的关键技术。

24G概念通信技术特点

目前,业界专业人士对4G概念移动通信系统的共识主要有以下几点:

a)用户可以在任何地点、任何时间以任何方式不受限地接入网络中来;

b)移动终端可以是任何类型的;

c)用户可以自由地选择业务、应用和网络;

d)可以实现非常先进的移动电子商务;

e)新的技术可以非常容易地被引入到系统和业务中来。

根据以上描述,未来的4G系统应具备以下的基本条件。

(1)具有很高的数据传输速率。对于大范围高速移动用户(250km/h),数据速率为2Mbit/s;对于中速移动用户(60km/h),数据速率为20Mbbit/s;对于低速移动用户(室内或步行者),数据速率为100Mbit/s。

(2)实现真正的无缝漫游。4G移动通信系统实现全球统一的标准,能使各类媒体、通信主机及网络之间进行“无缝连接”,真正实现一部手机在全球的任何地点都能进行通信。

(3)高度智能化的网络。采用智能技术的4G通信系统将是一个高度自治、自适应的网络。采用智能信号处理技术对信道条件不同的各种复杂环境进行结合的正常发送与接收,有很强的智能性、适应性和灵活性。

(4)良好的覆盖性能。4G通信系统应具有良好的覆盖并能提供高速可变速率传输。对于室内环境,由于要提供高速传输,小区的半径会更小。

(5)基于IP的网络。4G通信系统将会采用IPv6,IPv6将能在IP网络上实现话音和多媒体业务。

(6)实现不同QoS的业务。4G通信系统通过动态带宽分配和调节发射功率来提供不同质量的业务。

34G概念通信关键技术探讨

(1)正交频分复用(OFDM)技术

第四代移动通信系统主要是以OFDM为核心技术。OFDM技术实际上是多载波调制的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。

OFDM技术之所以越来越受关注,是因为OFDM有很多独特的优点:

a)频谱利用率高,频谱效率比串行系统高近一倍。OFDM

信号的相邻子载波相互重叠,其频谱利用率可以接近Nyquist

极限。

b)抗衰落能力强。OFDM把用户信息通过多个子载波传输,这样在每个子载波上的信号时间就相应地比同速率的单载波系统上的信号时间长很多倍,从而使OFDM对脉冲噪声和信道快衰落的抵抗力更强。

c)适合高速数据传输。OFDM自适应调制机制使不同的子载波可以按照信道情况和噪声背景的不同使用不同的调制方式。当信道条件好的时候,应采用效率高的调制方式;而当信道条件差的时候,则应采用抗干扰能力强的调制方式。再有,OFDM加载算法的采用,使得系统可以把更多的数据集中放在条件好的信道上以高速率进行传送。因此,OFDM技术非常适合高速数据传输。

d)抗码间干扰(ISI)能力强。码间干扰是数字通信系统中除噪声干扰之外最主要的干扰,它与加性的噪声干扰不同,是一种乘性干扰。造成码间干扰的原因有很多,实际上,只要传输信道的频带是有限的,就会造成一定的码间干扰。OFDM由于采用了循环前缀,故对抗码间干扰的能力很强。

(2)智能天线技术

智能天线采用了空时多址(SDMA)的技术,利用信号在传输方向上的差别,将同频率或同时隙、同码道的信号进行区分,动态改变信号的覆盖区域,将主波束对准用户方向,旁瓣或零陷对准干扰信号方向,并能够自动跟踪用户和监测环境变化,为每个用户提供优质的上行链路和下行链路信号从而达到抑制干扰、准确提取有效信号的目的。这种技术具有抑制信号干扰、自动跟踪及数字波束等功能,被认为是未来移动通信的关键技术。

目前,智能天线的工作方式主要有全自适应方式和基于预多波束的波束切换方式。全自适应智能天线虽然从理论上讲可以达到最优,但相对而言各种算法均存在所需数据量、计算量大、信道模型简单、收敛速度较慢,在某些情况下甚至出现错误收敛等缺点,实际信道条件下,当干扰较多、多径严重,特别是信道快速时变时,很难对某一用户进行实际跟踪。在基于预多波束的切换波束工作方式下,全空域被一些预先计算好的波束分割覆盖,各组

权值对应的波束有不同的主瓣指向,相邻波束的主瓣间通常会有一些重叠,接收时的主要任务是挑选一个作为工作模式,与自适应方式相比它显然更容易实现,是未来智能天线技术发展的方向。

(3)无线链路增强技术

可以提高容量和覆盖的无线链路增强技术有:分集技术,如通过空间分集、时间分集(信道编码)、频率分集和极化分集等方法来获得最好的分集性能;多天线技术,如采用2或4天线来实现发射分集,或采用多输入多输出(MIMO)技术来实现发射和接收分集。MIMO技术是指利用多发射、多接收天线进行空间分集的技术,它采用的是分立式多天线,能够有效的将通信链路分解成为许多并行的子信道,从而大大提高容量。信息论已经证明,当不同的接收天线和不同的发射天线之间互不相关时,MIMO系统能够很好地提高系统的抗衰落和噪声性能,从而获得巨大的容量。在功率带宽受限的无线信道中,MIMO技术是实现高数据速率、提高系统容量、提高传输质量的空间分集技术。

(4)软件无线电(SDR)技术

在4G系统中,若要实现“任何人在任何地点以任何形式接入网络”的理想通信方式,则至少需要保证移动终端能够适合各种类型的空中接口,能够在各类网络环境间无缝漫游,并可以在不同类型的业务之间进行转换。这就意味着在4G系统中,软件将会变得非常复杂。为此,专家们提议引入软件无线电技术,软件无线电是近几年随着微电子技术的进步而迅速发展起来的新技术,它以现代通信理论为基础,以数字信号处理为核心,以微电子技术为支持。软件无线电概念一经提出,就受到各方的极大关注,这不仅是因为软件无线电概念新技术先进、发展潜力大,更为重要的是它潜在的市场价值也是极具吸引力的。软件无线电强调以开放性最简硬件为通用平台,尽可能地用可升级、可重配置的不同应用软件来实现各种无线电功能的设计新思路。其中心思想是:构造一个具有开放性、标准化、模块化的通用硬件平台,将工作频段、调制解调类型、数据格式、加密模式、通信协议等各种功能用软件来完成,并使宽带A/D和D/A转换器尽可能靠近天线,以研制出具有高度灵活性、开放性的新一代无线通信系统。在4G众多关键技术中,软件无线电技术是通向未来4G的桥梁。由于各种技术的交迭有利于减少开发风险,所以未来4G技术需要适应不同种类的产品要求,而软件无线电技术则是适应产品多样性的基础,它不仅能减少开发风险,还更易于开发系列型产品。此外,它还减少了硅芯片的容量,从而降低了运算器件的价格,其开放的结构也会允许多方运营的介入。

(5)多用户检测技术

4G系统的终端和基站将用到多用户检测技术以提高系统的容量。多用户检测技术的基本思想是:把同时占用某个信道的所有用户或部分用户的信号都当作有用信号,而不是作为噪声处理,利用多个用户的码元、时间、信号幅度以及相位等信息联合检测单个用户的信号,即综合利用各种信息及信号处理手段,对接收信号进行处理,从而达到对多用户信号的最佳联合检测。它在传统的检测技术的基础上,充分利用造成多址干扰的所有用户的信号进行检测,从而具有良好的抗干扰和抗远近效应性能,降低了系统对功率控制精度的要求,因此可以更加有效地利用链路频谱资源,显著提高系统容量。

现有的多用户检测算法在计算复杂度与处理时延问题上存在不足,且算法中一些参数(频率、幅度、定时、相位等)估计有误时,会使得相关矩阵产生较大偏差,导致整个系统性能急剧下降。另一方面,当前的MUD算法只考虑了同小区内的干扰,而没有考虑相邻小区间的同频率用户干扰。一般的多用户检测研究都假设用户数据是独立等概率的,没有考虑信道编码的影响,现在组合信道编码和多用户检测的研究受到越来越多的重视。另外,目前的研究方向还包括多速率多用户检测和多用户检测与空时二维信号处理、多载波调制、功率控制等技术的结合。

(6)IPv6技术

4G通信系统选择了采用基于IP的全分组方式传送数据流,因此IPv6技术将成为下一代网络的核心协议。选择IPv6协议主要基于以下几点考虑:

a)巨大的地址空间。在一段可预见的时期内,它能够为所有可以想像出的网络设备提供一个全球惟一的地址。

b)自动控制。IPv6还有另一个基本特性就是它支持无状态和有状态两种地址自动配置方式。无状态地址自动配置方式是获得地址的关键。在这种方式下,需要配置地址的节点使用一种邻居发现机制来获得一个局部连接地址。一旦得到这个地址之后,它将用另一种即插即用的机制,在没有任何人工干预的情况下,获得一个全球惟一的路由地址。

c)服务质量。服务质量(QoS)包含几个方面的内容。从协议的角度看,IPv6与目前的IPv4具有相同的QoS,但是IPv6能提供不同的服务。这些优点来自于IPv6报头中新增的字段“流标志”。有了这个20位长的字段,在传输过程中,中国的各节点就可以识别和分开处理任何IP地址流。尽管对这个流标志的准确应用还没有制定出有关标准,但将来它无疑将用于基于服务级别的新计费系统。

d)移动性。移动IPv6在新功能和新服务方面可提供更大的灵活性。每个移动设备设有一个固定的家乡地址,这个地址与设备当前接入互联网的位置无关。当设备在家乡以外的地方使用时,通过一个转交地址即可提供移动节点当前的位置信息。移动设备每次改变位置都要将它的转交地址告诉给家乡地址和它所对应的通信节点。

4结束语

4G移动通信系统目前还只是一个基本概念,4G网络的定义仍然还不明确,IEEE等标准化组织仍处于制定标准和规范的过程中。但是融合现有的各种无线接入技术的4G系统将成为一个无缝连接的统一系统,实现跨系统的全球漫游及业务的可携带性,是满足未来市场需求的新一代的移动通信系统,它将帮助我们实现充满个性化的通信梦想。

参考文献

[1]AjayR.Mishra著,中京邮电通信设计院,无线通信研究所译.蜂窝网络规划与优化基础.北京:机械工业出版社,2004.

[2]何琳琳,杨大成.4G移动通信系统的主要特点和关键技术.移动通信,2004(2).

[3]NamgiKim;HymenChoir;HyunsooYoon.Seamlesshandoffschemefor4GmobilesystemsbasedonIPandOFDM.2004IEEE60thVolume5,26-29Sept.2004Page(s):3315-3318Vol.5

[4]Gazis,V.;Housos,N.;Alonistioti,A.;Merakos,L.Genericsystemarchitecturefor4Gmobilecommunications.The57thIEEESemiannualVolume3,22-25April2003Page(s):1512-1516vol.3

[5]Lu,municationsMagazine,IEEEVolume41,Issue3,March2003Page(s):104-106

[6]刘伟,丁志杰.4G移动通信系统研究进展与关键技术.中国数据通信,2004(2).

[7]袁晓超4G通信系统关键技术浅析.中国无线电,2005(12)

移动通信技术论文范文第6篇

[摘要]第四代移动通信技术(4G)与前三代移动通信技术相比具有五大技术要求,解决了四大关键技术后4G将一统移动通信的天下。

引言

移动通信技术飞速发展,已经历了3个主要发展阶段。每一代的发展都是技术的突破和观念的创新。第一代起源于20世纪80年代,主要采用模拟和频分多址(FDMA)技术。第二代(2G)起源于90年代初期,主要采用时分多址(TDMA)和码分多址(CDMA)技术。论文百事通第三代移动通信系统(3G)可以提供更宽的频带,不仅传输话音,还能传输高速数据,从而提供快捷方便的无线应用。但是第三代移动通信系统仍是基于地面标准不一的区域性通信系统,尽管其传输速率可高达2Mb/s,仍无法满足多媒体通信的要求,因此第四代移动通信系统(4G)的研究势在必行。

一、4G的定义及其技术要求

第四代移动通信技术可称为广带(Broadband)接入和分布网络,具有非对称超过2Mb/s的数据传输能力,对全速移动用户能提供150Mb/s的高质量影像服务,将首次实现三维图像的高质量传输。它包括广带无线固定接入、广带无线局域网、移动广带系统和互操作的广播网络(基于地面和卫星系统),集成不同模式的无线通信,移动用户可以自由地从一个标准漫游到另一个标准。其广带无线局域网(WLAN)能与B-ISDN和ATM兼容,实现广带多媒体通信,形成综合广带通信网(IBCN),他还能提供信息之外的定位定时、数据采集、远程控制等综合功能。其主要技术要求是:

(1)通信速度提高,数据率超过UMTS,上网速率从2Mb/s提高到100Mb/s。

(2)以移动数据为主面向Internet大范围覆盖高速移动通信网络,改变了以传统移动电话业务为主设计移动通信网络的设计观念。

(3)采用多天线或分布天线的系统结构及终端形式,支持手机互助功能,采用可穿戴无线电,可下载无线电等新技术。

(4)发射功率比现有移动通信系统降低10~100倍,能够较好地解决电磁干扰问题。

(5)支持更为丰富的移动通信业务,包括高分辨率实时图像业务、会议电视虚拟现实业务。

二、4G的关键技术

1.OFDM(正交频分复用)

OFDM技术实际上是MCM(Multi-CarrierModulation,多载波调制)的一种。其主要思想是:将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰(ICI)。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。由于OFDM技术由于具备上述特点,是对高速数据传输的一种潜在的解决方案,因此被公认为4G的核心技术之一。

2.软件无线电

软件无线电(SoftwareDefinedRadio,简称SDR),就是采用数字信号处理技术,在可编程控制的通用硬件平台上,利用软件来定义实现无线电台的各部分功能:包括前端接收、中频处理以及信号的基带处理等。即整个无线电台从高频、中频、基带直到控制协议部分全部由软件编程来完成。其核心是在尽可能靠近天线的地方使用宽带的“数字/模拟”转换器,尽早地完成信号的数字化,从而使得无线电台的功能尽可能地用软件来定义和实现。软件无线电是一种基于数字信号处理(DSP)芯片以软件为核心的崭新的无线通信体系结构。

3.智能天线

智能天线是波束间没有切换的多波束或自适应阵列天线。多波束天线在一个扇区中使用多个固定波束,而在自适应阵列中,多个天线的接收信号被加权并且合成在一起使信噪比达到最大。与固定波束天线相比,天线阵列的优点是除了提供高的天线增益外,还能提供相应倍数的分集增益。智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,其基本工作原理是根据信号来波的方向自适应地调整方向图,跟踪强信号,减少或抵消干扰信号。智能天线的核心是智能算法,而算法决定电路实现的复杂程度和瞬时响应速率,因此需要选择较好算法实现波束的智能控制。

4.IPv6协议

4G通信系统选择了采用基于IP的全分组的方式传送数据流,因此IPv6技术将成为下一代网络的核心协议。

(1)巨大的地址空间。在一段可预见的时期内,它能够为所有可以想像出的网络设备提供一个全球惟一的地址。

(2)自动控制。IPv6还有另一个基本特性就是它支持无状态和有状态两种地址自动配置的方式。无状态地址自动配置方式是获得地址的关键。在这种方式下,需要配置地址的节点使用一种邻居发现机制获得一个局部连接地址。一旦得到这个地址之后,它使用另一种即插即用的机制,在没有任何人工干预的情况下,获得一个全球惟一的路由地址。

(3)服务质量。服务质量(QoS)包含几个方面的内容。从协议的角度看,IPv6与目前的IPv4提供相同的QoS,但是IPv6的优点体现在能提供不同的服务。IPv6报头中新增加的字段“流标志”,有了这个20位长的字段,在传输过程中,中国的各节点就可以识别和分开处理任何IP地址流。

(4)移动性。移动IPv6(MIPv6)在新功能和新服务方面可提供更大的灵活性。每个移动设备设有一个固定的家乡地址(homeaddress),这个地址与设备当前接入互联网的位置无关。当设备在家乡以外的地方使用时,通过一个转交地址(care-ofaddress)来提供移动节点当前的位置信息。移动设备每次改变位置,都要将它的转交地址告诉给家乡地址和它所对应的通信节点。

三、结束语

由于4G与1~3G相比具有通信速度更快,网络频谱更宽,通信更加灵活,智能性能更高,兼容性能更平滑等优点,4G将成为行业关注的焦点。相信不久的将来4G将一统移动通信的天下,产生巨大的社会效益和经济效益。

参考文献:

移动通信技术论文范文第7篇

3G系统采用码分多址(CDMA)和分组交换技术。三种主流的技术标准:WCDMA、CDMA2000、TD-SCDMA。主要问题在于:没有一个统一的世界标准;语音不是在IP网络结构上;数据传输达不到速度要求。

国际两大3G标准化组织:3GPP和3GPP2。第三代合作伙伴计划(3rdGenerationPartnershipProject,即3GPP)成立于1998年12月。成员包括欧洲ETSI、日本ARIB和TTC、中国CCSA、韩国TTA和北美ATIS。3GPP的目标是在ITU的IMT-2000计划范围内制订和实现全球性的(第三代)移动通信系统规范,致力于WCDMA的发展。第三代合作伙伴计划2(3rdGenerationPartnershipProject2,即3GPP2)成立于1998年12月,成员包括:TIA(北美)、CCSA(中国)、ARIB/TTC(日本)和TTA(韩国)。3GPP2其致力于使ITU的IMT-2000计划中的(3G)移动电话系统规范在全球的发展,它是从2G的CDMA或者IS-95发展而来的CDMA2000标准体系的标准化机构。

WCDMA有Release99、Release4、Release5、Release6等版本。WCDMA(宽带码分多址)采用直接序列扩频码分多址(DS-CDMA)、频分双工(FDD)方式,码片速率为3.84Mcps,载波带宽为5MHz。基于Release99/Release4版本,可在5MHz的带宽内,提供最高384kbps的用户数据传输速率。WCDMA能够支持移动/手提设备之间的语音、图象、数据以及视频通信,速率可达2Mb/s(对于局域网而言)或者384Kb/s(对于宽带网而言)。

HSDPA(高速下行分组接入,HighSpeedDownlinkPackagesAccess)技术是实现提高WCDMA网络高速下行数据传输速率最为重要的技术,是3GPP在R5协议中为了满足上下行数据业务不对称的需求提出来的,HSDPA是与R99的信道在同一载波上,只是为HSDPA增加了专门的信道,只需要进行软件升级即可。HSDPA下行峰值速率理论最大值可达14.4Mbps。

HSUPA(高速上行链路分组接入,highspeeduplinkpacketaccess)。HSUPA通过采用多码传输、HARQ、基于NodeB的快速调度等关键技术,使得单小区最大上行数据吞吐率达到5.76Mbit/s,大大增强了WCDMA上行链路的数据业务承载能力和频谱利用率。HSUPA引入了五条新的物理信道E-DPDCH、E-DPCCH、E-AGCH、E-RGCH、E-HICH和两个新的MAC实体MAC-e和MAC-es,并把分组调度功能从RNC下移到NodeB,实现了基于NodeB的快速分组调度,并通过混合自动重传HARQ、2ms无线短帧及多码传输等关键技术,使得上行链路的数据吞吐率最高可达到5.76Mbit/s,大大提高的上行链路数据业务的承载能力。

HSDPA是WCDMA下行链路方向(从无线接入网络到移动终端的方向)针对分组业务的优化和演进。与HSDPA类似,HSUPA是上行链路方向(从移动终端到无线接入网络的方向)针对分组业务的优化和演进。HSUPA是继HSDPA后,WCDMA标准的又一次重要演进。

CDMA2000即CDMA20001×EV,1xEV的意思为“Evolution”,表示标准的发展,DO意为DataOnly(后来把DataOnly改为DataOptimized,表示EV-DO是对CDMA20001X网络在提供数据业务方面的一个有效的增强)。CDMA20001×EV-DO(DataOnly),采用话音分离的信道传输数据。CDMA20001×EV-DV(DateandVoice),即数据信道于话音信道合一。CDMA网提供两大类应用,语音和数据。根据应用CDMA2000演进可分为继续提高语音容量,从CDMA20001X演进到1X增强版或从CDMA20001X标准演进到EV-DO版本0,然后从EV-DO版本0演进到EV-DO版本A以及EV-DO版本B再到EV-DO增强版。

CDMA20001X到1X增强版的平滑演进是利用1/8空白速率帧,使用更有效的闭环功控、反向链路提早结束、前向链路提早结束、前向链路干扰抵消(QLIC)、QOF等技术,采用双天线接收的话,则每扇区的容量可达120个同时通话。1X增强版显著增加了语音容量,同时让网络和频谱投资最大化。

从CDMA20001X演进到EV-DO版本0,在原有的1X基站上增加一个专门用来做高速数据传输的载频,还需要增加新的PCF(分组控制功能模块)。兼容特性使得1xEV-DO可沿用现有网络的规划及射频部件。1xEV-DO基站还可与CDMA20001X的基站合一,并允许用户经由1X的载波使用高质量的话音服务和通过1xEV-DO的载波使用高性能的移动数据业务。

从EV-DO版本0演进到EV-DO版本A,只需对EV-DO版本0网络设备进行软件更新,升级基站中的信道板,基站系统中的其他硬件设备则完全可以保留重用。针对网络的不同情况,EV-DO版本A标准还支持终端在EV-DO版本A和EV-DO版本0网络之间的快速切换。终端和网络的后向兼容性保证了运营商可以逐步向版本A演进,保护了对原版本0网络和终端的投资。由于EV-DO版本A设备已经成熟,可以选择跳过EV-DO版本0而直接从CDMA20001X升级为EV-DO版本A。EV-DO版本A到EV-DO版本B,基站和终端之间可以在前反向多个载波上同时传送数据,从而获得更高的峰值传输速率和系统吞吐量。EV-DO版本B可以通过支持多个载频的EV-DO版本A基站进行升级来实现,这需要对基站和基站控制器进行软件更新。EV-DO版本B完全后向兼容EV-DO版本0和EV-DO版本A。EV-DO版本A和EV-DO版本0终端可以无缝接入到EV-DO版本B网络中获取服务。EV-DO版本B网络可以更有效地支持VoIP和可视电话等实时业务。EV-DO增强版完全后向兼容EV-DO版本0、EV-DO版本A和EV-DO版本B。EV-DO版本B、EV-DO版本A和EV-DO版本0的终端可以无缝接入到EV-DO增强版网络中获取服务。

2在3G之后,第四代(4G)移动通信更先进的技术旨在建立一个新的全IP化的接入网和与固网融合的纯IP核心网,目的是提供宽带移动无线接入

3G向4G的演进路线为:WCDMA和TD-SCDMA,均从HSDPA演进至HSUPA,进而到LTE(3GPP长期演进项目);CDMA2000沿着1xEV-DO.0、1xEV-DO.A、1xEV-DO.B,最终到UMB,超移动宽带(UltraMobileBroadband)。

3GLTE使用OFDM(OrthogonalFrequencyDivisionMultiplexing、正交频分复用技术)以及它的后续技术OFDMA(OrthogonalFrequencyDivisionMultipleAccess、正交频分多址技术)是未来无线宽带技术的基础。同UMB一样,LTE也采用了OFDM/OFDMA作为物理层的核心技术,不同的是LTE不再支持CDMA,而UMB为了保持良好的兼容性仍然支持在总带宽中分出一部分带宽来支持CDMA。LTE在20MHz频谱带宽能够提供下行100Mbps、上行50Mbps的峰值速率;改善小区边缘用户的性能;提高小区容量;降低系统延迟,用户平面内部单向传输时延低于5ms,控制平面从睡眠状态到激活状态迁移时间低于50ms,从驻留状态到激活状态的迁移时间小于100ms;支持100Km半径的小区覆盖;能够为350Km/h高速移动用户提供大于100kbps的接入服务;支持成对或非成对频谱,并可灵活配置1.25MHz到20MHz多种带宽。UMB是可以在1.25MHz和20MHz间以约150KHz的频率增量灵活部署,支持频段包括450MHz、700MHz、850MHz、1700MHz、1900MHz、1700/2100MHz、1900/2100MHz(IMT)和2500MHz(3G扩展频段),可与现有的CDMA20001X和1xEV-DO系统兼容,但在数据传输速率、延迟性、覆盖度、移动能力及布建弹性等方面都更具优势。UMB系统继承了1xEV-DO系统的自适应编码调制、HARQ(物理层混合重传)以及QoS控制机制,结合了CDMA、TDM、QOFDMA(准OFDMA)、LDPC(低密度奇偶校验码)等其它先进技术,同时引入了基于MIMO(多路输入输出)、SDMA(空分复用接入)和Beamforming(波束赋性)等多天线技术。在4G网络中将主要使用以下一些核心技术。

正交频分复用(OFDM)/正交频分多址接入(OFDMA).OFDM是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,子载波并行传输。每个子信道是相对平坦的,在每个子信道上进行的是窄带传输,信号带宽小于信道的相应带宽。OFDM可以消除或减小信号波形间的干扰,提高了频谱利用率。OFDMA是OFDM调制的一种形式,具有更高的频谱效率和更好的抗衰落性能。对于低数据率用户,需要更低的发射功耗,具有恒定而不是随时间变化的更短延迟。OFDMA会把副载波的子集分配给各个用户,以信道状态的反馈能执行自适应用户到副载波的分配。与OFDM相比,快速衰退、窄带同频干扰性能都得到了提高,改进了系统的频谱效率。

软件无线电是把尽可能多的无线及个人通信功能通过可编程软件来实现,使其成为一种多工作频段、多工作模式、多信号传输与处理的无线电系统。也可以说,是一种用软件来实现物理层连接的无线通信方式。智能天线具有抑制信号干扰、自动跟踪以及数字波束调节等智能功能,智能天线应用数字信号处理技术,产生空间定向波束,使天线主波束对准用户信号到达方向,旁瓣或零陷对准干扰信号到达方向,达到充分利用移动用户信号并消除或抑制干扰信号的目的。多输入多输出(MIMO、Multiple-InputMultiple-Out-put)技术利用多发射、多接收天线进行空间分集的技术,采用分立式多天线能够有效地将通信链路分解成为许多并行的子信道,从而大大提高容量。MIMO系统能够很好地提高系统的抗衰落和噪声性能,从而获得巨大的容量。在功率带宽受限的无线信道中,MIMO技术是实现高数据速率、提高系统容量、提高传输质量的空间分集技术。

第四代移动通信系统的核心网是一个基于全IP的网络,可以实现不同网络间的无缝互联。核心网独立于各种具体的无线接入方案,能提供端到端的IP业务,能同已有的核心网和PSTN兼容。核心网具有开放的结构,能允许各种空中接口接入核心网;同时核心网能把业务、控制和传输等分开。采用IP后,所采用的无线接入方式和协议与核心网络(CN)协议、链路层是分离独立的。IP与多种无线接入协议相兼容,因此在设计核心网络时具有很大的灵活性,不需要考虑无线接入究竟采用何种方式和协议。

综上,随着移动通信的发展呈现趋势传送宽带化、应用个性化、接入多样化、网络数据化、系统互补化及有线、无线一体化的大趋势,宽带无线市场必定潜力巨大,发展前景一片光明。

参考文献:

[1]彭林.第三代移动通信技术.电子工业出版社.【ISBN】750538361.

[2]康桂霞,田辉,朱禹涛,杜娟.CDMA20001x无线网络技术.人民邮电出版社[ISBN].978-7-115-16664-7.

[3]张智江,朱士钧,严斌峰,张云勇.3G业务技术及应用.人民邮电出版社[ISBN]978-7-115-14353-2.

[4]罗凌,焦元媛,陆冰.第三代移动通信技术与业务(第二版).人民邮电出版社[ISBN]978-7-115-15962-5.

[5]田辉,康桂霞,李亦农,徐海博.3GPP核心网技术.人民邮电出版社[ISBN]978-7-115-16109-3.

移动通信技术论文范文第8篇

集群通信系统是共享资源、分担费用、向用户提供优良服务的多用途、高效能而又廉价的先进无线调度指挥系统。对于指挥调度功能要求较高的企、事业、工矿、油田、农场、公安、武警以及军队等部门都十分适用,集群通信采用单工或半双工方式,要求接续时间小于500毫秒,具有调度级别控制等。同时对于集群通信还提出了传输集群、准传输集群和信息集群的定义。

随着集群通信的发展和用户的需求,集群通信也从原来的模拟集群向数字集群过渡。但这种过度并不是简单的将原来的模拟话音转换为数字话音和提供数据传输功能就可以称为数字集群了。其实,综观国际上提出的数字集群来看,数字集群的标准都是围绕着用户的需求而发展起来和提出的。

2.数字集群移动通信网络的运行

数字集群通信是继手机、小灵通之后的第三大战场,正在成为电信领域开发的新重点,运营商、设备商正在展开一场新的角逐。在设计中针对了专业无线用户的需求,特别适合在政府和商业领域的专网使用。

2.1数字集群通信的标准

TETRA(陆地集群无线电)系统在指挥调度方面应用的比较多,可完成话音、电路数据、短数据消息、分组数据业务的通信及以上业务的直通模式,并可支持多种附加业务。在大区制条件下最大覆盖半径56公里。TETRA扩容可以逐步增加模块化,适用于小、中、大型调度系统;设计组网灵活,既适应于专用调度网,也适应于共用调度网。TETRA话音编码方式采用代数结构码本激励线性预测编码,具有良好的话音质量,即使在强背景噪声干扰下也可听清,话音质量并不像调频系统那样随场强减弱而降低。大量实验证明,TETRA系统的话音质量比GSM系统好。因此,大量应用于应急、调度、指挥等专网应用系统。

iDEN(集成数字增强型网络)系统是基于TDMA多址方式的调度通信/蜂窝双工电话组合系统。它在传统大区制调度通信基础上,大量吸收数字蜂窝通信系统的优点,如采用双模手机方式,增强了电话互联功能;采用小区复用蜂窝结构,提高了网络覆盖能力。选用这种编码是先进的,但技术公开性不好,价格较贵。但通话质量和保密性都较好。

2.2数字集群系统设备安全

设备是网络的基础,设备的安全是保障网络安全的基础,只有保证网络的物理可靠性,才能保证网络功能、信息的安全性,因此基础设备的可靠性至关重要。

对于交换机,硬件上应实现关键部件的热备份。软件上,关键的用户数据、配置数据应当及时、定期进行备份。对于基站系统要考虑其抗外界干扰的能力,如射频干扰、雷击、抗震性能等。基站系统的备用电源应根据基站覆盖区的重要程度适当配备,以应变突发事件。系统主备用倒换能力是系统可靠性的一个重要指标,如倒换时间、倒换过程对正在进行的业务的影响等。完善的监控告警机制可大大提高网络的可靠性,如系统部件可自我诊断和修复、系统可隔离故障模块、及时产生告警信息。此外,调度台、终端存储了用户的重要信息,这些设备由用户控制,应由专人维护,以保证相关用户信息不被外界窃取。

数字集群通信系统是一种特殊的专用通信系统,在应对突发事件时,对社会稳定和人民生命财产的安全起着及其重要的作用,因此数字集群通信系统的安全要求要大大高于公众移动通信系统,所以数字集群通信系统运营者必须从各方面考虑如何增强系统的抗灾变能力,如何使系统更安全可靠的传递信息。只有全面的重视数字集群通信系统的安全问题,才能使数字集群系统发挥其应有的作用。

3.未来数字集群通信技术发展方向

3.1高安全性

数字集群在基站与手机之间,信息完全依靠无线电波的传输,很容易被人们从空中拦截,在通话状态、待机状态都会泄密,即使关闭电台,利用现代高科技,仍可遥控打开,继续窃听,从中截取、破坏、调换、假冒和盗用通信信息。

3.2高抗毁性

专业移动通信在使用过程可能遇到恶意破坏的人为因素或雨雪灾害的自然因素等影响,导致网络不能正常工作,因此,未来PPDT系统要求可靠、准确地提供业务,具有高的抗毁性和可用性。通常情况下,系统以集群方式工作;在遭遇危害的极端情况下,系统以故障弱化方式或直通方式工作,保证系统能满足基本的集群业务需求。

3.3高环境适应性

专业移动通信由于它是用于全球的表层和空间,会遇到各种恶劣的气候、地形和环境;因此,要求通信装备必须能抗拒酷暑、严寒、狂风、暴雨等恶劣气候条件;必须适应山岳、丛林、沙漠、河海、高空等三维空间的不同地形环境条件;既可车载船装,又能背负手持,要经得起各种移动体的安装机械条件;在嘈杂的噪声环境,要具有背景噪声滤除功能,使通话对方听不见噪声干扰,话音清晰;在高速行驶时,通信不能中断,质量不能下降,可支持500km/h的高速运行。

4.结论

集群共网毕竟具有它自身的缺陷,那就是这些共网往往是调度功能要相对弱一些,即使是利用与专网相同的系统来组建的共网,也同样会相对使得调度功能减弱。那些在公网基础上发展起来的调度系统由于是在原来的系统协议和结构上增加了调度功能,由于原来的体制、协议和系统结构是以公网的电话业务为主而建立的,要想完全能够符合专业用户对专网的需求,应该讲目前还是达不到的。

参考文献:

[1]郑祖辉.数字集群通信漫谈[J].电子世界,2003,(12).

[2]潘娟.数字集群通信系统的安全保障[J].当代通信,2006,(13).

[3]胡兴军,向群.数字集群通信三大标准及前景[J].中国信息导报,2004,(9).

移动通信技术论文范文第9篇

[关键词]移动通信媒体;3G技术;三网融合

一、移动通信媒体已经成为“第五媒体”

媒介的定义是信息的一个载体,凡是能够把信息从一方传到另一方的工具、手段称之为媒介。商业媒介通常具有以下特征:1.大众的行销服务的媒介必须是面对大众传播的,因此商业广告谈的媒介指的是大众媒介;2.可控制性,投资行为的本质是以较少量的投入换取较大量的回馈,既是投资行为,在投资上必须具有可控制性;3.付费,商业媒体的另外一个特点为商业性,所谓商业性的意义是媒体依赖广告为主要盈利来源,所以具有付费特征。

从以上媒介的定义和特征来看,移动通信媒体亦即手机媒体已经具备了媒介的所有要素,并且人们也已经普遍认可手机作为报纸、广播、电视、网络之后的“第五媒体”的地位。兴起于20世纪90年代的网络媒体,具备数字化、网络化、多元化、全球化、小众化化、实时性、交互性、广容性、易检性等特点,已经对以报纸为代表的传统媒体的产生了强烈的冲击。在美国,2009年3月16日,有着146年发行历史的《西雅图邮报》成为美国历史上第一家改版为网络报的报纸,这比2008年11月28日就宣布将变成网络版的《基督教箴言报》的真正改版时间,还早了14天。北卡罗来纳州州立大学菲利普•迈耶教授预言:2044年10月,美国最后一位日报读者将结账走人。而在中国,2005以后,报纸业也出现了整体不景气的情况。那么在手机媒体突然兴起的今天,会不会促成媒体结构新一轮的新陈代谢呢?

二、移动通信媒体的特点

移动通信媒体亦即通常所说的手机媒体,可以理解为一种集网络和信息传播功能于一体,通过数据传输技术,把各种文字、图像、音频、视频信息数字化,然后传输给广大用户的崭新媒体。无线网络的发展让手机同时具备了网络媒体所具有几乎所有优点。而由于其介质手机的特点,手机媒体也具备兼容性、整合性、贴身性和便于互动,成为一种“带有体温的媒体”。它具备以下其他媒体无法抗衡的特点。

广泛性。早在2008年底,中国手机用户已经超过6.4亿。手机媒体的用户已经不仅仅集中在25岁到45岁之间、知识水平较高、经济基础较好的人群,它已经向上扩展到65岁而向下延伸到15岁,手机几乎已经成为对应于每个活跃的社会元素的存在。几乎人手一终端,这是其他媒体不可能具备的。

覆盖性。手机网络在大多数地方都可以实现覆盖,无论是办公室还是家中,甚至电梯、汽车、火车上。它的覆盖能力远远超过其他媒体。

跟从性。“手机时代,人们在裸奔”。通过现行的基站,手机定位误差在200米,3G时代,误差可以缩小到10米。2010年1月13日,西城区西单商业街透露将考虑开设手机信息平台,只要进入西单地区,就可获得商场购物及相关打折信息等。

可统计性。“裸奔”的概念不只是地理上的,通过受众所用机型、话费、手机漫游情况、网页浏览状况,运营商可以精确的区分受众,在此基础上丰富受众信息,建立详细的受众数据库,将为广告精准化营销打下了很好的基础。

即时互动性。广告投放效果将不再是盲目计算的。通过促销、活动等吸引反馈的手段可以准确地计算。

可支付性。手机已经可以进行方便的小额的电子支付。而和金融业的融合,使其变身为下一代的支付方式,同时代替钱包和信用卡,从理论上讲也是可行的。

人们从广泛性和覆盖性意识到移动通信媒体的价值,在发展到一定程度以后,人们意识到手机媒体的更重要价值来源于它可以精确的区分受众。而且,手机还具有随身性、反应速度、区域能力、互动能力等其他媒体很难具备的特征,更使其可以进行精准甚至一对一的传播。广告将不再是单一的你投我放模式,而是与营销紧密结合的交互式沟通过程。随着手机上网资费的降低,人们使用无线网络的频率越来越高,而国家正在推行的三网融合会加速这一潮流,手机广告的形式也将大大丰富。在互联网时代,Google、百度等仅用了十几年的时间就超越了众多的媒体公司,而移动通信媒体时代的到来,又为运营商、互联网企业、传统媒体乃至终端机器生产商提供了一个再次竞争的舞台,“忽然间,你会发现全世界最强大的公司突然成了自己的竞争对手,这的确令人难以置信,我们的竞争对手成了苹果、Google和微软”,诺基亚CEO康培凯这样感慨。

三、移动通信媒体应该加强服务性

由于移动通信媒体所具有的优点,其在人群中的普及速度也是非常惊人的。早在2008年底,中国手机用户数量已经超过6.4亿,手机报的普及率已经达到39.6%。而随着手机媒体的发展,早期群发短信式的模式已经遇阻,应当意识到受众不缺少信息,缺少的是及时的、对他自己有用的信息。

在这一点上,日本的实践比较成功。日本最大的移动通信公司NTTDoCoMo于1999年2月22日推出数据业务I-MODE,现在是全球最成功的无限互联网服务。手机媒体研究的先行学者匡文波总结,它成功的关键是以内容为王:首先,它必须是新鲜的,即时更新;其次,它必须有深度;再次,应该鼓励用户多次访问;第四,用户应该能够看到这种用手机上网方式的好处。I-MODE结合日本国民心理,量身定做了各种娱乐业务吸引用户,重点提供了诸如漫画、游戏、图片下载和音乐等服务,结合对内容提供商的严格考核,保证了I-MODE业务内容的丰富化和个性化。

而移动通信媒体还有一个与传统媒体非常大的不同,即它的发展非常依赖于技术的发展,而移动通信技术的发展无疑是非常快的。

四、3G技术将开启移动通信媒体内容之门

3G技术的推广,将使移动通信媒体摆脱手机报的单一形式,进入多姿多彩的多维领域。

3G是英文3rdGeneration的缩写,指第三代移动通信技术。相对第一代模拟制式手机(1G)和第二代GSM、TDMA等数字手机(2G),第三代手机一般地讲,是指将无线通信与国际互联网等多媒体通信结合的新一代移动通信系统。它能够处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。为了提供这种服务,无线网络必须能够支持不同的数据传输速度,也就是说在室内、室外和行车的环境中能够分别支持至少2Mbps(兆字节/每秒)、384kbps(千字节/每秒)以及144kbps的传输速度。

在3G技术基础上,产生了传播形式的无限可能,也产生了可预期的巨大的利益,使得与此相关的各传统行业进入了群雄纷争的阶段。

五、移动通信媒体业诸般博弈

移动运营商进军手机媒体业务的步伐已经势不可挡,它与报社、电台、电视台、独立WAP网站之间也因此产生了矛盾。移动运营商并不甘心只做网络和渠道,而是要凭借自己在市场、用户、渠道、信息网络等方面的诸多优势,力图整合内容提供商、网络服务商、设备系统和终端制造商以及终端用户,形成以自己为主体的产业链。由此,移动运营商与报社、广电企业和WAP网站之间产生了激烈的争夺。

为了减少不必要的损耗,加速我国在这一轮信息技术变革中的脚步。在2010年1月13日主持召开的国务院常务会议中,决定加快推进电信网、广播电视网和互联网三网融合。

所谓“三网融合”,是一种广义的、社会化的说法,在现阶段它并不意味着电信网、计算机网和有线电视网三大网络的物理合一,而主要是指业务应用的融合。三大网络通过技术改造,能够提供包括语音、数据、图像等综合多媒体的通信业务。

这也就意味着,只要通过一部机器,人们就可以完成日常所需的信息处理。手机体积或者屏幕面积会适度增大,而笔记本电脑等则会适度缩小,手机媒体也将正式进化为移动通信媒体。原本存在于电视媒体、手机媒体、网络媒体之间的界限将进一步模糊。

同时也意味着,移动通信媒体进入了一个更加高速发展的时代,并且将加速对传统媒体产业的解构,仅仅是“第五媒体”的定位,恐怕已经不能准确评价它的价值了。

参考文献:

[1]钱伟刚.第四媒体的定义和特征.新闻实践,2000,(7、8).

[2]张燕.释放创意:平衡数字技术的手机媒体.湖南大众传媒职业技术学院学报,2008.7.

移动通信技术论文范文第10篇

绿色移动通信技术主要是指通过降低项目成本、提高工作效率和资源利用率、降低能源消耗等途径来实现移动通信技术的生态环保化。其主要目标是研发绿色移动通信网络、绿色通信设备,从而利用绿色通信技术与设备达到绿色通信服务。

1.1优化网络设计规划

优化网络设计是指能够实现各类网元组织结构的优化设计,降低网络能源消耗。整合分散的多个处理器核心、存储以及网络宽带等物理资源,从各个角度降低网络项目的建造和运营维护成本,实现资源优化。对网络进行优化设计更能提高移动通信各项资源的灵活性和扩展性,提高工作效率;简化拓扑结构和层次结构,这样不仅能够提高通信设备的资源集成度,降低能源消耗,还可以节约网络项目构建成本。

1.2网络实现

网络实现主要基于通信设备和项目建设来讲。首先,必须保证通信设备的性能优异,在通信设备的采购和测试阶段应该全面把握好质量关,从而在网络实现过程中做到节能减排;其次,项目建设过程中应该充分利用基础设施,做到基础设施的共建共享,避免浪费与重复。同时,为缓解用量高峰,应该尽快拓展无线局域网的范围。

1.3网络运营管理创新

21世纪是知识爆炸时代,创新和人才是这个阶段必不可少的两个因素。在网络建设工程项目中,对管理制度进行创新设计十分重要。在网络运营的整个过程中,保证每一个环节,比如设计、评估、整合等,都要做到环环相扣,这就要求管理制度要极具创新性,同时也要求创新性的人才管理团队。只有这样,才可以更好地节约资源,降低能耗,保护生态环境,实现经济效益与生态效益的最优化。

2绿色通信设备

2.1体系结构中的绿色创新

采用新型节能通信设备对于体系结构的绿色创新具有很重要的意义,可以起到很好的推动作用。对体系结构各个层面都利用绿色节能设备和技术对于实现绿色移动通信至关重要。比如,在物理层采用光子技术,可以降低能源消耗,积极研发新型能源电池,可以延长手机续航时间;在信号处理层应用新型高科技绿色元件,例如软件无线电技术,其应用简单方便,节省硬件成本和人力资源,前景十分广阔;在信息系统硬件平台可采用基于精简指令集CPU的硬件平台的半导体元件和性能优异、节约空间的闪存内存;在信息系统软件平台可尝试由用户DIY安装的开源操作系统,降低成本,同时要对电源进行升级和优化,提高工作效率。

2.2绿色生命周期

元器件的报废给环境带来很大压力,如果将通信设备内部的元器件使用周期加以延长,可以减少报废的次数,有效提高设备利用率,同时也可以避免设备制造过程原材料的浪费,减少污染。此外,还要做到对原材料积极回收再利用,避免其对环境造成的负面效应。

2.3绿色技术标准

将绿色移动通信技术标准化,可以大大降低生产成本,促进经济效益的提升,同时还可以保障用户投资的长期有效性,维护用户权益。比如IEEE1888绿色社区控制网络标准,是在全世界得到认可的情况下中国的创新技术标准,展示了国际合作的重要成果。绿色技术标准的应用,在节能减排、构建和谐社会的道路上扮演着重要角色。

3绿色通信服务

3.1手机终端服务

手机终端服务在通信业务和实践过程中发挥着重大作用。可以提高人机交互效率,为人们的生活带来方便,还可以为用户提供优良服务。比如,通过感知用户所在具体地理位置,为其提供最佳行程路线。手机终端服务有很好的市场竞争力和发展前途。

3.2智能化通道

利用智能化通道可以对整个通信过程中业务实现底层网络能力的封装输出、独占资源的封装销售等,形成整合通信、IT和网络资源的垂直行业解决方案。可以有效提高通信系统的资源利用率,降低项目建设成本。

3.3信息化和云服务

移动通信技术论文范文第11篇

对于5G的应用和未来憧憬,产业界和学术界对其都进行了相关阐述,从他们的阐述中得出,人们对未来5G技术的需求,相比之下,5G应具备下面的基本特征。

1.1数据流量的增长

产业界人士预测10年以后,移动数据量将达到1000倍。5G的吞吐量能力特别大,就算在很忙的时候也能提升到1000倍,至少可以到达100Gbit/s/km2以上。

1.2联网设备扩大100倍

伴随着智能终端和物联网的迅速发展,预计10年后,联网的设备数目将增加到600~1000达部,在未来里,5G网络单位覆盖面积将大大增加,相比之下是目前4G网络将增长100倍,相对一些特殊的应用,单位面积将通过5G网络的设备数目达到100万/km2。

1.3峰值速率至少达到10Gbit/s

面向2020年以后的5G网络,相对于目前的4G网络的峰值速率需提高10倍以上,然而达到10Gbit/s,在特殊情况下,用户单链峰值速率都要求需达10Gbit/s。

1.4用户速率可达到10Gbit/s,特殊需求达到100Gbit/s

在未来的5G网络中,在一般条件下,用户在任何时候都能获得10Gbit/s以上的速率,对于特殊需求的业务和用户将达到100Gbit/s,比如:急救车内高清医疗图像传输服务。

1.5可靠性高与时间短

2020年后的5G网络,需要满足用户在线服务,能随时随地的进行各种体验,并且还需满足工业信息系统、应急通信等更多场景需求。需要进一步地降低用户的控制时延,与4G网络相比,缩短了5~10倍。对于关系重大财产安全的业务和人类生命可靠性必须提升到99.9999%以上。

1.6频谱利用相对较高

由于5G网络用户的业务量大、规模大、流量高,相对来说,使用频率需求量也大,需要通过压缩等创新技术及频率倍增的应用,来提高频率利用率。相对4G网络来说,5G的频谱效率要5~10倍的提高,来解决流量带来的频谱短缺问题。

1.7网络消耗能源

相对来说较低节省能源、绿色低碳是未来通信技术的发展的方向,在未来的5G网络中,需要利用节约能源的设计,使网络能耗效率都有待提高1000倍,来满足1000倍流量的需求,但是现有网络与能耗有相当的水平。

25G关键技术概述

从目前的角度看,5G的关键技术仍在发展阶段和研究阶段,但学术界和产业认为,5G的关键技术应包含下几个方面:一是5G关键技术与无线网络构架;二是5G无线输送的关键技术;三是5G移动通信总体技术系统;四是5G移动通信验证技术。接下来对业界十分关注的5G技术进行总的介绍。

2.1高频段传输

目前,移动通信系统频段主要是3GHz以内,伴随着用户人数的增加,频谱资源也变得十分拥挤,然而在高频段里,如毫米波频率是27.3~350GHz,而带宽则高达284.6GHz,超过微波全部带宽的12倍。微波与毫米波相比,元器件的尺寸要小很多,毫米波系统能轻而易举小型化,实现进行极高速短距离通信,支持5G传输速率和容量需求。

2.2多天线传输技术

多天线技术,经历了从二维到三维,从无源到有源,从高阶多输入多输出到大规模阵列的发展,能把频谱利用率提高到数十五倍甚至再高,是目前5G技术唯一重要研究方向。

2.3同时同频全双工技术

同时同频全双工技术被称为高效的频谱效率技术,该技术在相同的物理信道上对两个方向信号的进行传输,在通信双工节点的接收机处通过对取消自身发射的信号干扰,在发射信号时候,同时接收另一节点的相同频信号。

2.4设备间直接通信技术

以往的移动通信系统连网方式,以基站为中心点,实现对市区覆盖,基站及中继站是不能随便移动的,网络结构是有限制的,在未来的5G网络里,用户规模大,数据流量大,以传统的基站模式为中心的组网方式,是没办法满足业务需求。D2D直接通信技术在没有基站的情况下也能运转,实现通信设备的直接通信,开拓了接入方式和网络连接。

2.5密集网络技术

5G是一个智能化、宽带化、多元化、综合化的网络,数据流量是4G的1000倍。想要实现目标有两种技术:一是在宏基站处布置大规模天线来取得室外空间增益,二是布置密集网络来满足室外和室内数据需求。在未来里,向高频段宽带,将采用更加密集的方案,部署高达200个以上扇区。

2.6新型网络架构技术

为了满足在未来里,使用高容量、大规模的用户需求,未来的5G网络架构将具有低时延、低成本、易维护、扁平化特点。目前产业界主要集中在云架构和C-RAN的研究上。

2.7智能化技术

5G的中心网络,是由大型的服务器来组成的云计算平台,通过交换机网络及数据交换功能的路由器与基站相连接,宏基站具有大数据存储功能和云计算功能,时效性特强或特别大的数据,提交到云计算中心进行网络处理,终端或基站的数量、形态多,不一样的业务选取不一样的频段,连接方式和天线多样化。所以,需要具有自动模式切换、智能配置、智能识别的功能,实现智能组网,在未来里,智能化技术是实现5G网络的是关键技术。

3研究情况及趋势

从目前来看,全球对5G技术的研究,都处在早期阶段,将来还需要进行标准化、外场试验、技术研究等阶段,最后才能实现商用部署,但是,尽管对5G技术和概念仍然在进行深究,对5G标准的大方向,现在产业界和学术界在基本上达成了共识。

4结束语

移动通信技术论文范文第12篇

高职专业人才培养目标定位依据一方面是专业面向的岗位群业务规格要求确定职业知识、职业能力、职业素质结构。另一方面是岗位职业资格标准及职业技能鉴定标准确定作业规范与职业道德。通过对区域内移动通信运营商、移动通信设备供应商、移动代维公司等企业的深入调研和近3届毕业生的跟踪调查,将毕业生主要从事岗位划定为“移动机房管理维护、移动通信基站维护、移动通信安装测、移动通信网络优化”等岗位。邀请企业技术人员与校内专家一起对上述岗位从事的典型工作任务进行分析,归纳出共性职业能力,确定“移动通信设备配置维护、移动通信网络设计实施、移动通信网络分析优化”为本专业人才培养的核心职业能力,并最终将本专业人才培养目标定位为:掌握移动通信系统、移动通信网络、移动通信工程建设等方面的基础知识,具备移动通信基站安装、维护、管理,通信工程勘察、设计、规划,移动通信网络设计、分析、优化等能力,面向移动通信领域的机房基站维护、设备安装调测、网络设计优化等岗位的生产、服务、管理第一线需要的高端技能型人才。

2构建“四阶递进、工学结合”人才培养模式

人才培养模式的构建可以依据不同专业的特点和不同学院的实际情况进行设计。自2011年起,学院先后与数家业内知名企业签署“订单”培养协议。依托订单合作企业,以工作过程为载体,建立“四阶递进、工学结合”人才培养模式。其中“四阶递进”是指职业能力培养分解为四个阶段逐级进阶,即第1、2学期在校内实训基地进行,完成专业基础能力培养;第3、4学期校企交替进行,完成专业核心能力培养;第5学期校企交替进行,完成协岗能力训练;第6学期到企业进行顶岗能力实习“。工学结合”是指第1、2学期利用校企共建的移动通信综合实训平台,开展“教学做一体”的仿真实训;第3、4学期聘请企业技术人员担任指导教师,开展“教学做一体”的全真实训;第5学期在企业技术人员的指导下,协助完成基本岗位工作;在第6学期在校外实习基地开展顶岗综合实习。

3设计以工作过程为导向的课程体系

通过对移动通信运营商、移动通信设备供应商、移动代维公司等企业实地走访及毕业生的跟踪调研,确定移动通信行业面向高职院校毕业生的岗位群。邀请企业技术人员与校内专家组一起对岗位群进行分析,归纳整理典型工作任务。基于这些典型工作任务分析从业所需的职业能力,典型工作任务分解过程如表1所示。再将这些职业能力按照专业能力、方法能力和社会能力进行分类、汇总,并以此为依据构建移动综合职业能力课程体系。由于移动系统有GSM/WCDMA/CDMA2000/TD-SCDMA等,需要从典型岗位任务推演到各系统的典型工作任务,选取岗位工作技能为逻辑载体,分别以对象系统、工作顺序为线索,提炼学习领域课程,形成专业核心课程。

4实施一体化教学模式改革

依托实训条件,创设情境,实施专业核心课“教学做”一体化教学模式改革,启发学生思维、学生在教师的引导下完成各子项目任务,利用情境进行真实配置、在线实际处理,激发学生学习动力和兴趣,并在教学做的过程中锻炼协作、分析、整理的方法能力和社会能力。丰富教学案例视频,展现特色教学方法。充分发挥校企合作的优势,结合实践,收集整理更多案例素材,制作更多的实际案例教学视频,丰富教学内容和教学方法。利用专业教学资源信息化,建成开放、共享的专业与课程资源库,可随时学习自学。搭建资源服务平台,为院校、教师、学生和企业从业人员提供服务,移动通信技术专业教师、学生和从业人员,免费共享个性化学习。改变传统的反馈及测试方式,提高学习质量,激发学生创新思维。通过专业资源平台在线答疑,反馈信息。

5结语语

移动通信技术论文范文第13篇

多点分配体系具体涵盖本地以及对点信道系统,前者为微波系统,在同他类系统对比的阶段中体现出了鲜明的性能,即可点对点应用。该系统采取宽带固定无线接入手段中的无线小区制原理,实现了双向的数据传输,因而宽带更高,当然传输容量同光纤无线比对通常较为一致。多点分配体系可提供更丰富的宽带业务,例如多媒体、视频以及电话业务等。还有一类为多点多信道分配体系,该体系基于视距传输分配技术实现传输处理,同时在完成IP与TMD的带宽无线接入阶段中具体应用措施通常为多点多信道处理技术。此手段不仅可完成因特网接入,进行本地用户大容量信息传输、电视信号传递与数据广播目标,还可完成用户终端、GPRS通信与GSM短信服务等。另外,多点多信道手段在升级更新上比他类通信技术更为便利简单。移动通信中还会应用到其他种类的无线接入技术,例如超宽带技术、虚拟网技术、蓝牙技术、卫星通信技术等。

2移动通信中无线接入技术应用

当前,依据移动通信无线接入技术具体的应用状况,通常可划分为六类频段。第一个频段即为1.8GHZ,其频段也就是20M,主体作用在于利用SCDMA手段实现公众网同本地专属网络无线连接。2.4GHZ为第二个应用频段,此频段并不属于通信频段范畴,然而在通过申请校验后则可发挥点对点微波保护的良好功效。移动通信中,无线接入技术的第三个应用频段是3.5GHZ,即我们通常指的宽带无线接入手段,该技术分配于各类基础电信运营商实践经营流程之中。还有一类应用频段为5.8GHZ,具体在无线宽带接入实践中发挥功能,通常基础运营商经常应用。第三代移动通信应用频段也就是第六类频段,即通常所指的宽带。通信技术应用发展主体依靠以上几类技术实现频率规划,通常全球范围之中,无线管理实践发展阶段中,普遍会存在频谱资源不足的状况。伴随大众不断增加的无线电技术应用功能需要,频谱渐渐面临了更明显的供不应求问题。两者间呈现的矛盾问题我们应给予全面重视。当前,较多国家纷纷制定了科学的政策针对无线电频率做出了合理的调节,进一步激发了频率内在潜能,可方便其能够全面符合现代新技术更新发展以及拓展新业务的综合需要。因而,在对新型市场业务与创新技术手段对应频率做设计规划的阶段中,应全面的意识到无线电设备当前的可供性,保证相应技术手段体现更好的可操作性,并重点探究不同体制下的电磁兼容性以及频率可否共用的可行性。另外,还应尽量保证该技术手段体现科学性以及先进性,提升新技术手段成熟度,方便支持具备高频谱应用效率的通信处理模式。因而,基于频率资源体现的特殊性,在针对频率做规划设计的阶段中,不但应考量我国当前的基本国情,还应保障其可以同国际频率划分始终在一致水平,通过有效的应对策略同国际统一标准完成全面的接轨。

3结语

移动通信技术论文范文第14篇

目前,通信行业中并没有统一、科学地定义4G移动通信技术,一般情况下,通常依据功能性的描述界定4G移动通信技术。该技术最为突出的特点是能在不受时间和地点限制的情况下接入无障碍通信网络;能够方便用户自由选择业务、软件应用、网络等;能够帮助移动电子商务实现综合性的业务;能够与其他的网络、体系和系统相互适应,从而促进物联网业务的开展。4G移动通信系统的网络体系结构。在4G移动通信的技术要点包括以下4点:①OFDM技术(正交频分复用技术)。该技术的主要作用是实现信道的划分,实现高速数据信号向并行低速子数据流的转变。②SA技术(智能天线技术)。该技术是4G移动通信中最关键的技术之一,主要作用是抑制干扰、调节数字波束等。③SDR技术(软件无线电技术)。该技术是4G移动通信的基础。④IPv6技术。该技术的主要作用是为终端设备提供唯一的网址和路由地址,具有移动性,能够确保移动通信设备在位置变化的过程中保持通信质量。

24G移动通信技术的特点

2.1通信方式灵活在现有的通信工具融合了4G移动通信技术后,通信方式变得较为灵活。一方面,人们依旧能够采用传统的通信、视频等途径;另一方面,新增加了终端服务,人们能使用各种终端设备随时随地访问无线网络,网络信息的共享不再受到时间和地域的约束。例如,4G移动通信手机的功能已经从单纯的“电话通信”增加到了语音通话。因此,4G移动通信手机相当于1台小型电脑,能够实现很多传统手机无法实现的功能。

2.2数据传输速率快4G移动通信技术最明显的特点是大幅度提高了通信的质量和效率,具有非常强大的信号传输能力,提升了设备终端连接互联网的速度。相关调查表明,4G移动通信技术的网络访问速度约为3G的20倍。4G移动通信技术具有较强的接入能力,能够快速传输移动信号,解决了传统通信技术在传输方面的问题。例如在手机网络中,4G移动通信技术的信号传输能力高出普通网络约10000倍。因此,移动终端设备的移动信号接收可不再受到时间和地域的限制。

2.3智能化程度较高4G移动通信技术的智能化特点主要体现在功能方面,目前,已具备了自主选择和自主处理的功能。基于该技术的手机能依据用户的需求提供各种个性化的服务。例如,用户能在手机中设定提醒,当手机检测到与该提醒相应的内容时,就会自动发出提醒,引起用户的注意。此外,4G移动通信技术还能实现手机与电能之间的互联互通,能通过手机观看电脑中的视频,提高了手机的融合性、兼容性,简化了终端平台。

2.4信号传输的能力较强目前,3G技术已被用户所熟悉,且使用范围较大,为用户提供了较多实在的便捷服务。但3G技术在信号覆盖方面存在一定的缺陷,难以实现全方位信号接收,导致通信受到了一定的影响。4G移动通信技术对3G进行了完善和升级,解决了3G技术中存在的问题。一方面,采用4G移动通信技术能实现多功能的信号传输;另一方面,4G移动通信技术具有强大的融入力度,能稳定承担海量的信号内容。4G移动通信技术的信号传输能力较强,可为移动用户提供更多的优质服务。

34G移动通信技术的发展趋势

3.1多用户自由检测和识别技术多用户使移动通信技术面临着巨大的挑战,会导致干扰信号等情况偶尔出现,这对移动通信信号造成了不良的影响,进而从整体上降低了移动通信的质量。采用多用户自由检测和识别技术能提高总基站系统的容量,进而可扩大信息覆盖的范围、减少通信网络基础设施的建设和部署,这为提高通信服务质量奠定了坚实的基础。

3.2交互干扰抑制技术交互干扰抑制是4G移动通信技术中的基础内容,主要通过交互的形式降低通信设备之间的干扰,降低其他信息对移动通信信号的影响,确保移动通信信号的稳定性,从而进一步提高移动通信信号的传输质量。

3.3无线电接收技术在4G移动通信技术的发展过程中,最被人们所关注的问题是移动设备的节能。随着无线电自动接收技术的引进,无线电接收器得到了充分的利用,当前采用的接收器全都是嵌入式无线电。无线电接收技术的功耗大约为现有技术的1%~10%,它是4G移动通信技术在节能环保方面的重要举措和技术。

3.4可重构性自愈网络技术4G移动通信技术在节点故障或基站超载等问题的分析和处理上,主要依靠智能处理器对这些问题进行智能化处理。4G移动通信技术中包含了问答装置,它能明确了解并及时纠正出现的错误,从而达到自动排除网络故障的目的。

3.5无线接入网(RAN)技术4G移动通信技术的具有速度快、容量大和比特成本较低等特点。在该技术中,无线接入网技术的发展趋势为电路交换向基于IP分组交换的方向不断发展、设备分集向网络分集的方向不断发展。这种以IP技术为网络架构基础的形式,实现了3G、4G、WLAN与固定网间的漫游,并有力支持了下一代因特网的建设。

4结束语

移动通信技术论文范文第15篇

1.无线或有线链路上存在的安全问题

有线链路网络和无线网络共同构成了我们生活中所使用的网络系统,在Internet和无线网络快速进步的今天,他们的紧密的结合在一起,都为4G移动通信提供着支持和服务,复杂的4G移动通信技术在使用的过程中存在着很多的风险,无线和有线网络也同样在众多的安全威胁下提供着服务,主要表现为:(1)移动性:无线终端设备会在移动的过程中享受不同子网络的服务,不是固定于某一个网络下。(2)容错性:减少因无线网络结构不同而造成的差错。(3)多计费:在无线网络使用过程中,均是通过运营商来实现对接的,然而有些网络运营商通过网络随意加收客户的使用费用等等。(4)安全性:攻击者的窃听、篡改、插入或删除链路上的数据。

2.移动终端存在的安全问题

4G网络逐渐的已投入使用,用户们通过4G移动终端实现相互间的交流也更为密切,恶意软件及病毒也随着交流而流窜,使得它们的破坏力度和范围都有所扩大,使得移动终端系统遭受严重打击,甚至有关机或失灵等现象的出现。

3.网络实体上存在的安全问题

网络实体身份认证问题,包括接入网和核心网中的实体,无线LAD中的AP和认证服务器等。主要存在的安全威胁如下:(1)目前的网络攻击者利用多种手段,类型也是多样化,让网上用户防不胜防。但他们多半都有一个共同特点就是扮演合法用户使用网络服务,这样一来,网络监管方面也无法察觉,用户这边更是没有任何戒备,使得他们有很大的机会接近用户并进行各种骚扰和不良信息的。(2)无线网相对于宽带而言,它的接口数量有限,而且信号不稳定,容易受其他因素的干扰,这也就为攻击者提供了一个进入的漏洞,安全隐患的可能性也随之大大增强。(3)目前的的搜索功能可谓是越来越强大,尤其是“人肉搜索”,让用户的个人隐私等一再受到侵犯,这些攻击者一般都具有良好的计算机技术水平,对网络系统的运行了如指掌,很容易非法窃取用户信息,并展开下一步的追踪。(4)网络用户不肯承认他们使用的服务和资源,使进一步网络实体的认证增加了难度,这是用户可以逃避和不像曝光的行为,其实这样做只会给自己增加麻烦,到时遇到问题也很难得到有效处理。

二、4G通信安全措施

1.要建立适合未来移动通信系统的安全体系机制

主要有(1)可协商机制:移动终端和无线网络能够自行协商安全协议和算法。(2)可配置机制:合法用户可配置移动终端的安全防护措施选项。(3)多策略机制:针对不同的应用场景提供不同的安全防护措施。(4)混合策略机制:结合不同的安全机制,如将公钥和私钥体制相结合、生物密码和数字口令相结合。一方面,以公钥保障系统的可扩展性,进而支撑兼容性和用户的可移动性

2.对于无线接入网一般可采取的安全措施如下。

(1)安全接入。无线接入网通过自身安全策略或辅助安全设备提供对可信移动终端的安全接入功能。防止非可信移动终端接入无线接入网络。(2)安全传输。移动终端与无线接入网能够选择建立加密传输通道,根据业务需求,从无线接入网、用户侧均能自主设置数据传输方式。(3)身份认证。在移动终端要接入无线网络之前,要通过一个可靠的中间机构的认证,确保双方身份的真实性和可靠性。(4)访问控制。无线接入网可通过物理地址过滤、端口访问控制等技术措施进行细粒度访问控制策略设置。(5)安全数据过滤。在多媒体等应用领域,都可以通过数据过滤技术,对想要接入到网络中的非法数据进行拦截,阻止其进行到内部系统及核心网络,实现无线网络的安全性。

3.提高效率

网络终端的运行效率的提升,最主要就是减少信息量的流通,减少客户端的工作量,不使计算机长期处于超负荷的工作状态中,尽量减少时间的拖延,那么安全协议当中交互的信息量的数额的限定对提高网络运行效率就有一定帮助。

三、结语