美章网 精品范文 燃料电池技术论文范文

燃料电池技术论文范文

燃料电池技术论文

燃料电池技术论文范文第1篇

【摘要】本文概述了燃料电池的工作特点和原理,介绍了发电系统的组成、国内外的研究现状,对我国应用燃料电池发电的资源条件进行了评估,展望了这一技术在电力系统的应用前景、将对电力系统产生的重要影响,它将使传统的电力系统产生重大的变革,它会使电力系统更加安全、经济。最后提出了发展燃料电池发电的具体建议。

1.引言能源是经济发展的基础,没有能源工业的发展就没有现代文明。人类为了更有效地利用能源一直在进行着不懈的努力。历史上利用能源的方式有过多次革命性的变革,从原始的蒸汽机到汽轮机、高压汽轮机、内燃机、燃气轮机,每一次能源利用方式的变革都极大地推进了现代文明的发展。随着现代文明的发展,人们逐渐认识到传统的能源利用方式有两大弊病。一是储存于燃料中的化学能必需首先转变成热能后才能被转变成机械能或电能,受卡诺循环及现代材料的限制,在机端所获得的效率只有33~35%,一半以上的能量白白地损失掉了;二是传统的能源利用方式给今天人类的生活环境造成了巨量的废水、废气、废渣、废热和噪声的污染。对于发电行业来说,虽然采用的技术在不断地升级,如开发出了超高压、超临界、超超临界机组,开发出了流化床燃烧和整体气化联合循环发电技术,但这种努力的结果是:机组规模巨大、超高压远距离输电、投资上升,到用户的综合能源效率仍然只有35%左右,大规模的污染仍然没有得到根本解决。多年来人们一直在努力寻找既有较高的能源利用效率又不污染环境的能源利用方式。这就是燃料电池发电技术。1839年英国的Grove发明了燃料电池,并用这种以铂黑为电极催化剂的简单的氢氧燃料电池点亮了伦敦讲演厅的照明灯。1889年Mood和Langer首先采用了燃料电池这一名称,并获得200mA/m2电流密度。由于发电机和电极过程动力学的研究未能跟上,燃料电池的研究直到20世纪50年代才有了实质性的进展,英国剑桥大学的Bacon用高压氢氧制成了具有实用功率水平的燃料电池。60年代,这种电池成功地应用于阿波罗(Appollo)登月飞船。从60年代开始,氢氧燃料电池广泛应用于宇航领域,同时,兆瓦级的磷酸燃料电池也研制成功。从80年代开始,各种小功率电池在宇航、军事、交通等各个领域中得到应用。燃料电池是一种将储存在燃料和氧化剂中的化学能,直接转化为电能的装置。当源源不断地从外部向燃料电池供给燃料和氧化剂时,它可以连续发电。依据电解质的不同,燃料电池分为碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)及质子交换膜燃料电池(PEMFC)等。燃料电池不受卡诺循环限制,能量转换效率高,洁净、无污染、噪声低,模块结构、积木性强、比功率高,既可以集中供电,也适合分散供电。大型电站,火力发电由于机组的规模足够大才能获得令人满意的效率,但装有巨型机组的发电厂又受各种条件的限制不能贴进用户,因此只好集中发电由电网输送给用户。但是机组大了其发电的灵活性又不能适应户户的需要,电网随用户的用电负荷变化有时呈现为高峰,有时则呈现为低谷。为了适应用电负荷的变化只好备用一部分机组或修建抽水蓄能电站来应急,这在总体上都是以牺牲电网的效益为代价的。传统的火力发电站的燃烧能量大约有近70%要消耗在锅炉和汽轮发电机这些庞大的设备上,燃烧时还会排放大量的有害物质。而使用燃料电池发电,是将燃料的化学能直接转换为电能,不需要进行燃烧,没有转动部件,理论上能量转换率为100%,装置无论大小实际发电效率可达40%~60%,可以实现直接进入企业、饭店、宾馆、家庭实现热电联产联用,没有输电输热损失,综合能源效率可达80%,装置为集木式结构,容量可小到只为手机供电、大到和目前的火力发电厂相比,非常灵活。燃料电池被称为是继水力、火力、核能之后第四电装置和替代内燃机的动力装置。国际能源界预测,燃料电池是21世纪最有吸引力的发电方法之一。我国人均能源资源贫乏,在目前电网由主要缺少电量转变为主要缺少系统备用容量、调峰能力、电网建设滞后和传统的发电方式污染严重的情况下,研究和开发微型化燃料电池发电具有重要意义,这种发电方式与传统的大型机组、大电网相结合将给我国带来巨大的经济效益。2.燃料电池的特点与原理由于燃料电池能将燃料的化学能直接转化为电能,因此,它没有像通常的火力发电机那样通过锅炉、汽轮机、发电机的能量形态变化,可以避免中间的转换的损失,达到很高的发电效率。同时还有以下一些特点:l不管是满负荷还是部分负荷均能保持高发电效率;不管装置规模大小均能保持高发电效率;具有很强的过负载能力;通过与燃料供给装置组合的可以适用的燃料广泛;发电出力由电池堆的出力和组数决定,机组的容量的自由度大;电池本体的负荷响应性好,用于电网调峰优于其他发电方式;用天然气和煤气等为燃料时,NOX及SOX等排出量少,环境相容性优。如此由燃料电池构成的发电系统对电力工业具有极大的吸引力。燃料电池按其工作温度是不同,把碱性燃料电池(AFC,工作温度为100℃)、固体高分子型质子膜燃料电池(PEMFC,也称为质子膜燃料电池,工作温度为100℃以内)和磷酸型燃料电池(PAFC,工作温度为200℃)称为低温燃料电池;把熔融碳酸盐型燃料电池(MCFC,工作温度为650℃)和固体氧化型燃料电池(SOFC,工作温度为1000℃)称为高温燃料电池,并且高温燃料电池又被称为面向高质量排气而进行联合开发的燃料电池。另一种分类是按其开发早晚顺序进行的,把PAFC称为第一代燃料电池,把MCFC称为第二代燃料电池,把SOFC称为第三代燃料电池。这些电池均需用可燃气体作为其发电用的燃料。燃料电池其原理是一种电化学装置,其组成与一般电池相同。其单体电池是由正负两个电极(负极即燃料电极和正极即氧化剂电极)以及电解质组成。不同的是一般电池的活性物质贮存在电池内部,因此,限制了电池容量。而燃料电池的正、负极本身不包含活性物质,只是个催化转换元件。因此燃料电池是名符其实的把化学能转化为电能的能量转换机器。电池工作时,燃料和氧化剂由外部供给,进行反应。原则上只要反应物不断输入,反应产物不断排除,燃料电池就能连续地发电。这里以氢-氧燃料电池为例来说明燃料电池的基本工作原理。氢-氧燃料电池反应原理这个反映是电觧水的逆过程。电极应为:负极:H2+2OH-2H2O+2e-正极:1/2O2+H2O+2e-2OH-电池反应:H2+1/2O2==H2O另外,只有燃料电池本体还不能工作,必须有一套相应的辅助系统,包括反应剂供给系统、排热系统、排水系统、电性能控制系统及安全装置等。燃料电池通常由形成离子导电体的电解质板和其两侧配置的燃料极(阳极)和空气极(阴极)、及两侧气体流路构成,气体流路的作用是使燃料气体和空气(氧化剂气体)能在流路中通过。在实用的燃料电池中因工作的电解质不同,经过电解质与反应相关的离子种类也不同。PAFC和PEMFC反应中与氢离子(H+)相关,发生的反应为:燃料极:H2=2H++2e-(1)空气极:2H++1/2O2+2e-=H2O(2)全体:H2+1/2O2=H2O(3)氢氧燃料电池组成和反应循环图在燃料极中,供给的燃料气体中的H2分解成H+和e-,H+移动到电解质中与空气极侧供给的O2发生反应。e-经由外部的负荷回路,再反回到空气极侧,参与空气极侧的反应。一系例的反应促成了e-不间断地经由外部回路,因而就构成了发电。并且从上式中的反应式(3)可以看出,由H2和O2生成的H2O,除此以外没有其他的反应,H2所具有的化学能转变成了电能。但实际上,伴随着电极的反应存在一定的电阻,会引起了部分热能产生,由此减少了转换成电能的比例。引起这些反应的一组电池称为组件,产生的电压通常低于一伏。因此,为了获得大的出力需采用组件多层迭加的办法获得高电压堆。组件间的电气连接以及燃料气体和空气之间的分离,采用了称之为隔板的、上下两面中备有气体流路的部件,PAFC和PEMFC的隔板均由碳材料组成。堆的出力由总的电压和电流的乘积决定,电流与电池中的反应面积成比。单电极组装示意图PAFC的电解质为浓磷酸水溶液,而PEMFC电解质为质子导电性聚合物系的膜。电极均采用碳的多孔体,为了促进反应,以Pt作为触媒,燃料气体中的CO将造成中毒,降低电极性能。为此,在PAFC和PEMFC应用中必须限制燃料气体中含有的CO量,特别是对于低温工作的PEMFC更应严格地加以限制。磷酸型燃料电池基本组成和反应原理磷酸燃料电池的基本组成和反应原理是:燃料气体或城市煤气添加水蒸气后送到改质器,把燃料转化成H2、CO和水蒸气的混合物,CO和水进一步在移位反应器中经触媒剂转化成H2和CO2。经过如此处理后的燃料气体进入燃料堆的负极(燃料极),同时将氧输送到燃料堆的正极(空气极)进行化学反应,借助触媒剂的作用迅速产生电能和热能。相对PAFC和PEMFC,高温型燃料电池MCFC和SOFC则不要触媒,以CO为主要成份的煤气化气体可以直接作为燃料应用,而且还具有易于利用其高质量排气构成联合循环发电等特点。MCFC主构成部件。含有电极反应相关的电解质(通常是为Li与K混合的碳酸盐)和上下与其相接的2块电极板(燃料极与空气极),以及两电极各自外侧流通燃料气体和氧化剂气体的气室、电极夹等,电解质在MCFC约600~700℃的工作温度下呈现熔融状态的液体,形成了离子导电体。电极为镍系的多孔质体,气室的形成采用抗蚀金属。MCFC工作原理。空气极的O2(空气)和CO2与电相结合,生成CO23-(碳酸离子),电解质将CO23-移到燃料极侧,与作为燃料供给的H+相结合,放出e-,同时生成H2O和CO2。化学反应式如下:燃料极:H2+CO23-=H2O+2e-+CO2(4)空气极:CO2+1/2O2+2e-=CO23-(5)全体:H2+1/2O2=H2O(6)在这一反应中,e-同在PAFC中的情况一样,它从燃料极被放出,通过外部的回路反回到空气极,由e-在外部回路中不间断的流动实现了燃料电池发电。另外,MCFC的最大特点是,必须要有有助于反应的CO23-离子,因此,供给的氧化剂气体中必须含有碳酸气体。并且,在电池内部充填触媒,从而将作为天然气主成份的CH4在电池内部改质,在电池内部直接生成H2的方法也已开发出来了。而在燃料是煤气的情况下,其主成份CO和H2O反应生成H2,因此,可以等价地将CO作为燃料来利用。为了获得更大的出力,隔板通常采用Ni和不锈钢来制作。SOFC是以陶瓷材料为主构成的,电解质通常采用ZrO2(氧化锆),它构成了O2-的导电体Y2O3(氧化钇)作为稳定化的YSZ(稳定化氧化锆)而采用。电极中燃料极采用Ni与YSZ复合多孔体构成金属陶瓷,空气极采用LaMnO3(氧化镧锰)。隔板采用LaCrO3(氧化镧铬)。为了避免因电池的形状不同,电解质之间热膨胀差造成裂纹产生等,开发了在较低温度下工作的SOFC。电池形状除了有同其他燃料电池一样的平板型外,还有开发出了为避免应力集中的圆筒型。SOFC的反应式如下:燃料极:H2+O2-=H2O+2e-(7)空气极:1/2O2+2e-=O2-(8)全体:H2+1/2O2=H2O(9)燃料极,H2经电解质而移动,与O2-反应生成H2O和e-。空气极由O2和e-生成O2-。全体同其他燃料电池一样由H2和O2生成H2O。在SOFC中,因其属于高温工作型,因此,在无其他触媒作用的情况下即可直接在内部将天然气主成份CH4改质成H2加以利用,并且煤气的主要成份CO可以直接作为燃料利用。表1燃料电池的分类类型磷酸型燃料电池(PAFC)熔融碳酸盐型燃料电池(MCFC)固体氧化物型燃料电池(SOFC)质子交换膜燃料电池(PEMFC)燃料煤气、天然气、甲醇等煤气、天然气、甲醇等煤气、天然气、甲醇等纯H2、天然气电解质磷酸水溶液KliCO3溶盐ZrO2-Y2O3(YSZ)离子(Na离子)电极阳极多孔质石墨(Pt催化剂)多孔质镍(不要Pt催化剂)Ni-ZrO2金属陶瓷(不要Pt催化剂)多孔质石墨或Ni(Pt催化剂)阴极含Pt催化剂+多孔质石墨+Tefion多孔NiO(掺锂)LaXSr1-XMn(Co)O3多孔质石墨或Ni(Pt催化剂)工作温度~200℃~650℃800~1000℃~100℃近20多年来,燃料电池经历了碱性、磷酸、熔融碳酸盐和固体氧化物等几种类型的发展阶段,燃料电池的研究和应用正以极快的速度在发展。AFC已在宇航领域广泛应用,PEMFC已广泛作为交通动力和小型电源装置来应用,PAFC作为中型电源应用进入了商业化阶段,MCFC也已完成工业试验阶段,起步较晚的作为发电最有应用前景的SOFC已有几十千瓦的装置完成了数千小时的工作考核,相信随着研究的深入还会有新的燃料电池出现。美日等国已相继建立了一些磷酸燃料电池电厂、熔融碳酸盐燃料电池电厂、质子交换膜燃料电池电厂作为示范。日本已开发了数种燃料电池发电装置供公共电力部门使用,其中磷酸燃料电池(PAFC)已达到"电站"阶段。已建成兆瓦级燃料电池示范电站进行试验,已就其效率、可运行性和寿命进行了评估,期望应用于城市能源中心或热电联供系统。日本同时建造的小型燃料电池发电装置,已广泛应用于医院、饭店、宾馆等。3.燃料电池发电系统3.1.利用天然气的发电系统MCFC需要供给的燃料气体是H2,它可由天然气中的CH4改质生成,其反应在改质器中进行。改质器出口的温度为600℃,符合MCFC的工作温度,可以原样直接输送到燃料极侧。另一方面,空气极侧需要的O2通过空气压缩机供给。另一个反应因素CO2,空气极侧反应等量地再利用发电时燃料极产生的CO2。除了有CO2外,燃料极排出气体还含有未反应的可燃成份,一起输送到改质器的燃烧器侧,天然气改质所必需的热量就由该燃烧热供给。这种情况下,排出的燃料气体会含有过多的H2O,将影响发热量,为此通常是先将排出燃料气体冷却,将水份滤去后再输送到改质器的燃烧侧。从改质器燃烧侧出来的气体与来自压缩机的空气相混合后供给空气极侧。实际的电池因内部存在电阻会发热,故通过在空气极侧中流过的大量氧化气体(阴极气体,即含有O2、CO2的气体)来除去其发生的热。通常是按600℃供给的气体在700℃下排出,这一指标可通过在空气极侧进行流量调整来控制,为此采用阴极气体的再循环,即,空气极侧供给的气体为以改质器燃烧排气与部分空气极侧排出气体的混合体,为了保持电池入口和出口的温度为最佳温度,可将再循环流量与外部供给的空气流量一起调整。来自空气极侧的排气为高温,送入最终的膨胀式透平,进行动力回收,作为空气压缩动力而应用。剩余的动力,由发电机发电回收,从而可以提高整套系统的效率。另外,天然气改质所必需的H2O(水蒸汽)可从排出的燃料气体中回收的H2O来供给。这种系统的效率可达55~60%。在整套出力中MCFC发电量份额占90%。绝大部分的发电量是由MCFC生产的。如果考虑到排气形成的动力回收和若干的附加发电,广义上也可以称为联合发电。在使用PAFC的情况下,若以煤炭为燃料发电时就不容易了,采用天然气时,其构成类似于MCFC机组,基本上是由电池本体发电。原因是PAFC排出气体温度较低,与其进行附加发电不如作为热电联产电源。SOFC能和较高温度的排气体构成附加发电系统,由于SOFC不需要CO2的再循环等,结构简单,其发电效率可以达到50~60%。3.2利用煤炭的发电系统以MCFC为例进行介绍。煤炭需经煤气化装置生成作为MCFC可用燃料的CO及H2,并在进入MCFC前除去其中含有的杂质(微量的杂质就会构成对MCFC的恶劣影响),这种供给MCFC精制煤气,其压力通常高于MCFC的工作压力,在进入MCFC供气前先经膨胀式涡轮机回收其动力。涡轮机出口气体,经与部分来自燃料极(阳极)排出的高温气体(约700℃)相混合,调整为对电池的适宜温度(约600℃)。该阳极气体的再循环是,将排出的燃料气体中所含的未反应的燃料成分返回入口加以再利用,借以达到提高燃料的利用率。向空气极侧供给O2和CO2是通过空气压缩机输出的空气和排出燃料气体相混合来完成的。但是,碳酸气是采用触媒燃烧器将未燃的H2及CO变换成H2O和CO2后供给的。实际的燃料电池,内部电阻会发热,将通过在空气极侧流过的大量的氧化剂气体(阴极气体,即含有O2和CO2的气体)而除去。通常通过调整空气极侧的流量,把以600℃供给的气体在700℃排出。为此采用了阴极气体再循环,使空气极侧的排气形成约700℃的高温。因此,在这个循环回路中设置了热交换器,将气体温度冷却到600℃,形成电池入口适宜的温度,与来自触媒燃烧器的供给气体相混合。空气极侧的出入口温度,取决于再循环和来自压缩机的供给空气流量和再循环回路中的热交换量。排热回收系统(末级循环),是由利用空气极侧排气的膨胀式涡轮机和利用蒸汽的汽轮机发电来构成。膨胀式涡轮机与压缩机的相组合,其剩余动力用于发电。蒸汽是由来自其下流的热回收和煤气化装置以及阴极气体再循环回路中的蒸汽发生器之间的组合产生,形成汽水循环。这种机组的发电效率,因煤气化方式和煤气精制方式等的不同而有若干差异。利用煤系统SOFC其构成是复杂的。但若用管道气就简单多了,主要的是采用煤炭气化系统造成的,其效率为45~55%。4.我国燃料电池的发展状况我国的燃料电池研究始于1958年,原电子工业部天津电源研究所最早开展了MCFC的研究。70年代在航天事业的推动下,中国燃料电池的研究曾呈现出第一次高潮。其间中国科学院大连化学物理研究所研制成功的两种类型的碱性石棉膜型氢氧燃料电池系统(千瓦级AFC)均通过了例行的航天环境模拟试验。1990年中国科学院长春应用化学研究所承担了中科院PEMFC的研究任务,1993年开始进行直接甲醇质子交换膜燃料电池(DMFC)的研究。电力工业部哈尔滨电站成套设备研究所于1991年研制出由7个单电池组成的MCFC原理性电池。"八五"期间,中科院大连化学物理研究所、上海硅酸盐研究所、化工冶金研究所、清华大学等国内十几个单位进行了与SOFC的有关研究。到90年代中期,由于国家科技部与中科院将燃料电池技术列入"九五"科技攻关计划的推动,中国进入了燃料电池研究的第二个高潮。质子交换膜燃料电池被列为重点,以大连化学物理研究所为牵头单位,在中国全面开展了质子交换膜燃料电池的电池材料与电池系统的研究,并组装了多台百瓦、1kW-2kW、5kW和25kW电池组与电池系统。5kW电池组包括内增湿部分其重量比功率为100W/kg,体积比功率为300W/L。我国科学工作者在燃料电池基础研究和单项技术方面取得了不少进展,积累了一定经验。但是,由于多年来在燃料电池研究方面投入资金数量很少,就燃料电池技术的总体水平来看,与发达国家尚有较大差距。我国有关部门和专家对燃料电池十分重视,1996年和1998年两次在香山科学会议上对我国燃料电池技术的发展进行了专题讨论,强调了自主研究与开发燃料电池系统的重要性和必要性。近几年我国加强了在PEMFC方面的研究力度。2000年大连化学物理研究所与中科院电工研究所已完成30kW车用用燃料电池的全部试验工作。北京富原公司也宣布,2001年将提供40kW的中巴燃料电池,并接受订货。科技部副部长徐冠华一年前在EVS16届大会上宣布,中国将在2000年装出首台燃料电池电动车。我国燃料电池的研究工作已表明:1.中国的质子交换膜燃料电池已经达到可以装车的技术水平;2.大连化学物理研究所的质子交换膜燃料电池是具有我国自主知识产权的高技术成果;3.在燃料电池研究方面我国可以与世界发达国家进行竞争,而且在市场份额方面,我国可以并且有能力占有一定比例。但是我国在PAFC、MCFC、SOFC的研究方面还有较大的差距,目前仍处于研制阶段。此前参与燃料电池研究的有关概况如下:4.1.PEMFC的研究状况我国最早开展PEMFC研制工作的是长春应用化学研究所,该所于1990年在中科院扶持下开始研究PEMFC,工作主要集中在催化剂、电极的制备工艺和甲醇外重整器的研制,已制造出100WPEMFC样机。1994年又率先开展直接甲醇质子交换膜燃料电池的研究工作。该所与美国CaseWesternReserve大学和俄罗斯氢能与等离子体研究所等建立了长期协作关系。中国科学院大连化学物理所于1993年开展了PEMFC的研究,在电极工艺和电池结构方面做了许多工作,现已研制成工作面积为140cm2的单体电池,其输出功率达0.35W/cm2。清华大学核能技术设计院1993年开展了PEMFC的研究,研制的单体电池在0.7V时输出电流密度为100mA/cm2,改进石棉集流板的加工工艺,并提出列管式PEMFC的设计,该单位已与德国Karlsrube研究中心建立了一定的协作关系。天津大学于1994年在国家自然科学基金会资助下开展了PEMFC的研究,主要研究催化剂和电极的制备工艺。复旦大学在90年代初开始研制直接甲醇PEMFC,主要研究聚苯并咪唑膜的制备和电极制备工艺。厦门大学近年来与香港大学和美国的CaseWesternReserve大学合作开展了直接甲醇PEMFC的研究。1994年,上海大学与北京石油大学合作研究PEMFC("八五"攻关项目),主要研究催化剂、电极、电极膜集合体的制备工艺。北京理工大学于1995年在兵器工业部资助下开始了PEMFC的研究,目前单体电池的电流密度为150mA/cm2。中国科学院工程热物理研究所于1994年开始研究PEMFC,主营使用计算传热和计算流体力学方法对各种供气、增湿、排热和排水方案进行比较,提出改进的传热和传质方案。天津电源研究所1997年开始PEMFC的研究,拟从国外引进1.5kW的电池,在解析吸收国外先进技术的基础上开展研究。华南理工大学于1997年初在广东省佛山基金资助下开展了PEMFC的研究,与国家科委电动车示范区建设相配合作了一定的研究工作。其天然气催化转化制一氧化碳和氢气的技术现已申请国家发明专利。中科院电工研究所最近开展了电动车用PEMFC系统工程和运行模式研究,拟与有色金属研究院合作研究PEMFC/光伏电池(制氢)互补发电系统和从国外引进PEMFC装置。1995年北京富原公司与加拿大新能源公司合作进行PEMFC的研制与开发,5kW的PEMFC样机现已研制成功并开始接受订货。4.2.MCFC的研究简况国内开展MCFC研究的单位不太多。哈尔滨电源成套设备研究所在80年代后期曾研究过MCFC,90年代初停止了这方面的研究工作。1993年中国科学院大连化学物理研究所在中国科学院的资助下开始了MCFC的研究,自制LiAlO2微粉,用冷滚压法和带铸法制备出MCFC用的隔膜,组装了单体电池,其性能已达到国际80年代初的水平。90年代初,中国科学院长春应用化学研究所也开始了MCFC的研究,在LiAlO2微粉的制备方法研究和利用金属间化合物作MCFC的阳极材料等方面取得了很大进展。北京科技大学于90年代初在国家自然科学基金会的资助下开展了MCFC的研究,主要研究电极材料与电解质的相互作用,提出了用金属间化合物作电极材料以降低它的溶解。中国科学院上海冶金研究所近年来也开始了MCFC的研究,主要着重于研究氧化镍阴极与熔融盐的相互作用。1995年上海交通大学与长庆油田合作开始了MCFC的研究,目标是共同开发5kW~10kW的MCFC。中国科学院电工研究所在"八五"期间,考察了国外MCFC示范电站的系统工程,调查了电站的运行情况,现已开展了MCFC电站系统工程关键技术的研究与开发。4.3.SOFC的研究简况最早开展SOFC研究的是中国科学院上海硅酸盐研究所他们在1971年就开展了SOFC的研究,主要侧重于SOFC电极材料和电解质材料的研究。80年代在国家自然科学基金会的资助下又开始了SOFC的研究,系统研究了流延法制备氧化锆膜材料、阴极和阳极材料、单体SOFC结构等,已初步掌握了湿化学法制备稳定的氧化锆纳米粉和致密陶瓷的技术。吉林大学于1989年在吉林省青年科学基金资助下开始对SOFC的电解质、阳极和阴极材料等进行研究,组装成单体电池,通过了吉林省科委的鉴定。1995年获吉林省计委和国家计委450万元人民币的资助,先后研究了电极、电解质、密封和联结材料等,单体电池开路电压达1.18V,电流密度400mA/cm2,4个单体电池串联的电池组能使收音机和录音机正常工作。1991年中国科学院化工冶金研究所在中国科学院资助下开展了SOFC的研究,从研制材料着手,制成了管式和平板式的单体电池,功率密度达0.09W/cm2~0.12W/cm2,电流密度为150mA/cm2~180mA/cm2,工作电压为0.60V~0.65V。1994年该所从俄罗斯科学院乌拉尔分院电化学研究所引进了20W~30W块状叠层式SOFC电池组,电池寿命达1200h。他们在分析俄罗斯叠层式结构、美国Westinghouse的管式结构和德国Siemens板式结构的基础上,设计了六面体式新型结构,该结构吸收了管式不密封的优点,电池间组合采用金属毡柔性联结,并可用常规陶瓷制备工艺制作。中国科学技术大学于1982年开始从事固体电解质和混合导体的研究,于1992年在国家自然科学基金会和"863"计划的资助下开始了中温SOFC的研究。一种是用纳米氧化锆作电解质的SOFC,工作温度约为450℃。另一种是用新型的质子导体作电解质的SOFC,已获得接近理论电动势的开路电压和200mA/cm2的电流密度。此外,他们正在研究基于多孔陶瓷支撑体的新一代SOFC。清华大学在90年代初开展了SOFC的研究,他们利用缓冲溶液法及低温合成环境调和性新工艺成功地合成了固体电解质、空气电极、燃料电极和中间联结电极材料的超细粉,并开展了平板型SOFC成型和烧结技术的研究,取得了良好效果。华南理工大学于1992年在国家自然科学基金会、广东省自然科学基金、汕头大学李嘉诚科研基金、广东佛山基金共一百多万元的资助下开始了SOFC的研究,组装的管状单体电池,用甲烷直接作燃料,最大输出功率为4mW/cm2,电流密度为17mA/cm2,连续运转140h,电池性能无明显衰减。中国科学院山西煤炭化学研究所在1994年开始SOFC研究,用超细氧化锆粉在1100℃下烧结制成稳定和致密的氧化锆电解质。该所从80年代初开始煤气化热解的研究,以提供燃料电池的气源。煤的灰熔聚气化过程已进入工业性试验阶段,正在镇江市建立工业示范装置。该所还开展了使煤气化热解的煤气在高温下脱硫除尘和甲醇脱氢生产合成气的研究,合成气中CO和H2的比例为1∶2,已有成套装置出售。中国科学院大连化学物理所于1994年开展了SOFC的研究工作,在电极和电解质材料的研究上取得了可喜的进展。中国科学院北京物理所于1995年在国家自然科学基金会的资助下,开展了用于SOFC的新型电解质和电极材料的基础性研究。(

燃料电池技术论文范文第2篇

作者: 毛宗强(清华大学核能技术设计研究院) 【论文摘要】燃料是人类社会生存的基础,人类经历了植物燃料阶段之后,现处于化石燃料阶段。 100多年来,化石燃料给地球带来巨大的灾难性污染,使得气候变化异常,以至地球上自然灾害频繁,人类生存条件恶化。太阳能是人类取之不尽,用之不竭的清洁能源。科学家正在积极开发利用太阳能,并取得可喜的进展。引言 燃料是人类社会生存的基础,人类经历了植物燃料阶段之后,现处于化石燃料阶段。 100多年来,化石燃料给地球带来巨大的灾难性污染,使得气候变化异常,以至地球上自然灾害频繁,人类生存条件恶化。太阳能是人类取之不尽,用之不竭的清洁能源。科学家正在积极开发利用太阳能,并取得可喜的进展。在科学发达的今天,我们可以将太阳能直接变成热能,也可以将太阳能直接变成电能,但是热和电的大规模直接储存并未解决。太阳能的利用受到天气和地球自转位置的制约。为了解决这个问题,科学家们化费大量的精力去研究太阳能的储存,方法之一是利用太阳能电解水,将得到的氢气和氧气分别储存起来,然后再在需要的时候利用它们经燃料电池(FC)发电,副产品是纯水。因此这是一个完全可再生的无污染的燃料循环。德国于利希(Julich)研究中心已经开始这项试验,并取得了很好的示范效果。 FC以氢气为燃料、空气中的氧气作为氧化剂,通过电化学反应得到电能并生成纯净水。从长远来看,FC将是氢无污染地转化成电能的最佳方案,可以真正做到零排放。 通常,按FC的电解质将其分为:碱性燃料电池(AFC)、质子交换膜燃料电池(PEMFC)、磷酸燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)和固体氧化物燃料电他(sOFC)。AFC的工作温度一般为80°C, KOH为电解质)因对CO2很敏感,有被PEMFC取代的趋势。PEMFC又称为固体聚合物燃料电池(SPFC),在50-100°C下工作,其电解质是一种固体有机膜,用铂做催化剂,但在该温度下铂对CO极其敏感。PEMFC是最有前途的交通工具的动力,目前全世界已有PEMFC大公共汽车在示范运行。1998年,德国奔驰、美国福特和加拿大巴拉德(BALLARD)合资组成DBB公司,计划到2005年年产10万台汽车用PEMFC发动机。PAFCI作在200°C左右,磷酸为电解质,PAFC常用铂作催化剂,也有CO中毒问题,已建成的11MWPAFC电站表明,因排放热的温度低,而使其经济性不佳。从目前技术水平看,PAFC适合作小住宅区的现场电站。MCFC使用熔融的碱性碳酸盐作为电解质,镍做催化剂,工作温度在650°C左右,材料腐蚀是MCFC的难点。SOFC电解质和电极都是陶瓷材料,工作温度在1000°C左右。目前已制成100kw电堆,sOFC的优点是不用催化剂而直接使用天然气为原料,电池效率较高。因此,它是未来大规模清洁发电站的优选对象,缺点是1000°C高温下材料较难解决,目前人们也在研究800°C左右的中温SOFC。 我国FC的研究始于1958年,当时人们凭着一股热情推动燃料电池上马,不过很快就堰旗息鼓了。70年代初,在航天计划的带动下,我国FC的研究掀起高潮,武汉大学、中科院大化所、原电子部天津电源研究所等单位研制AFC并取得一定的成果,后因航天计划改变,FC研究也就基本中止。90年代,环境保护、能源短缺的双重压力,以及国际上FC的突破性进展的带动,我国第二次FC研制高潮逐渐形成。1 我国燃料电池第一次研究热潮 武汉大学和中科院长春应化所于60年代中期即开始FC的基础研究,后因文化大革命而中止。1972年,武汉大学与武汉邮电研究院协作研制200W氨一空气FC系统。该系统由电他本体、燃料源和自控设备三部分组成。来自液氨瓶的氨气经裂解成3H2+N2混合气,冷却后用作负极(氢极)

燃料电池技术论文范文第3篇

关键词:质子交换膜燃料电池;双极板;电极;催化剂

1质子交换膜燃料电池的结构及原理

按照电解质的不同可将燃料电池分为磷酸燃料电池、碱性燃料电池、固体氧化物燃料电池、熔融碳酸盐燃料电池及质子交换膜燃料电池(PEMFC)等五类。PEMFC单电池由质子交换膜、气体扩散电极、双极板等构成,图1是其结构与工作原理示意图。

PEMFC的基本工作过程如下:

(1)氢气通过双极板上的导气通道到达电池的阳极,氢分子在催化剂的作用下解离形成氢离子和电子;

(2)氢离子以水合质子H+(xH2O)的形式通过电解质膜到达阴极,电子在阳极侧积累;

(3)氧气通过双极板到达阴极后,氧分子在催化剂的作用下变成氧离子,阴、阳极间形成一个电势差;

(4)阳极和阴极通过外电路连接起来,在阳极积聚的电子就会通过外电路到达阴极,形成电流,对负载做功。同时,在阴极侧反应生成水;

(5)只要持续不断地提供反应气体,PEMFC就可以连续工作,对外提供电能。

2质子交换膜燃料电池的特点

(1)高效率。PEMFC以电化学方式进行能量转换,不存在燃烧过程,不受卡诺循环限制,其理论热效率可达85-90%,目前的实际效率大约是内燃机的两倍。传统动力源为了提高效率必须将负荷限制在很小范围内,而PEMFC几乎在全部负荷范围内均有很高效率。

(2)模块化。PEMFC在结构上具有模块化的特点,可根据不同动力需求组合安装,采用“搭积木”式的设计方法简化了不同规模电堆的设计制造过程。

(3)高可靠性。由于PEMFC电堆采用模块化的设计方法,结构简单,易于维护。一旦某个单电池发生故障,可自动采取适当屏蔽措施,只会使系统输出功率略有下降,而不会导致整个动力系统的瘫痪。

(4)燃料多样性。PEMFC动力系统既可以纯氢为燃料,也可以重整气为燃料。氢气的来源可以是电解水的产物,也可以是对汽油、柴油、二甲醚等化石类燃料重整的产物。氢气的存储方式可以是高压气罐、液氢、金属氢化物等。

(5)环境友好。当采用纯氢为燃料时,PEMFC的唯一产物是水,可以做到零排放。以重整气为燃料时,相对于内燃机而言,排放也极大降低。此外,PEMFC噪声水平也很低,各结构部件均可回收利用。3研究现状

3.1关键部件

电解质膜、双极板、催化剂及气体扩散电极是质子交换膜燃料电池的四大关键部件。

电解质膜是PEMFC的核心部件,它直接影响燃料电池的性能与寿命。1962年美国杜邦公司研制成功全氟磺酸型质子交换膜,1966年开始用于燃料电池,其商业型号为Nafion,至今仍广泛使用。但由于Nafion膜成本较高,各国科学家正在研究部分氟化或非氟质子交换膜。

双极板在PEMFC中起着支撑、集流、分割氧化剂与还原剂并引导气体在电池内电极表面流动的作用,目前广泛采用的是以石墨为材料,在其上加工出引导气体流动的流场,基本流场形式有蛇形、平行、交指及网格状等。

铂基催化剂是目前性能最好的电极催化剂,为提高利用率,铂以纳米级颗粒形式高分散地担载到导电、抗腐蚀的担体上,目前广泛采用的担体为乙炔炭黑,比表面积约为250m2/g,平均粒径为30nm。

PEMFC的气体扩散电极由两层构成,一层为起支撑作用的扩散层,另一层为电化学反应进行的场所催化层。扩散层一般选用炭材如石墨化炭纸或炭布制备,应具备高孔隙率和适宜的孔分布,不产生腐蚀或降解。根据制备工艺和厚度不同,催化层分为厚层憎水、薄层亲水及超薄三种类型。

3.2测控系统

PEMFC的工作性能受多种因素(温度、压力等)的影响,为确保PEMFC正常运行,提高其可靠性和有效性,就必须监测各个影响因素。即运用有效的措施来连续监测PEMFC运行的关键或重要状态,并对收集到的信息进行必要的分析和处理,以便做到故障预测和及时诊断,为PEMFC管理系统提供依据。目前,进行PEMFC测试系统相关方面研究的公司和机构众多,但仍没有制定出有关PEMFC测试的国际标准和相应的标准测试设备,不过已有实用的测试系统投入使用。加拿大Hydrogenics公司的燃料电池测试站(FCATS)、美国Arbin公司的集成燃料电池测试系统(FCTS)是其中的突出代表。

4质子交换膜燃料电池的应用

质子交换膜燃料电池是目前各种燃料电池中实用程度较高的一类。其优越性不仅限于能量转换效率高、工作温度低,还体现在其可在较大的电流密度下工作,适宜于较频繁启动的场合。因此世界各大汽车生产厂商一致看好其在汽车工业中的应用前景,PEMFC已成为现今燃料电池汽车动力的主要发展方向。目前,通用、丰田等世界上知名的汽车公司,都在积极开发以PEMFC系统为动力源的PEMFC电动车,曾先后推出各种类型的样车,并进行PEMFC电动车队的示范运行。PEMFC电动车以其优异的性能和环境污染很少等突出特点引起了人们的普遍关注,甚至被认为将是21世纪内燃机汽车最为有力的竞争者。

此外,在航空航天特别是无人飞行器领域,以及家庭电源、分散电站、移动电子设备电源、水下机器人及潜艇不依赖空气推进电源等方面也有广泛应用前景。

5质子交换膜燃料电池的发展趋势

在关键部件方面,围绕电解质膜、催化剂及双极板的研究方兴未艾。全氟型磺酸膜价格昂贵,开发非全氟的廉价质子交换膜是今后的研究方向。近年来,新型质子交换膜的的研究热点是开发能够在100℃以上使用的高温电解质膜。在催化剂方面,研制高性能抗CO中毒电极催化剂是最紧迫的任务,此外,还要寻找非贵金属氮化物或碳化物作为现有铂催化剂的替代。目前广泛使用的石墨板具有较好的耐腐蚀能力和较高的热导率,但成本较高,加工难度大,强度、电导率和可回收性均不如金属板。金属板目前急需解决的问题是表面处理,以提高其耐腐蚀能力。复合材料双极板则结合了纯石墨板和金属板的优点,具有耐腐蚀、体积小、质量轻、强度大及工艺性良好等特点,是未来发展的趋势。

在电堆方面,今后的研究重点将是使电堆中的电池单元的性能接近于单电池的性能,这就需要对电堆的结构进行优化,保证电堆中每一片电池单元的整个活性面积处于一致的操作环境,并优化水、热管理,改善电流密度分布的均匀性。

参考文献

燃料电池技术论文范文第4篇

燃料电池的类型主要有质子交换膜燃料电池(PEMFC,最有前途);碱性燃料电池(AFC);磷酸盐型燃料电池(PAFC);熔融碳酸盐型燃料电池(MCFC);固体氧化物燃料电池(SOFC)。

I.碱性燃料电池(AFC)

这种电池用35%~45%KOH为电解液,渗透于多孔而惰性的基质隔膜材料中,工作温度小于100℃。该种电池的优点是氧在碱液中的电化学反应速度比在酸性液中大,因此有较大的电流密度和输出功率。但氧化剂应为纯氧,电池中贵金属催化剂用量较大,而利用率不高。目前,此类燃料电池技术的发展已非常成熟,并已经在航天飞行及潜艇中成功应用。发展碱性燃料电池的核心技术是要避免二氧化碳对碱性电解液成分的破坏,不论是空气中百万分之几的二氧化碳成分还是烃类的重整气使用时所含有的二氧化碳,都要进行去除处理,这无疑增加了系统的总体造价。此外,电池进行电化学反应生成的水需及时排出,以维持水平衡。因此,简化排水系统和控制系统也是碱性燃料电池发展中需要解决的核心技术。

II.酸型燃料电池(PAFC)

这种电池采用磷酸为电解质,工作温度200℃左右。其突出优点是贵金属催化剂用量比碱性氢氧化物燃料电池大大减少,还原剂的纯度要求有较大降低,一氧化碳含量可允许达5%。该类电池一般以有机碳氢化合物为燃料,正负电极用聚四氟乙烯制成的多孔电极,电极上涂Pt作催化剂,电解质为85%的H3PO4。在100~200℃范围内性能稳定,导电性强。磷酸电池较其他燃料电池制作成本低,已接近可供民用的程度。目前,国际上功率较大的实用燃料电池电力站均用这种燃料的电池。美国将磷酸型燃料电池列为部级重点科研项目进行研究开发,向全世界出售200kW级的磷酸型燃料电池,日本制造出了世界上最大的(11MW)磷酸型燃料电池。到2002年初,美国已在全世界安装测试了200kWPAFC发电装置235套,累计发电470万小时。在美国和日本,有几套装置已达到连续发电1万小时的设计目标。欧洲现有5套200kWPAFC发电装置在运转。日本福日电器和三菱电器已经开发出500kWPAFC发电系统。我国魏子栋等人进行Pt3(Fe/Co)/C氧还原电催化剂的研究,并提出了Fe/Co对Pt的锚定效应。磷酸型燃料电池发电技术目前已得到高速发展,但是其启动时间较长以及余热利用价值低等发展障碍导致其发展速度减缓。

III.熔融碳酸盐燃料电池(MCFC)

这种电池用两种或多种碳酸盐的低融混合物为电解质,如用碱-碳酸盐低温共融体渗透进多孔性基质,电极为镍粉烧制而成,阴极粉末中含多种过渡金属元素作稳定剂,主要是在美国、日本和西欧研究和利用较多。2~5MW外公用管道型熔融碳酸盐燃料电池已经问世,在解决MCFC的性能衰减和电解质迁移方面已取得突破,美国燃料电池能源公司已在实验室测试263kWMCFC发电装置。意大利Ansaldo公司与西班牙Spanishcomp’s合作开发100kWMCFC发电装置和500kWMCFC发电装置。日本日立公司2000年开发出1MW的MCFC发电装置。东芝开发出低成本的10kWMCFC发电装置。MCFC中阴极、阳极、电解质隔膜和双极板是基础研究的四大难点,这四大部件的集成和对电解质的管理是MCFC电池组及电站模块的安装和运转的技术核心。

IV.固体氧化物燃料电池(SOFC)

电池中的电解质是复合氧化物,在高温(1000℃以下)时,有很强的离子导电功能。它是由于钙、镱或钇等混入离子价态低于锆离子的价态,使有些氧负离子晶格位空出来而导电。目前世界各国都在研制这类电池,并已有实质性的进展,但存在缺点:制造成本较高;温度太高;电介质易裂缝;电阻较大。目前已开发了管式、平板式和瓦楞式等多种结构形成的固体氧化物燃料电池,这种燃料电池被称为第三代燃料电池。美国和日本多家公司正在开发10kW平面轮机SOFC发电装置。德国西门子-西屋电器公司正在测试100kWSOFC管状工作堆,美国在测试25kWSOFC工作堆。国内大都处于SOFC的基础研究阶段。SOFC在高温下工作也给其带来一系列材料,密封和结构上的问题,如电极的烧结,电解质与电极之间的界面化学扩散以及热膨胀系数不同的材料之间的匹配和双极板材料的稳定性等。这些也在一定程度上制约着SOFC的发展,成为其技术突破的关健方面。

V.质子交换膜燃料电池(PEMFC)

它是继AFC、PAFC、MCFC、SOFC之后正在迅速发展起来的温度最低、比能最高、启动最快、寿命最长、应用最广的第五代燃料电池,它是为航天和军用电源而开发的。在美国《时代周刊》的社会调查结果中被列为21世纪十大科技新技术之首。美国多家公司、日本、三洋、三菱等公司也已研究开发出便携式PEMFC发电堆。加拿大电力系统公司与日本的EBARA公司合作研究开发250kWPEMFC发电设备和1kWPEMFC便携式发电系统。德国在柏林建造了一个250kWPEMFC的实验堆。质子交换膜燃料电池的核心技术是电极-膜-电极三合一组件的制备技术。为了向气体扩散,电极内加入质子导体,并改善电极与膜的接触,采用热压的方法将电极、膜、电极压合在一起,形成了电极-膜-电极三合一组件,其中,质子交换膜的技术参数直接影响着三合一组件的性能,因而关系到整个电池及电池组的运行效率。PEMFC的价格也制约着其商业化进程,因此,改进其必要组件性能,降低运行成本,是发展PEMFC的重要方向。

燃料电池技术论文范文第5篇

5.国外燃料电池发展状况 发达国家都将大型燃料电池的开发作为重点研究项目,企业界也纷纷斥以巨资,从事燃料电池技术的研究与开发,现在已取得了许多重要成果,使得燃料电池即将取代传统发电机及内燃机而广泛应用于发电及汽车上。值得注意的是这种重要的新型发电方式可以大大降低空气污染及解决电力供应、电网调峰问题,2MW、4.5MW、11MW成套燃料电池发电设备已进入商业化生产,各等级的燃料电池发电厂相继在一些发达国家建成。燃料电池的发展创新将如百年前内燃机技术突破取代人力造成工业革命,也像电脑的发明普及取代人力的运算绘图及文书处理的电脑革命,又如网络通讯的发展改变了人们生活习惯的信息革命。燃料电池的高效率、无污染、建设周期短、易维护以及低成本的潜能将引爆21世纪新能源与环保的绿色革命。如今,在北美、日本和欧洲,燃料电池发电正以急起直追的势头快步进入工业化规模应用的阶段,将成为21世纪继火电、水电、核电后的第四电方式。燃料电池技术在国外的迅猛发展必须引起我们的足够重视,现在它已是能源、电力行业不得不正视的课题。 5.1.磷酸型燃料电池(PAFC) 受1973年世界性石油危机以及美国PAFC研发的影响,日本决定开发各种类型的燃料电池,PAFC作为大型节能发电技术由新能源产业技术开发机构(NEDO)进行开发。自1981年起,进行了1000kW现场型PAFC发电装置的研究和开发。1986年又开展了200kW现场性发电装置的开发,以适用于边远地区或商业用的PAFC发电装置。 富士电机公司是目前日本最大的PAFC电池堆供应商。截至1992年,该公司已向国内外供应了17套PAFC示范装置,富士电机在1997年3月完成了分散型5MW设备的运行研究。作为现场用设备已有50kW、100kW及500kW总计88种设备投入使用。下表所示为富士电机公司已交货的发电装置运行情况,到1998年止有的已超过了目标寿命4万小时。表 现场用PAFC燃料电池的运行情况容量 台数 累计运行时间 最长累计 最长连续 >1万h >2万h >3万h50kW66 1018411 33655 7098 54 15 4100kW 19 274051 356076926 11 4 3500kW 3 4343716910 42143

燃料电池技术论文范文第6篇

1.磷酸型燃料电池(PAFC) PAFC技术开发的现状与动向: 日本自实施月光计划以来,作为部级项目,正在实施5000千瓦级加压型和1000千瓦级常压型电厂实证运行。目前,磷酸型燃料电池的发电效率为30%~40%,如果将热利用考虑进去,综合效率可高达60%~80%。 除日本外,目前世界约有60台PAFC发电设备在运转,总输出功率约为4.1万千瓦。按国别和地区划分日本为2.9万千瓦,美国8000千瓦,欧洲3000千瓦,亚洲900千瓦。运转中的发电设备除3台(日本2台,意大利1台)为加压型外,其他均为常压型。磷酸型燃料电池的制造厂家目前主要为日本和美国,设备主要销往欧、亚。 美国已完成基础研究,200千瓦级电厂用电池近期有望商品化,但大容量电厂用电池处于停滞状态。德国已引进美国200千瓦级电厂用电池进行试验运行。另外,瑞典、意大利、瑞士等国也引进日、美的电池进行试运行。 2.熔融碳酸盐型燃料电池(MCFC) 日本对MCFC发电系统的技术开发始于1981年度的月光计划,该计划围绕开发1千瓦级发电机组这个目标展开了对MCFC燃料、电极等的开发。该开发研究进展顺利,从1984年开始,进而对10千瓦级发电机组进行研究开发。1986年,日立、东芝、富士电机、三菱电机、IHI分别对5台10千瓦级机组进行发电试验,其结果是输出功率为10千瓦,初期性能为电池电压0.75伏,电流密度150毫安/平方厘米。 1987年起,日本在对1000千瓦级实验电场(外部改质型)进行主要开发的同时,对100千瓦级发电机组以及1000千瓦级机组的设备的开发研究也取得了进展。1993年度,日立、IHI的2台100千瓦级外部改质型机组和三菱电机的1台30千瓦级内部改质型机组开始试验发电运行。其试验结果以及1994年度进行的5-25千瓦级机组的试验结果表明,电池电压0.8伏,电流密度达15毫安/平方厘米,单位时间内的劣化率小于1%。 在此基础上,1994年度起开始着手开发1000千瓦级试验工厂。1995年10月在中部电力(株)川越发电所开始建厂,确立了1000千瓦级实用化发电系统试验工厂的基本系统,对现有的事业用燃料电池电厂的运行进行评价,计划1999年开始试验运行,其目标为:燃料利用率为80%,千小时电池的劣化率小于1%,初期性能为:电池电压大于0.8伏,电流密度1500毫安/平方厘米,计划试验运行5000小时。 为使电池实用化,在上述研究开发的基础上,还进行了机组长寿命化研究,计划连续实验运行4万小时,每千小时单位劣化率小于0.25%。除此之外,还在开发200千瓦级内部改质型燃料电池发电系统。 美国能源部和美国电力研究所,正在积极开发MCFC。美国ERC公司开发的2兆瓦级内部改质型机组发电系统于1996年5月在圣克拉拉开始试验运行。MC-power公司开发的250千瓦级外部改质型机组发电系统,1997年2月起在圣迭戈开始试运行。 在欧洲,MCFC作为共同项目正在研究开发,取得了一些进展,其主要项目如下: ①高级DIC-MCFC发展计划(1996-1998年)。荷兰、英、法、瑞典等国参加研究,欧洲在市场分析、系统开发以及内部改质型机组的开发等方面取得进展。 ②ARGE项目(1990年起计划10年内完成)。德、丹麦参加,并在内部改质型发电系统的开发上取得进展。 ③MOLCARE。由意、西班牙参加,并在外部改质型发电系统开发上取得进展。 韩国从1993年起开始开发MCFC,1997年以开发100千瓦外部改质型发电系统为目标,开始了第二阶段研究开发工作。 3.固体电解质型燃料电池(SOFC) 作为SOFC开发的基础科学离子学,其开发历史很长,日、美、德等国已有30多

燃料电池技术论文范文第7篇

摘要:电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。论文关键词:电力技术;电源 “电力技术是通向可持续发展的桥梁”,这个论断已经逐渐成为人们的共识。研究表明,为了实现可持续发展,应尽可能把一次能源转换为电能使用,提高电力在终端能源中的比例。因为,在保证相同的能源服务水平的前提下, 使用电力这种优质能源最清洁、方便,易于控制、效率最高。如果能将大量分散燃用的化石燃料都高效洁净地转换为电力使用,人们赖以生存的环境和生活质量就会大大改善。因此,电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。以下将对若干电力前沿技术的现状和未来发展前景进行简单评述。 1. 分布式电源 当今的分布式电源主要是指用液体或气体燃料的内燃机(IC)、微型燃气轮机(Microtur_bines)和各种工程用的燃料电池(Fuel Cell)。因其具有良好的环保性能,分布式电源与“小机组”已不是同一概念。 1.1 微型燃气轮机 微型燃气轮机(Micro Turbine),是功率为几千瓦至几十千瓦,转速为96 000 r/min,以天然气、甲烷、汽油、柴油为燃料的超小型燃气轮机,工作温度500 ℃,其发电效率可达30%。目前国外已进入示范阶段。其技术关键是高速轴承、高温材料、部件加工等。可见,电工技术的突破常常取决于材料科学的进步。 1.2 燃料电池 燃料电池是直接把燃料的化学能转换为电能的装置。它是一种很有发展前途的洁净和高效的发电方式,被称为21世纪的分布式电源。 1.2.1 燃料电池的工作原理 燃料电池的工作原理颇似电解水的逆过程。氢基燃料送入燃料电池的阳极(电源的负极)转变为氢离子,空气中的氧气送入燃料电池的阴极(电源的正极),负氧离子通过2极间离子导电的电解质到达阳极与氢离子结合成水,外电路则形成电流。 通常,完整的燃料电池发电系统由电池堆、燃料供给系统、空气供给系统、冷却系统、电力电子换流器、保护与控制及仪表系统组成。其中,电池堆是核心。低温燃料电池还应配备燃料改质器(又称为燃料重整器)。高温燃料电池具有内重整功能,无须配备重整器。磷酸型燃料电池(PAFC)是目前技术成熟、已商业化的燃料电池。现在已能生产大容量加压型11 MW的设备及便携式250 kW等各种设备。第2代燃料电池的溶融碳酸盐电池(MCFC),工作在高温(600~700 ℃)下,重整反应可以在内部进行,可用于规模发电,现在正在进行兆瓦级的验证试验。固体电解质燃料电池(SOFC)被称为第3代燃料电池。由于电解质是氧化锆等固体电解质,未来可用于煤基燃料发电。质子交换膜燃料电池是最有希望的电动车电源。 1.2.2 性能和特点 燃料电池有以下优点:(1)有很高的效率,以氢为燃料的燃料电池,理论发电效率可达100%。熔融碳酸盐燃料电池,实际效率可达58.4%。通过热电联产或联合循环综合利用热能,燃料电池的综合热效率可望达到80%以上。燃料电池发电效率与规模基本无关,小型设备也能得到高效率。(2)处于热备用状态,燃料电池跟随负荷变化的能力非常强,可以在1 s内跟随50%的负荷变化。(3)噪音低;可以实现实际上的零排放;省水。(4)安装周期短,安装位置灵活,可省去新建输配电系统 目前燃料电池大规模应用的障碍是造价高,在经济性上要与常规发电方式竞争尚需时日。 1.2.3 技术关键和研究课题 燃料电池的技术关键涉及电池性能、寿命、大型化、价格等与商业化有关的项目,主要涉及新的电解质材料和催化剂。熔融碳酸盐电池(MCFC)在高温条件下液体电解质的损失和腐蚀渗漏降低了电池的寿命,使MCFC的大型化及实用化受到限制。需要解决电池构成材料的腐蚀;电极细孔构造变化使电池性能下降等问题。固体氧化物燃料电池(SOFC)使用固体电解质且工作温度很高,对构成材料及其加工有特殊要求。为了得到高温下化学性稳定和致密性(不通过气体)的电解质,在氧化锆中加入Y2O3生成钇稳定氧化锆。为了降低工作温度,应尽可能减少电解质薄膜厚度。

燃料电池技术论文范文第8篇

关键词:燃料电池 电源 氢能

Research Situation and Application Prospect of Fuel Cell

Wang Weihong

Abstract:With the development of social economy and the absence of energy,the conflict is abrupt between environment and pollution,and all the countries take up with the exploitation of energy.Whereas the fuel cell is a green energy sources,it has become the focus of the new energy sources.The classification,research situation,the virtue and application of the small fuel cell are elaborated,and the development situation and perspective of fuel cell are briefly described.

Keywords:Fuel cell Power sources Hydrogen energy

【中图分类号】G710【文献标识码】B 【文章编号】1009-9646(2009)09-0117-03

能源是经济发展的基础,没有能源工业的发展就没有现代文明。历史上利用能源的方式有过多次革命性的变革,从原始的蒸汽机到汽轮机、高压汽轮机、内燃机、燃气轮机,每一次能源利用方式的变革都极大地推进了现代文明的发展。

随着现代文明的发展,人们逐渐认识到传统的能源利用方式有两大弊病。一是储存于燃料中的化学能必需先转变成热能后再进一步转化为其它能量才能被使用,如转变成机械能或电能,受卡诺循环及现代材料的限制,在机端所获得的效率只有33%~35%,一半以上的能量白白地损失掉;二是传统的能源利用方式给今天人类的生活环境造成了巨量的废水、废气、废渣、废热和噪声的污染,故科学家们一直在努力寻找既有较高能源利用效率又不污染环境的能源利用方式,这样燃料电池就应运而生啦。

1.小型燃料电池的分类

自1839年英国科学家格罗夫(Grove)用镀制的铂作电极,以氢为燃料、氧为氧化剂研制出燃料电池后,许多科学家开始把目光转向燃料电池的研发技术上,至今已有多种多样的新燃料电池出现。常见的分类方法有:按燃料的处理方式的不同,可分为直接式、间接式和再生式。直接式燃料电池按温度的不同又可分为低温型(工作温度为100℃及以下)、中温型(工作温度为100℃~300℃)和高温型(工作温度为600℃~1000℃)3种类型;按构成电池的电解质分类,主要有5类,即碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐型燃料电池(MCFC)、固体氧化物型燃料电池(SOFC)和质子交换膜燃料电池(PEMFC)。其中后3种燃料电池是目前世界各国竞相研究开发的重点。

2.小型燃料电池的发展状况

小型燃料电池作为21世纪的高科技产品,早已受到西方发达国家的重视,企业界也纷纷投入巨资从事燃料电池技术的研究与开发,均取得了重大进展,技术走向成熟,并在一定程度上实现了商业化,使得燃料电池即将逐步取代传统发电机和内燃机而广泛应用于发电和汽车上。MW级成套燃料电池发电设备已进入商业化生产,各等级的燃料电池发电厂相继在一些发达国家建成,燃料电池汽车也已经开发出来,家庭用燃料电池也已经进入实用性试验,这充分显示了燃料电池所具有的广阔发展前景。

我国对燃料电池的研制开发起步并不晚,早在1958年,天津电源研究所就最早开展了熔融碳酸盐燃料电池的研究。20世纪70年代,在航天事业的推动下,中国燃料电池的研究曾呈现出第一次高潮。其间中国科学院大连化学物理研究所研制成功的两种类型的碱性石棉膜型氢氧燃料电池系统(kW级AFC)均通过了例行的航天环境模拟试验[3]。到20世纪90年代中期,我国政府已认识到燃料电池的重要性,国家科技部与中国科学院将小型燃料电池技术列入九五科技攻关计划,科学界和企业界的一些有识之士开始重新将目光投向燃料电池技术,中国进入了燃料电池研究的第二个高潮。尤其是质子交换膜燃料电池的研究达到或接近了世界水平。中国科学院开始组织有关研究所联合攻关,准备用几年的时间研制出大功率质子交换膜燃料电池堆在我国,中国科学院大连化学物理所在2002年5月与南孚电池集团、韩国三星电子集团分别联合开发小型燃料电池,研制并组装了10W的PEMFC电堆。中科院长春应用化学所在国内率先开展了DMFC的研究,对DMFC的电催化剂、电极、电极/膜集合体及单体电池的结构优化等进行了较为系统的研究。高等院校是我国从事燃料电池基础研究与应用开发的一支重要力量。清华大学核能与新能源及时研究院在PEMFC的膜电极制备、自增先技术等多方面取得了长足的进展[4],已研制成功了输出功率分别为30W与200W的一体化PEMFC电堆[5],以及组装出了小功率DMFC电堆。另外,武汉大学、中山大学、武汉理工大学、石油大学、北京科技大学、北京理工大学也分别在小型PMEFC方面开展了研究。我国民营高科技企业也积极参与了PEMFC的开发,北京世纪富豪原燃料电池有限公司开发出了200W系列低压型氢―空燃连电池样机[6],并出口日本与意大利;另外,上海神力科技有限公司与北京飞驰绿能公司也在开发小型氢―氧燃料电池。除此以外,许多单位也展开了对其他类型燃料电池的研。

在质子交换膜燃料电池方面,以大连化学物理研究所为牵头单位,在全国范围内全面开展了质子交换膜燃料电池的电池材料与电池系统的研究,取得了很大进展,相继组装了多台0.1kW、1~2kW、5kW、10~30kW电池组与电池系统。5kW电池组包括内增湿部分,其质量比功率为100W/kg,体积比功率为300W/L。质子交换膜燃料电池自行车已研制成功,现已开发出200W电动自行车用燃料电池系统。hW级移动动力源和5kW移动通信机站动力源也已开发成功。kW级电池系统作为动力源,已成功地进行了应用试验。由6台5kW燃料电池组构成的30kW燃料电池系统已成功地用作中国首台燃料电池轻型客车动力源。装车电池最大输出功率达46kW,目前该车最高时速达60.6km/h。我国目前正在进行大功率质子交换膜燃料电池组的开发和燃料电池发动机系统集成的研究。

在熔融碳酸盐燃料电池方面,我国已经研制出α和γ型偏铝酸锂粗、细粉料,用冷滚压法和带铸法制备出大面积(大于0.2m2)MCFC用的电池隔膜,预测隔膜寿命超过3104h。在进行材料部件研究的基础上,成功组装和运行了kW级电池组,其性能已达到20世纪80年代初的国际水平。在固体氧化物燃料电池技术方面,已经制备出厚度为5~10μm的负载型致密YSZ电解质薄膜,研制出一种能用作中温SOFC连接体的Ni基不锈钢材料。负载型YSZ薄膜基中温SOFC单体电池的最大输出功率密度达到0.4W/cm2,负载型LSGM薄膜基中温SOFC单体电池的最大输出功率密度达到0.8W/cm2。这些技术创新为kW级、10kW级中温固体氧化物燃料电池发电技术的研发奠定了坚实基础。

总的来说,我国小型燃料电池的研究开发仍处于科研阶段,与国外相比,我国的小型燃料电池研究水平还较低,要实现实用化、商业化应用还有很长的路要走。

3.小型燃料电池的优点

3.1 发电效率高。

燃料电池按电化学原理等温地直接将化学能转化为电能,它不像常规电厂那样通过锅炉、汽轮机、发电机三级能量转换才能得到电能,因此既没有中间环节的转换损失,也不受热力学卡诺循环理论的限制,理论上它的发电效率可达85%~90%。但实际上,由于工作时各种极化的限制,目前各类燃料电池的实际能量转化效率为40%~60%,若实现热电联供,燃料的总利用率可高达80%以上[7]。

3.2 环境污染小。

当燃料电池以天然气等富氢气体为燃料时,由于有高的能量转换效率,其二氧化碳的排放量比热机过程减少40%以上。除此以外,由于燃料电池的燃料气在反应前必须脱硫,而且按电化学原理发电,没有高温的燃烧过程,所以几乎不排放硫化物和氮氧化物,减轻了对大气的污染。

3.3 噪声低。

由于燃料电池按电化学反应原理工作,运动部件很少。因此,工作时噪声很低。

3.4 负荷调节灵活。

由于燃料电池发电装置是模块结构,容量可大可小,布置可集中可分散,且安装简单,维修方便。另外,当燃料电池的负载有变动时,它会很快响应,故无论处于额定功率以上过载运行或低于额定功率运行,它都能承受且效率变化不大。这种优良性能使燃料电池不仅能向广大民用用户提供独立热电联供系统,也能以分散的形式向城市公用事业用户供电,或在用电高峰时作为调节的储能电池使用。

3.5 燃料来源广。

燃料电池可应用甲醇、乙醇、煤气、沼气、天然气、含氢废气、轻油、柴油等多种燃料。

4.小型燃料电池的应用范围

由于燃料电池是目前唯一同时兼备无污染、高效率、噪声低[8]、适用广且具有连续工作能力的动力装置,特别是在现在能源紧缺、大气污染严重、提倡节约能源和保护环境的形势下,以天然气等富氢气体为燃料的燃料电池正在得到广泛的应用。其应用可能有如下几个方面:

4.1 发电。

小型燃料电池由于具有能量转换效率高、污染小、用水少、占地小等突出优点,多年来一直成为替代传统发电厂设备的最佳选择。目前,美国欧洲诸国和日本等国投入运行的磷酸型燃料电池发电厂数以百计,各国工业界人士普遍对燃料电池在发电站的应用前景看好。2001年全球燃料电池的发电能力为 75 MW。未来 10年中,全球燃料电池的发电能力将会上升到 1.5 10 MW。美国预计到 2017年美国 30%的电能将由燃料电池提供。

4.2 汽车动力。

目前,各国的汽车用量均在不断增加,汽车排放的尾气已成为城市环境的主要污染源之一,特别是发展中国家,由于环境治理的力度不够,这一问题更加突出。于是人们要求开发新型的清洁、高效的能源来解决这一问题。质子交换膜燃料电池的出现,解决了燃料电池在汽车动力成本和技术方面存在的若干问题,使燃料电池电动车的开发和使用成为可能。这种电池具有室温快速启动、无电解液流失、水易排出、寿命长、比功率与比能量高等特点,适合做汽车动力,是目前世界各国积极开发的运输用燃料电池。从上世纪 80年代起,北美、西欧和日本就开始研制,1993年,加拿大巴拉德公司研制出世界第一辆燃料电池公共汽车。九五期间中国科学院大连风汽车工程研究院合作,开发了我国第一辆完全具有自主知识产权的燃料电池电动公交车[9]。

4.3 家用能源。

由于上述燃料电池的优点和特征,燃料电池不但在航天、国防、电力和交通等部门得到广泛的应用,而且在民用方面也具有十分广阔的推广和应用前景。它作为家庭使用的分散电源的同时还可提供家庭用热水和供暖,这样可将天然气的能量利用率提高到 70%~90%。最近,日本东京燃气公司正式启动了供应电力、热水和供暖的小容量家庭用燃料电池能源综合利用系统发展计划。它是利用制氢装置把天然气改质为氢气,由固体高分子燃料电池用氢发电,同时供应生活用热水和供暖。三洋电机公交换膜小型燃料电池,其输出功率为1kW,投放市场后颇受用户欢迎。家用燃料电池是未来家庭能源的发展方向,相信通过各国科学家的努力,在不久的将来,高效清洁的家庭用燃料电池将走进普通百姓的家庭。

4.4 在其他方面的应用。

碱性燃料电池和质子交换膜燃料电池运行时基本没有红外线辐射,而且噪声小,可用做潜艇动力。由于它们可在常温下启动工作,且能量密度高,还是理想的航天器工作电源。此外,质子交换膜燃料电池还可用作野外便携式电源。还可用于移动通讯 数码相机、手提电脑等领域。

5.小型燃料电池的发展前景

作为一种清洁高效的能源,燃料电池具有巨大的发展潜力。从20世纪90年代中期开始,世界各国的公司和科研机构不断努力试图发展小功率燃料电池,期望将其于便携式电源,手提电脑,数码相机和移动电话电源等小型电子设备电源[10]。随着更多燃料电池商业化的到来,燃料电池市场必将大幅度上升。据报道2004年美国的燃料电池销售额已达到24 亿美元。

我国也已经把“燃料电池发展技术”列为《科技发展 “十五”计划和2015年远景规划》中,为此国家科技部和中国科学院共同投入了大量的资金进行研究,已经取得了一定的成绩。如2001年全国工博会上氢燃料电池展示车的出现,表明我国已经掌握了燃料电池的先进技术。

6.结语

我国是一个农业大国,具有丰富的农作物秸秆,因而可以秸秆产生沼气,也是一个煤炭资源比较丰富的国家,可以通过煤脱硫、气化等技术产生大量煤气,以及利用太阳光照分解水的技术日益成熟,相信燃料电池的研发与使用为解决环境污染、温室效应及能源危机等问题带来了灿烂阳光与美好向往。

参考文献

[1] 衣宝廉.燃料电池―高效环境有好的发电方式,北京:化学工业出版社,2001

[2] 衣宝廉.燃料电池-原理,技术,应用[M].北京,化学工业出版社,2003

[3] 高春梅、李清.以燃气为燃料的燃料电池及其应用的探讨[J].城市燃气,2002,(10):6~11

[4] 王诚、毛宗强、徐景明等.中国科学G辑:物理学天文学,2003,46(5):501~508

[5] 王诚、毛宗强、徐景明等.CN,X.2004,219~220

[6] 钟家轮,杨庆苏.CN,X.1999

[7] 张涛.天然气燃料电池的原理与应用[J].煤气与热力,2002,22(5):417~419

[8] 陈克,孙媛媛,徐延辉.燃料电池来源的探讨[J].节能与环保,2003,(10):32~34

燃料电池技术论文范文第9篇

Fuel Cell Micro-grids

2009

Hardback

ISBN 9781848003378

Shin’ya Obara著

燃料电池技术作为一种新型发电技术引起了越来越多人的关注,技术水平也得到了很大发展,本书介绍了由燃料电池及其它发电装置构成的分布式发电机组所组成的微电网的相关技术,作者Shin’ya Obara为日本苫小牧国家科技学院的教授,JSME,ASME,IEEE等多个学会成员,是《The Open Fuels and Energy Science Journal》,《Journal of Computational Science and Technology》,《International Conference on Electric Power and Energy Conversion Systems》,《Applied Mathematical Modeling》等多个杂志审稿人,出版著作17本,发表科技论文100多篇。

本书分为13章。1.考虑部分负荷及负荷波动的小型燃料电池热电联供系统,介绍了系统的组成与布置、能量平衡与目标函数、能量输出特性等内容;2.燃料电池供能网络最小成本优化配置方案,介绍了系统方案、热水管路系统释放热能的数量、能量平衡、成本计算与目标函数、分析方法与案例研究、分析结果等内容;3.分区协作管理模式引起的发电效率的提高,介绍了系统布置、微电网的发电效率、电力需求模型、分析方法并进行了案例研究,对分析结果进行了讨论;4.采用负荷平衡及放热损失方法考虑减小燃料电池容量的燃料电池供电系统,介绍了负荷平衡和燃料电池的布置方案、分析方法并进行了案例分析;5.柴油发电装置与燃料电池混合互联微电网的设备布置方案,介绍了微电网模型、混合互联微电网模型、设备布置、混合互联微电网运行方法、柴油发电机特性与质子交换膜型燃料电池特性、系统分析方法并进行了案例研究;6.分布式燃料电池废热的有效利用分析法,介绍了热水管路放热的途径与数量、热能平、热水管路系统放热的数量、燃料电池发电与供热特性、能量需求方式与燃料电池容量,并进行了案例分析,对分析结果进行了研究;7.寒冷地区独立房间燃料电池的负荷相应特性,介绍了系统布置、每部分装置的时间常数、分析方法、分析结果与讨论;8.可以控制装置数量的燃料电池微电网的负荷响应特性,介绍了微电网的电能质量、系统中各配置装置的响应特性、控制变量与分析方法、微电网的负荷响应特性;9.质子交换膜燃料电池与木质生物质发电机混合微电网动态特性,介绍了系统方案、质子交换膜燃料电池与斯特林发电机的控制响应特性、该混合微电网动态特性分析结果;10.考虑到部分负荷运行时效率TIGA的燃料电池与氢发动机混合系统,介绍了系统方案、设备特性,该混合系统的电力与热能输出特性,案例分析与结果讨论;11.氢气化城市煤气发动机与燃料电池混合微电网二氧化碳排放分析,介绍了系统方案、设备特性、案例分析与结果讨论;12.带太阳能重整装置的燃料电池系统的快速运算法则的发展,介绍了系统方案、能量与质量平衡、该系统的动态运行预测、案例分析与结果讨论;13.燃料电池与风力发电机微电网的功率特性,介绍了微电网模型,系统布置设备的响应特性,控制参数与分析方法,微电网的负荷响应特性。

本书结构清晰,表述深入浅出,理论分析之后都有相应的案例分析,有利于对所述内容的理解。该书既可以作为电力相关专业本科生或研究生的教科书,也可以作为相关领域研究人员的参考资料。

论立勇,博士生

(中国科学院理化技术研究所)

燃料电池技术论文范文第10篇

当今的分布式电源主要是指用液体或气体燃料的内燃机(IC)、微型燃气轮机(Micro??tur_bines)和各种工程用的燃料电池(FuelCell)。因其具有良好的环保性能,分布式电源与“小机组”已不是同一概念。

1.1微型燃气轮机

微型燃气轮机(MicroTurbine),是功率为几千瓦至几十千瓦,转速为96000r/min,以天然气、甲烷、汽油、柴油为燃料的超小型燃气轮机,工作温度500℃,其发电效率可达30%。目前国外已进入示范阶段。其技术关键是高速轴承、高温材料、部件加工等。可见,电工技术的突破常常取决于材料科学的进步。

1.2燃料电池

燃料电池是直接把燃料的化学能转换为电能的装置。它是一种很有发展前途的洁净和高效的发电方式,被称为21世纪的分布式电源。

1.2.1燃料电池的工作原理

燃料电池的工作原理颇似电解水的逆过程。氢基燃料送入燃料电池的阳极(电源的负极)转变为氢离子,空气中的氧气送入燃料电池的阴极(电源的正极),负氧离子通过2极间离子导电的电解质到达阳极与氢离子结合成水,外电路则形成电流。

通常,完整的燃料电池发电系统由电池堆、燃料供给系统、空气供给系统、冷却系统、电力电子换流器、保护与控制及仪表系统组成。其中,电池堆是核心。低温燃料电池还应配备燃料改质器(又称为燃料重整器)。高温燃料电池具有内重整功能,无须配备重整器。磷酸型燃料电池(PAFC)是目前技术成熟、已商业化的燃料电池。现在已能生产大容量加压型11MW的设备及便携式250kW等各种设备。第2代燃料电池的溶融碳酸盐电池(MCFC),工作在高温(600~700℃)下,重整反应可以在内部进行,可用于规模发电,现在正在进行兆瓦级的验证试验。固体电解质燃料电池(SOFC)被称为第3代燃料电池。由于电解质是氧化锆等固体电解质,未来可用于煤基燃料发电。质子交换膜燃料电池是最有希望的电动车电源。

1.2.2性能和特点

燃料电池有以下优点:(1)有很高的效率,以氢为燃料的燃料电池,理论发电效率可达100%。熔融碳酸盐燃料电池,实际效率可达58.4%。通过热电联产或联合循环综合利用热能,燃料电池的综合热效率可望达到80%以上。燃料电池发电效率与规模基本无关,小型设备也能得到高效率。(2)处于热备用状态,燃料电池跟随负荷变化的能力非常强,可以在1s内跟随50%的负荷变化。(3)噪音低;可以实现实际上的零排放;省水。(4)安装周期短,安装位置灵活,可省去新建输配电系统

目前燃料电池大规模应用的障碍是造价高,在经济性上要与常规发电方式竞争尚需时日。

1.2.3技术关键和研究课题

燃料电池的技术关键涉及电池性能、寿命、大型化、价格等与商业化有关的项目,主要涉及新的电解质材料和催化剂。熔融碳酸盐电池(MCFC)在高温条件下液体电解质的损失和腐蚀渗漏降低了电池的寿命,使MCFC的大型化及实用化受到限制。需要解决电池构成材料的腐蚀;电极细孔构造变化使电池性能下降等问题。固体氧化物燃料电池(SOFC)使用固体电解质且工作温度很高,对构成材料及其加工有特殊要求。为了得到高温下化学性稳定和致密性(不通过气体)的电解质,在氧化锆中加入Y2O3生成钇稳定氧化锆。为了降低工作温度,应尽可能减少电解质薄膜厚度。通常采用熔射法、烧结法和电化学蒸发涂层法制备电解质薄膜。实用的电解质膜的厚度为0.03~0.05mm。比较先进的已达到0.01mm。这样薄的电解质陶瓷材料除应当有足够的机械强度外,必须具有高度的气体致密性,否则将丧失燃料电池的性能。燃料极使用镍锆等耐热金属陶瓷,镍还用作燃料重整的催化剂,空气极在运行中处在高温氧化中,难以使用一般金属。铂的稳定性好,但费用昂贵,需要寻找替代材料,可用电子导电陶瓷。为了降低工作温度,另外一个重要的研究方向是寻找低温的质子导电的电解质。工作温度倘若能降低到700℃以下,SOFC的造价就可以大幅度降低。论文百事通

2.大功率电力电子技术的应用硅片引起的“第二次革命

2.1大功率电力电子器件的重大进展

电力电子学(PowerElectronics)的应用已经有多年的历史。电力电子学器件用于电力拖动、变频调速、大功率换流已经是比较成熟的技术。大功率电子器件(HighPowerElectronics)的快速发展也引起了电力系统的重大变革,通常称为硅片引起的第二次革命。

近年来,大功率电子器件已经广泛应用于电力的一次系统。可控硅(晶闸管)用于高压直流输电已经有很长的历史。大功率电子器件应用于灵活的交流输电(FACTS)、定质电力技术(CustomPower)以及新一代直流输电技术则是近10年的事。新的大功率电力电子器件的研究开发和应用,将成为电力研究前沿。新晨

2.2灵活交流输电技术(FACTS)

灵活交流输电技术是指电力电子技术与现代控制技术结合以实现对电力系统电压、参数(如线路阻抗)、相位角、功率潮流的连续调节控制,从而大幅度提高输电线路输送能力和提高电力系统稳定水平,降低输电损耗。

传统的调节电力潮流的措施,如机械控制的移相器、带负荷调变压器抽头、开关投切电容和电感、固定串联补偿装置等,只能实现部分稳态潮流的调节功能,而且,由于机械开关动作时间长、响应慢,无法适应在暂态过程中快速灵活连续调节电力潮流、阻尼系统振荡的要求。因此,电网发展的需求促进了灵活交流输电这项新技术的发展和应用。

燃料电池技术论文范文第11篇

从目前国内外的发展情况来看,我们已经达成了一个关于燃料电池汽车的战略共识,或者是对燃料电池技术的一个阶段性判断:即现在燃料电池技术正处于一个从纯粹的研发向商业化的转折期,从研究的角度还任重道远,这是一条没有穷尽的路。但是目前的关键是局部的商业化突破,而不是全方位商业化突破,全方位商业化突破肯定还是非常遥远的,但是局部的商业化突破应该可以开始了。

我们经历了长时间的摸索,不断失败、不断改进,从2008年开始,燃料电池技术出现了重大突破,虽然中国在燃料电池发展历程中一直是疑惑疑惑再疑惑,但是我想现在应该逐步清醒,然后可以开始行动了。

局部商业化突破在什么地方出现?从技术上看,总会拿燃料电池技术跟纯电动技术相比,这是一个一直被讨论的话题,尤其是现在以锂离子电池为主要动力源的纯电动汽车发展得非常之好,已经取得了一定的成功,但是5年前的纯电动汽车的状况可能跟今天燃料电池的状况大体相当,当时业内外一片怀疑之声,也没有多少人相信锂离子电池汽车会有今天的发展,我们现在首先要肯定锂离子电池是一个目前商业化的新能源汽车零排放的主流技术,这是不用怀疑的事实。燃料电池汽车跟锂离子电池车型如果在家用轿车领域相比,目前要进行商业化进程显然还不太现实,尤其是中国纯电动汽车的技术与国外的差距,相比燃料电池车型要小一些,这也是一个不容忽视的事实。

如果轿车上装100多千瓦的燃料电池,只是用很少的电池,比如丰田的方案,我们现在无论从成本还是其他方面,在轿车、乘用车领域,我估计在近期还是很难突破的。从技术角度来看,燃料电池车型的出路,尤其在中国的出路,可能是要把锂电池的技术跟其他的应用进行组合,这种组合应当是减少燃料电池的功率――不能用那么大功率,因为成本、Pt含量都与功率直接相关。车用的功率应该由锂电池来承担,这可能是将车、锂电池、燃料电池进行最佳组合的一个方案。

至于承载的储氢瓶,成本要急剧下降,当然我们现在新的技术要尽快进行技术评估,来确认我们的技术突破,这对车载储氢瓶的发展而言将会是一个重大突破。

我们在技术上不得不承认国内氢能燃料电池的技术跟国外的差距在2008年之后应该说是在拉大,可以说国外的氢能燃料技术,以丰田为代表的产品,其技术问题已经基本解决,它可以商业化了,但是我们国内的氢燃料电池技术目前离实用化还有距离,仅就耐久性而言,国外的轿车已经做到5000小时,大客车也做到了15000小时以上,但是我们现在国内的还做不到,所以相比而言,我们锂离子电池电动车跟国外差距相对会小一点,这是我们必须承认的技术差距。

商业化突破口

在市场方面,在乘用车方面我们现在还很难在中国进行燃料电池轿车商业化,近期主要还是示范,不太可能进行商业化。现在中国的优势或者全球可能率先突破商业化的是商用车或者大客车,而大客车是中国新能源汽车的优势,中国新能源客车在世界上遥遥领先,今年可能会做到5万辆,我们历史上已经积累了5万辆,也就是说保有量会超过10万辆,全球的保有量大概也不到20万辆,所以在这个方面中国有绝对的优势,中国新能源客车是全球燃料电池技术的最佳应用场合,也是中国新能源自主技术最有优势的地方,把这两者结合起来,我想我们就可以实现燃料电池汽车局部的商业化突破。

如果从长远看,我个人估计,对以汽油机为代表的动力源,锂离子电池等也许是近期或者更长远的一个主流替代方案,但是对柴油机的替代方案,可能燃料电池更具优势。

四个行动方向

基于这样的判断我们现在该做什么?我们现在要行动,不是疑惑,我想一些业内人士可能不疑惑,但全社会还是疑惑的,在10年前我们曾经宣传燃料电池、氢能经济,遭到了大规模的批判,但经过国外的技术突破,现在对燃料电池的认识应该说全社会都有新的看法,为我们开发燃料电池的商业化奠定了很好的社会环境,所以业内人士应该都是行动者,所以我们要行动起来。

第一就是要协同创新,这一领域产业链上的众多单位就是我们协同的基础。我们的纯电动汽车产业是怎么推起来的?就是官产学研的大协同,当然“官”的作用非常重要,补贴就是非常重要的一个方面。所以我们纯电动汽车很快就发展起来了,这是我们的经验,我们下面应该利用这个优势往前推。

第二就是技术集成。丰田可以一次性向全球免费开放4560项专利,这么一个企业成为燃料电池相关技术的集大成者,中国目前不具备这样的企业,怎么办?需要大家一起努力,同时我们也希望中国有类似的企业。比如郑州宇通客车是现在新能源客车的第一大生产商,年产过万辆甚至2万辆,以前我们是根本不敢想象的。正是因为有了这样的突破,他们才有自信,再来进行氢燃料电池的突破,他们才敢于提出庞大的目标。所以我们认为,很多事情我们过去认为不可能,就像10年前我们认为氢能燃料电池有很多不可能,但现在已经被国外的技术突破,变成可能了,所以今天也许我们再提一些大家觉得不可能的事,5年之后也可能会变成现实。所以我们希望出现一些这样的企业,把相关的技术进行集成。

第三是国际合作。我们现在跟国外有明显差距,如果现在全用中国的技术搞商业化,估计是有困难的,这也是为什么我们的一些地方政府,如佛山和如皋都选择了国外的技术。地方政府真正推进燃料电池商业化的时候是很实在的,如果不能用,他是绝对不能买的,所以不能指望我们的东西没有实用价值却想让地方政府买单,这是不可能的。基于这样的实际情况,我们必须汇聚全球资源,我们现在已经具备汇聚全球资源的得天独厚的条件。据我所知,现在很多国外大公司已经突破燃料电池技术,而且成本下降速度很快,但是由于氢能基础设施的滞后,他们的技术暂时没法大规模推广,他们也在寻求在商用车领域、在非轿车领域的突破,这给我们带来了极大的机会。所以我们要利用这个机会来进行全方位的国际合作,站在巨人的肩膀上,把我们自己的技术发展起来。

不是说我们永远用国外的,但是我们在初期如果完全排斥国外的东西,我们的商业化也是很难推进的,而没有初级商业化的推进,我们的技术研发也会变成无源之水、无本之木,最后也是搞不下去的,很多资深专家已经干了一二十年了,我们都盼望着有一个商业化的突破,来带动技术进一步研发,因为技术的潜力还很大,我们如果能整合全球资源,也许能够开发出下一代技术,这是完全可能的。

燃料电池技术论文范文第12篇

【摘要】本文介绍了燃料电池发电技术的特点和应用形式,论证了在我国电力系统发展燃料电池发电技术的必要性。概述了国外燃料电池的发展计划和市场预测,总结了国外发展燃料电池的经验。通过技术比较,提出了在我国电力系统发展燃料电池发电的技术路线。

     燃料电池发电是将燃料的化学能直接转换为电能的过程,其发电效率不受卡诺循环的限制,发电效率可达到50%一70%,被誉为二十一世纪重要的发电新技术之一。目前,国际上磷酸型燃料电池已进入商业化,其它几种燃料电池预计在2005年一2010年200KW一将全面进入商业此。对于这种蓬勃发展的发电新技术,国家电力公司应该采取怎样态度?要不要发展?怎样发展?这些问题亟待解决。

l 燃料电池发电的技术特点和应用形式

1.1 技术特点

    燃料电池发电是在一定条件下使燃料(主要是H2)和氧化剂(空气中的02)发电化学反应,将化学能直接转换为电能和热能的过程。与常规电池的不同:只要有燃料和氧化剂供给,就会有持续不断的电力输出。与常规的火力发电不同,它不受卡诺循环的限制,能量转换效率高。与常规发电相比燃料电池具有以下优点:

(1)理论发电效率高,发展潜力大。燃料电池本体的发电效率可达到50%一60%,组成的联合循环发电系统在(10-50)MW规模即可达到70%以上的发电效率。

(2)污染物和温室气体排放量少。与传统的火电机组相比,C02排出量可减少40%一60%。Nox(<2ppm)和SOx(<1ppm)排放量很少。

(3)小型高效,可提高供电可靠性。燃料电池的发电效率受负荷和容量的影响较小。

(4)低噪音。在距发电设备3英尺(1.044米)处噪音小于60dB(A)。

(5)电力质量高。电流谐波和电压谐波均满足IEEE519标准。

(6)变负荷率高。变负荷率可达到(8%一lO%)/min,负荷变化的范围大(20%一120%)。

(7)燃料电池可使用的燃料有氢气、甲醇、煤气、沼气、天然气、轻油、柴油等。

(8)模块化结构,扩容和增容容易,建厂时间短。

(9)占地面积小,占地面积小于lm2/KW。

(10)自动化程度高,可实现无人操作。

    总之,燃料电池是一种高效、洁净的发电方式,既适合于作分布式电源,又可在将来组成大容量中心发电站,是2l世纪重要的发电方式。制约燃料电池走向大规模商业化的主要因素是:高价格和寿命问题。

2.1 燃料电池的应用形式

(1)现场热电联供,常用的容量为200KW一1MW。

(2)分布式电源,容量比现场用燃料电池大,约(2-20)MW。

(3)基本负荷的发电站(中心发电站),容量为(100-300MW)。

(4)燃料电池还可用于100W-100KW多种可移动电源、便携式电源、航空电源、应急电源和计算机电源等。

2 为什么要在我国电力系统发展燃料电池发电技术?

2.1 采用燃料电池发电是提高化石燃料发电效率的重要途径之一

    以高温燃料电池组成的联合循环发电系统,可使发电效率达到60%-75%(LHV),这一目标将在2005年左右实现。预计到2010年,发电效率可超过72%。煤气化燃料电池联合循环(IGFC)的发电效率可达到62%以上。以燃料电池组成的热电联产机组的总热效率可达到85%以上。燃料电池本体的发电效率基本不随容量的变化而变化,这使得燃料电池既可用作小容量分散电源,又可用于集中发电应用范围广泛。

2.2 燃料电池发电可有效地降低火力发电的污染物和温室气体排放量

    燃料电池发电中几乎没有燃烧过程,NOx排放量很小,一般可达到(O.139一 0.236)kg/MW·h以下,远低于天然气联合循环的NOx排放量(1kg/MW·h一3kg/MW.h)。由于燃料进入燃料电池之前必须经过严格的净化处理,碳氢化合物也必须重整成氢气和CO, 因此,尾气中S02、碳氢化合物和固态粒子等污染物排量也污染物的含量非常低。与常规燃煤发电机组相比,C02的排放量可减少40%一60%.在目前CO2分离和隔绝技术尚不成熟的状况下,通过提高能源转换效率减少CO2排放是必然的选择。

2. 3 采用燃料电池发电可提高供电的灵活性和可靠性

    燃料电池具有高效率、低污染、低噪声、模块化结构、体积小、可靠性高等突出特点,是理想的分布式电源。与目前一些可做为分布式电源的内燃机相比,燃料电池的发电效率更高、污染更低。在250KW-lOMW的功率范围内,具有与目前数百兆瓦中心电站相当甚至更高的发电效率。作为备用电源的柴油发电机由于污染和噪声大不宜在未来的城市中应用。低温燃料电池不仅发电效率高,而且启动快、变负荷能力强,是很好的备用电源。现代社会对供电的可靠性和环境的兼容性要求越来越高,高效、低污染的分布式电源系统日益受到重视。近年来美国、加拿大、台湾相继发生因自然灾害或人为因素造成的大面积停电,许多重要用户长期不能恢复供电,给社会和经济造成了巨大的损失。北约轰炸南联盟,使电力系统严重受损。这些由不可抗力引起的电网破坏无不使人引发出一个重要的思考:提高我国电力系统供电的可靠性和供电质量,虽然主要依靠电网的改造和技术革新,但如果在电网中有许多分布式电源在运转,供电的可靠性将会大大提高。

    对于象军事基地、指挥中心、医院、数据处理和通讯中心、商业大楼、娱乐中心、政府要害部门、制药和化学材料工业、精密制造工业等部门,对电力供应的可靠性和质量要求很高。目前采用的备用电源效率低、污染严重、电压波动大。而采用燃料电池作为分布式电源向这些部门提供电力,会使供电的可靠性和电力质量大大提高。他们将是燃料电池发电技术的第一批用户。

    对于边远地区,负荷小且分散,若建设完善的电网,不仅投资大,线损大,且电网末端地区电力质量不稳定。对于这些区域若辅助燃料电池发电的分布式电源,更能有效地解决这些地区的电力供应问题。燃料电池的重量比功率和体积比功率均比常规的小型发电装置大,因此,它也是理想的移动电源,适合于各种建设工地、野外作业和临时急用。

2.4 发展燃料电池发电技术是提高国家能源和电力安全的战略需要

    美国已将燃料电池发电列为国家安全关键技术之一。美、日之所以能在燃料电池技术方面处于世界领先地位,与国家从战略高度予以组织、资助和推动密不可分。在目前复杂的国际环境下,高技术的垄断日趋严重,掌握清洁高效发电的高新技术对未来国家的能源和电力安全具有重要的战略意义,而燃料电池发电技术,正是这种高效清洁的高新发电技术之一。燃料电池突出的优点,以及发达国家竟相投入巨资研究开发的行动,足以说明燃料电池发电技术在21世纪会起到越来越重要的作用。

2.5 发展燃料电池发电技术是国电公司“加强技术创新,发展高科技,形成高新技术产业”的需要

    燃料电池发电技术是电力工业中的高新技术,己受到普遍重视。美国燃料电池发电技术的研究开发主要由美国能源部组织实施,其中一个重要的目的就是形成新的高技术产业,为美国的经济注入新的活力。日本的东京电力公司、关西电力公司及其它公用事业单位是日本燃料电池开发及商业化的主要承担者和推动者,其目的也是为电力公司注入新的经济增长点以获得巨大的经济效益和社会效益。

    国家电力公司处在完成“两型”、“两化”、 “进入世界500强”的历史时刻,恰逢党中央国务院号召全国各行业“加强技术创新,发展高科技,实现产业化”的有利时机,在国家电力公司内不失时机地进行燃料电池发电技术的研究开发是非常必要的。采取引进、消化、吸收和再创新的技术路线,以高起点,在尽可能短的时间内初步形成自主产权的燃料电池发电关键技术,不仅可以使我国在燃料电池发电技术领域与国外的差距大大缩小,而且,对国家电力公司进行发电系统的结构调整、技术创新、形成高新技术产业、实现跨越式发、提高国际竞争能力都具有非常重要的意义。

2.6 燃料电池发电技术在我国有广阔的发展前景

    未来二十年,随着我国“西气东送”,全国天然气管网的不断完善及液化天然气(LNG)的广泛应用,燃用天然气的燃料电池发电将会有很大市场。煤层气也是燃料电池的理想燃料。我国丰富的煤层气资源也将是燃料电池发电的巨大潜在能源之一。燃料电池可与常规 燃气一蒸汽联合循环结合,形成更高效率的发电方式。与煤气化联合循环(IGCC)结合,形成数百兆瓦级的大型、高效、低污染的中心发电站,比IGCC效率更高,污染更小。

    燃料电池可与水电、风电和太阳能发电等结合,在高出力时,利用电解水制氢,低出力时用燃料电池发电,达到既储能,又高效发电的目的。采取气化或厌氧处理的方法将生物质变为燃料气,通过燃料电池发电,提高能源转换效率,并降低污染物排放量。对一些经济欠发达但有丰富的沼气资源的地区,利用燃料电池发电技术有可能更有有效地解决这些地区的电力供应问题。

2.7 与国外有较大的差距

    在燃料电池发电技术方面,我国与国际先进水平有较大的差距。在MCFC和SOFC技术方面,国外已分别示范成功了2MW和100KW的燃料电池发电机组,而我国在这方面才刚刚起步,2000年才可望研制出2KW左右的试验装置。在PAFC和PEFC技术方面,国内与国外的差距更大。倘若我们现在不开始研究开发燃料电池发电技术,等到燃料电池完全成熟后再引进,不但会受制于人,还将付出更大的经济代价,更谈不上尽快形成燃料电池发电的产业化。若不能形成燃料电池的产业化并在电力系统广泛应用,那么,也谈不上提高发电效率和降低污染物的排放。只有从现在开始,在国外的基础上,高起点研究,经过10-20年的努力,有可能在国电公司形成燃料电池的产业和广泛的商业应用。

2.8 在我国电力系统发展燃料电池发电技术是市场经济条件下的迫切要求

    分散式电源作为大电网的有效补充己得到许多国家的重视,而电源提供者的多元化更是一种趋势。我国电网的容量大、技术水平和可靠性还较低、抵御各种灾害的能力较差,在这种情况下,小型高效的燃料电池分布式电源随着技术的商业化市场潜力巨大。

    倘若电力系统不及时进行研究开发,在未来几年内,有可能被国外企业和国内其它其它行业或民营企业占领燃料电池分散电源市场。在市场经济条件下,国电公司既是用户,又是开发者。对于燃料电池这样重要的发电高新技术,应不失时机地着手研究开发,联合国内一些基础研究单位,争取纳入国家的攻关计划,获得国家支持,在尽可能短的时间内,形成燃料电池发电技术研究开发的优势,开发燃料电池发电关键技术和成套技术,形成国电公司的高新技术产业,既可优化调整电力结构,又能满足市场的不同需求。

3 国外燃料电池发展计划及商业化的预测

    研究美、日、欧洲等国家和地区燃料电池的发展进程及商业化的预测,对我们制定燃料电池的发展战略和预测应用前景会有一定的参考价值。

3.1美国燃料电池发电技术研究开发状况

(1)美国燃料电池发电技术的研究开发计划

    1997年,美国总统克林顿颁发了"改善气候行动计划”, 燃料电池被确定为一项关键技术,联邦政府为此制定了一项“美国联邦燃料电池发展计划”,目的是通过燃料电池的商业化来减少温室气体排放量。在这项计划中,对每一个燃料电池的新用户资助l000/KW的优惠。结果,仅在1998年,就有42台200kw PAFC发电机组投入运行。

    美国政府鼓励在一些对环境敏感的地区建立燃料电池发电站。此外,政府已促使美国所有的军事基地安装200KW燃料电池发电机组。通过这些措施,加速燃料电池的商业化,并提高国家能源的安全性。美国政府投入巨资研究开发燃料电池发电技术的另一个目的,就是要保持美国在这一领域的领先地位。随着商业化过程不断深入,将逐步形成新的高技术产业,为美国的经济注入新的活力,提供更多的就业机会。

    美国DOE的燃料电池发展计划如下:

    PAFC己商业化,不再投入资金进行研究开发。PAFC目前的发电效率为40%一 45%(LHV),热电联产的热效率为80%(LHV)。

    已完成250KW和2MW MCFC的现场示范,预计2002年进行20MW的示范;2003年左右,使250KW和MW级MCFC达到商业化;2010年,燃用天然气的250KW一20MW MCFC分散电源达到商业化,100MW以上MCFC的中心电站也进入商业化; 2020年,100MW以上燃煤MCFC中心发电站进入商业化。MCFC技术目标是运行温度为650℃,发电效率达到60%(LHV),组成联合循环的发电效率为70%(LHV),热电联产的热效率达到85%(LHV)以上。

    目前,己完成25kw和100kw SOFC现场试验,正在进行SOFC的商业化设计。预计2002年左右,进行MW级SOFC示范;2003年左右,100kw一1MW SOFC进行商业化:2010年,250kw一20MW燃用天然气的SOFC以分布式电源形式进入商业化,100MW以上燃用天然气的SOFC以中心电站形式进入商业化;2020年,100W及以上容量的燃煤S0FC以中心电站的形式进入商业化。SOFC技术目标是:运行温度为1000℃,发电效率达到62%(LHV),组成联合循环的发电效率达到72%(LHV),热电联产的热效率达到85%(LHV)以上,燃煤时发电效率可达到65%(LHV),这一目标预计2010完成。

    美国是最早研究开发PEFC的国家,但在大容量化和商业应用方面已落后于加拿大。目前美国生产的质子交换膜仍居世界领先水平。美国在PEFC的开发方面是面向家庭用分散式电源,实现热电联供。Plug Power公司与GE合作,计划2001年使10kw PEFC进入商业化,价格达到S750-1000/kw,大批量生产后,使PEFC的价格达到$350/kw。

(2)市场预测

    美国能源部(DOE)对美国潜在的燃料电池市场的预测认为:在2005年一2010年,美国年需求燃料电池发电容量约2335MW一4075MW。现在美国的燃料电池年生产能力为60MW,商业化的价格为$2000一$3000/kw,若年生产能力达到100MW/a,商业化的价格则可达到$l000-$1500/Kw。 若能达到(2000-4000)MW/a的生产能力,燃料电池的原材料费仅$200一$300/kw。那么燃料电池的价格则有可能达到$900-$l100/kw,此时可完全与常规的发电方式竞争。

3.2 日本燃料电池发电技术的发展进程及应用前景预测

(1)发展进程

燃料电池技术论文范文第13篇

尤其是,直接甲醇燃料电池(DMFC)使用极少量甲醇,就有望提供长达10个小时的电力供给――这是目前笔记本电脑锂电池的两到三倍。更棒的是,要是燃料电池电力耗尽了,不必寻找电源插座并等电池充好电,你可以从稍大的盒子给贮存罐重新灌装甲醇,或者只要插入装得满满的一罐甲醇。只要有甲醇能满足燃料电池的需求,你就可以长时间地使用移动设备。

在过去的十年里,燃料电池似乎离诱人的商用化近在咫尺,但它们从来没有真正投入市场。现在燃料电池终于开始准备到位; 几大传统电池、燃料电池和移动设备生产商表示,2009年将迎来燃料电池时代。

告别传统电池

MTI小型燃料电池公司的首席执行官Peng Lim解释: “人们的长期梦想就是,凡是使用电池的地方都可以用燃料电池来取代。”总部设在纽约州阿尔巴尼的MTI公司在研制用于为移动设备供电的内置和外置燃料电池。

市场调研公司Frost & Sullivan Ltd.能源和电源系统部门的首席顾问Sara Bradford说: “现在已经开始逐渐向燃料电池迁移,但不会在一夜之间完成。”他强调,第一款外置燃料电池电源组刚刚上市。

比方说,Medis 24-7电源组可提供高达5.5伏的纯净电源。它售价30美元,可为手机供电大约30个小时,或者为媒体播放器供电60个小时。此外,你只需要售价20美元的燃料贮存罐――有了这个燃料贮存罐,可以多持续60个小时。

该系统并不是被设计为移动设备的主要电源,而是作为后备电池以应对紧急情况,或者如果用户长时间找不到电源插座时应急。而且其重量有6.5盎司,与智能电话一样重。Medis的系统目前是外置附件,下一步是内置到移动设备中的可重新灌装的燃料电池。

东芝美国电子元件公司的业务开发副总裁Sean Collins说: “明年,预计会出现使用燃料电池选件的智能电话。”虽然技术和营销方面的细节还没有敲定,不过Collins补充说,几家电话生产商现期望销售既使用传统电池、又使用可选燃料电池的产品,两种电池装在同一个地方。

电子被引导到带负电荷的阳极,为设备供电; 氢离子在一层特定的薄膜上流过,与氧结合生成少量水蒸气。东芝公司的Collins解释: “这层薄膜就是燃料电池的秘密所在。”

这层薄膜把甲醇储存在燃料电池的一侧,同时允许氢离子通过; 但如今最好的薄膜也存在部分甲醇泄漏的问题。Collins说: “这项技术会不断发展及完善,将来会出现更高效的燃料电池。”

改善工作已经开始: 麻省理工学院(MIT)的一研究部门正在调整标准薄膜的分子表面。通过把泄漏的甲醇数量减少100倍,又不影响氢离子的流动,燃料电池的电源输出将增加50%。

不过这项技术可能需要五年时间才能应用到商用燃料电池中。

广阔的应用前景

放眼更长远的未来,燃料电池技术对马路勇士们来说确实很有吸引力: 移动设备为燃料电池而设计,它们也完全由燃料电池供电。Collins解释: “三五年后,完全靠燃料电池供电的设备将会上市。”

除了改进技术外,有望促进燃料电池采用的另一个因素就是美国联邦航空局(FAA)。如今,燃料电池和甲醇完全被禁止带到飞机上; 不过这种情况会在10月份出现变化,到时联邦航空局会允许旅行人士把燃料电池带到飞机上,还可以携带两罐甲醇。

MTI的Lim开玩笑说: “你也许无法把指甲钳带到飞机上,但燃料电池可以带上去。这将大大促进燃料电池技术的商用化。”

因为燃料电池很快能够跟随你到任何地方,预计销售量会迅速增长。Frost & Sullivan公司的Bradford认为,到2012年,小型燃料电池的销售量将达到8000万节,用于为笔记本电脑、手机、媒体播放器及其他便携式设备供电。2007年交付的燃料电池只有100万节,预计到2010年会达到2500万节。

正视缺点

虽然燃料电池摆出了准备上路的架势,不过有几个缺点依然存在。

MTI的Lim又说: “燃料电池适用于提供连续不断的电力,但它们满足不了高峰期的电力需求,大多数电子设备却需要这种电源。”

比方说,手机开始播放流视频时,功耗会在不到1秒钟的时间内从2瓦增加到5瓦,但有些燃料电池的电源输出满足不了这项要求。因而,第一代实用燃料电池将会采用混合设计,使用小型锂离子桥接电池(bridge battery)为这种情况提供所需的额外电源。

桥接电池的电用完后,会由燃料电池来充电,这个过程需要一段时间。而在这段时间内,设备的性能可能会受到一定影响。

解决这个问题的一个长期办法就是,把附加电池换成储存足够电源的电容器,为燃料电池补充电源。就短期方案而言,索尼公司最近展示了一款混合燃料电池样品,它还采用了小型锂离子电池。这种燃料电池可提供稳定的3瓦电源――典型的智能电话需要这样的电源; 按照需要,还可以由锂离子电池来供电。

这个装置的尺寸为1.2英寸×2英寸,大小与手机电池大致相当。它可以为手机显示数字广播电视不间断供电14个小时。所用燃料只是三分之一盎司甲醇。

另一个问题就是价格。最初,燃料电池的价格会高于传统电池。MTI的Lim说: “它们的价格要比锂电池高,不过我们预计这种情况会迅速出现变化。”

预计价格会下降的一个原因就是,燃料电池所需的元件少于传统电池,而且这些元件比较容易生产。另外,技术成本当然通常会随着采用增加而下降。大约13年前首次开始广泛应用的锂电池就是表明这个趋势的一个典例。

东芝公司的Collins回忆说: “早在那时,每节锂电池的价格高达30美元。”典型的笔记本电池要使用3到9节电池。“如今,每节锂电池的价格约为3美元。我们预计这个价格曲线会适用于燃料电池; 预计价格具有竞争力的产品会出现在消费类电子产品市场。结论就是,燃料电池的时代来到了。”

展望不远的未来

时间飞逝到几年后: 一名商务旅行人士搭上了飞往亚洲的航班,他带着笔记本电脑来处理各种任务。登机前,他到机场便利店为笔记本电脑购买了可以重新装满甲醇的两只贮存罐,然后放到包里面。

燃料电池技术论文范文第14篇

关键词:燃料电池技术路线

燃料电池发电是将燃料的化学能直接转换为电能的过程,其发电效率不受卡诺循环的限制,发电效率可达到50%一70%,被誉为二十一世纪重要的发电新技术之一。目前,国际上磷酸型燃料电池已进入商业化,其它几种燃料电池预计在2005年一2010年200KW一将全面进入商业此。对于这种蓬勃发展的发电新技术,国家电力公司应该采取怎样态度?要不要发展?怎样发展?这些问题亟待解决。

l燃料电池发电的技术特点和应用形式

1.1技术特点

燃料电池发电是在一定条件下使燃料(主要是H2)和氧化剂(空气中的02)发电化学反应,将化学能直接转换为电能和热能的过程。与常规电池的不同:只要有燃料和氧化剂供给,就会有持续不断的电力输出。与常规的火力发电不同,它不受卡诺循环的限制,能量转换效率高。与常规发电相比燃料电池具有以下优点:

(1)理论发电效率高,发展潜力大。燃料电池本体的发电效率可达到50一60%,组成的联合循环发电系统在(10—50)MW规模即可达到70%以上的发电效率。

(2)污染物和温室气体排放量少。与传统的火电机组相比,C02排出量可减少40%一60%。Nox(<2ppm)和SOx(<1ppm)排放量很少。

(3)小型高效,可提高供电可靠性。燃料电池的发电效率受负荷和容量的影响较小。

(4)低噪音。在距发电设备3英尺(1.044米)处噪音小于60dB(A)。

(5)电力质量高。电流谐波和电压谐波均满足IEEE519标准。

(6)变负荷率高。变负荷率可达到(8%一lO%)/min,负荷变化的范围大(20一120)。

(7)燃料电池可使用的燃料有氢气、甲醇、煤气、沼气、天然气、轻油、柴油等。

(8)模块化结构,扩容和增容容易,建厂时间短。

(9)占地面积小,占地面积小于lm2/KW。

(10)自动化程度高,可实现无人操作。

总之,燃料电池是一种高效、洁净的发电方式,既适合于作分布式电源,又可在将来组成大容量中心发电站,是2l世纪重要的发电方式。制约燃料电池走向大规模商业化的主要因素是:高价格和寿命问题。

2.1燃料电池的应用形式

(1)现场热电联供,常用的容量为200KW一1MW。

(2)分布式电源,容量比现场用燃料电池大,约(2—20)MW。

(3)基本负荷的发电站(中心发电站),容量为(100—300MW)。

(4)燃料电池还可用于100W—100KW多种可移动电源、便携式电源、航空电源、应急电源和计算机电源等。

2为什么要在我国电力系统发展燃料电池发电技术?

2.1采用燃料电池发电是提高化石燃料发电效率的重要途径之一

以高温燃料电池组成的联合循环发电系统,可使发电效率达到60—75(LHV),这一目标将在2005年左右实现。预计到2010年,发电效率可超过72%。煤气化燃料电池联合循环(IGFC)的发电效率可达到62%以上。以燃料电池组成的热电联产机组的总热效率可达到85%以上。燃料电池本体的发电效率基本不随容量的变化而变化,这使得燃料电池既可用作小容量分散电源,又可用于集中发电应用范围广泛。

2.2燃料电池发电可有效地降低火力发电的污染物和温室气体排放量

燃料电池发电中几乎没有燃烧过程,NOx排放量很小,一般可达到(O.139一0.236)kg/MW·h以下,远低于天然气联合循环的NOx排放量(1kg/MW·h一3kg/MW.h)。由于燃料进入燃料电池之前必须经过严格的净化处理,碳氢化合物也必须重整成氢气和CO,因此,尾气中S02、碳氢化合物和固态粒子等污染物排量也污染物的含量非常低。与常规燃煤发电机组相比,C02的排放量可减少40%一60.在目前CO2分离和隔绝技术尚不成熟的状况下,通过提高能源转换效率减少CO2排放是必然的选择。

2.3采用燃料电池发电可提高供电的灵活性和可靠性

燃料电池具有高效率、低污染、低噪声、模块化结构、体积小、可靠性高等突出特点,是理想的分布式电源。与目前一些可做为分布式电源的内燃机相比,燃料电池的发电效率更高、污染更低。在250KW—lOMW的功率范围内,具有与目前数百兆瓦中心电站相当甚至更高的发电效率。作为备用电源的柴油发电机由于污染和噪声大不宜在未来的城市中应用。低温燃料电池不仅发电效率高,而且启动快、变负荷能力强,是很好的备用电源。现代社会对供电的可靠性和环境的兼容性要求越来越高,高效、低污染的分布式电源系统日益受到重视。近年来美国、加拿大、台湾相继发生因自然灾害或人为因素造成的大面积停电,许多重要用户长期不能恢复供电,给社会和经济造成了巨大的损失。北约轰炸南联盟,使电力系统严重受损。这些由不可抗力引起的电网破坏无不使人引发出一个重要的思考:提高我国电力系统供电的可靠性和供电质量,虽然主要依靠电网的改造和技术革新,但如果在电网中有许多分布式电源在运转,供电的可靠性将会大大提高。

对于象军事基地、指挥中心、医院、数据处理和通讯中心、商业大楼、娱乐中心、政府要害部门、制药和化学材料工业、精密制造工业等部门,对电力供应的可靠性和质量要求很高。目前采用的备用电源效率低、污染严重、电压波动大。而采用燃料电池作为分布式电源向这些部门提供电力,会使供电的可靠性和电力质量大大提高。他们将是燃料电池发电技术的第一批用户。

对于边远地区,负荷小且分散,若建设完善的电网,不仅投资大,线损大,且电网末端地区电力质量不稳定。对于这些区域若辅助燃料电池发电的分布式电源,更能有效地解决这些地区的电力供应问题。燃料电池的重量比功率和体积比功率均比常规的小型发电装置大,因此,它也是理想的移动电源,适合于各种建设工地、野外作业和临时急用。

2.4发展燃料电池发电技术是提高国家能源和电力安全的战略需要

美国已将燃料电池发电列为国家安全关键技术之一。美、日之所以能在燃料电池技术方面处于世界领先地位,与国家从战略高度予以组织、资助和推动密不可分。在目前复杂的国际环境下,高技术的垄断日趋严重,掌握清洁高效发电的高新技术对未来国家的能源和电力安全具有重要的战略意义,而燃料电池发电技术,正是这种高效清洁的高新发电技术之一。燃料电池突出的优点,以及发达国家竟相投入巨资研究开发的行动,足以说明燃料电池发电技术在21世纪会起到越来越重要的作用。

2.5发展燃料电池发电技术是国电公司“加强技术创新,发展高科技,形成高新技术产业”的需要

燃料电池发电技术是电力工业中的高新技术,己受到普遍重视。美国燃料电池发电技术的研究开发主要由美国能源部组织实施,其中一个重要的目的就是形成新的高技术产业,为美国的经济注入新的活力。日本的东京电力公司、关西电力公司及其它公用事业单位是日本燃料电池开发及商业化的主要承担者和推动者,其目的也是为电力公司注入新的经济增长点以获得巨大的经济效益和社会效益。

国家电力公司处在完成“两型”、“两化”、“进入世界500强”的历史时刻,恰逢党中央国务院号召全国各行业“加强技术创新,发展高科技,实现产业化”的有利时机,在国家电力公司内不失时机地进行燃料电池发电技术的研究开发是非常必要的。采取引进、消化、吸收和再创新的技术路线,以高起点,在尽可能短的时间内初步形成自主产权的燃料电池发电关键技术,不仅可以使我国在燃料电池发电技术领域与国外的差距大大缩小,而且,对国家电力公司进行发电系统的结构调整、技术创新、形成高新技术产业、实现跨越式发、提高国际竞争能力都具有非常重要的意义。

2.6燃料电池发电技术在我国有广阔的发展前景

未来二十年,随着我国“西气东送”,全国天然气管网的不断完善及液化天然气(LNG)的广泛应用,燃用天然气的燃料电池发电将会有很大市场。煤层气也是燃料电池的理想燃料。我国丰富的煤层气资源也将是燃料电池发电的巨大潜在能源之一。燃料电池可与常规燃气一蒸汽联合循环结合,形成更高效率的发电方式。与煤气化联合循环(IGCC)结合,形成数百兆瓦级的大型、高效、低污染的中心发电站,比IGCC效率更高,污染更小。

燃料电池可与水电、风电和太阳能发电等结合,在高出力时,利用电解水制氢,低出力时用燃料电池发电,达到既储能,又高效发电的目的。采取气化或厌氧处理的方法将生物质变为燃料气,通过燃料电池发电,提高能源转换效率,并降低污染物排放量。对一些经济欠发达但有丰富的沼气资源的地区,利用燃料电池发电技术有可能更有有效地解决这些地区的电力供应问题。

2.7与国外有较大的差距

在燃料电池发电技术方面,我国与国际先进水平有较大的差距。在MCFC和SOFC技术方面,国外已分别示范成功了2MW和100KW的燃料电池发电机组,而我国在这方面才刚刚起步,2000年才可望研制出2KW左右的试验装置。在PAFC和PEFC技术方面,国内与国外的差距更大。倘若我们现在不开始研究开发燃料电池发电技术,等到燃料电池完全成熟后再引进,不但会受制于人,还将付出更大的经济代价,更谈不上尽快形成燃料电池发电的产业化。若不能形成燃料电池的产业化并在电力系统广泛应用,那么,也谈不上提高发电效率和降低污染物的排放。只有从现在开始,在国外的基础上,高起点研究,经过10—20年的努力,有可能在国电公司形成燃料电池的产业和广泛的商业应用。

2.8在我国电力系统发展燃料电池发电技术是市场经济条件下的迫切要求

分散式电源作为大电网的有效补充己得到许多国家的重视,而电源提供者的多元化更是一种趋势。我国电网的容量大、技术水平和可靠性还较低、抵御各种灾害的能力较差,在这种情况下,小型高效的燃料电池分布式电源随着技术的商业化市场潜力巨大。

倘若电力系统不及时进行研究开发,在未来几年内,有可能被国外企业和国内其它其它行业或民营企业占领燃料电池分散电源市场。在市场经济条件下,国电公司既是用户,又是开发者。对于燃料电池这样重要的发电高新技术,应不失时机地着手研究开发,联合国内一些基础研究单位,争取纳入国家的攻关计划,获得国家支持,在尽可能短的时间内,形成燃料电池发电技术研究开发的优势,开发燃料电池发电关键技术和成套技术,形成国电公司的高新技术产业,既可优化调整电力结构,又能满足市场的不同需求。

3国外燃料电池发展计划及商业化的预测

研究美、日、欧洲等国家和地区燃料电池的发展进程及商业化的预测,对我们制定燃料电池的发展战略和预测应用前景会有一定的参考价值。

3.1美国燃料电池发电技术研究开发状况

(1)美国燃料电池发电技术的研究开发计划

1997年,美国总统克林顿颁发了"改善气候行动计划”,燃料电池被确定为一项关键技术,联邦政府为此制定了一项“美国联邦燃料电池发展计划”,目的是通过燃料电池的商业化来减少温室气体排放量。在这项计划中,对每一个燃料电池的新用户资助l000/KW的优惠。结果,仅在1998年,就有42台200kwPAFC发电机组投入运行。

美国政府鼓励在一些对环境敏感的地区建立燃料电池发电站。此外,政府已促使美国所有的军事基地安装200KW燃料电池发电机组。通过这些措施,加速燃料电池的商业化,并提高国家能源的安全性。美国政府投入巨资研究开发燃料电池发电技术的另一个目的,就是要保持美国在这一领域的领先地位。随着商业化过程不断深入,将逐步形成新的高技术产业,为美国的经济注入新的活力,提供更多的就业机会。

美国DOE的燃料电池发展计划如下:

PAFC己商业化,不再投入资金进行研究开发。PAFC目前的发电效率为40%一45(LHV),热电联产的热效率为80%(LHV)。

已完成250KW和2MWMCFC的现场示范,预计2002年进行20MW的示范;2003年左右,使250KW和MW级MCFC达到商业化;2010年,燃用天然气的250KW一20MWMCFC分散电源达到商业化,100MW以上MCFC的中心电站也进入商业化;2020年,100MW以上燃煤MCFC中心发电站进入商业化。MCFC技术目标是运行温度为650℃,发电效率达到60%(LHV),组成联合循环的发电效率为70(LHV),热电联产的热效率达到85(LHV)以上。

目前,己完成25kw和100kwSOFC现场试验,正在进行SOFC的商业化设计。预计2002年左右,进行MW级SOFC示范;2003年左右,100kw一1MWSOFC进行商业化:2010年,250kw一20MW燃用天然气的SOFC以分布式电源形式进入商业化,100MW以上燃用天然气的SOFC以中心电站形式进入商业化;2020年,100W及以上容量的燃煤S0FC以中心电站的形式进入商业化。SOFC技术目标是:运行温度为1000℃,发电效率达到62%(LHV),组成联合循环的发电效率达到72%(LHV),热电联产的热效率达到85(LHV)以上,燃煤时发电效率可达到65%(LHV),这一目标预计2010完成。

美国是最早研究开发PEFC的国家,但在大容量化和商业应用方面已落后于加拿大。目前美国生产的质子交换膜仍居世界领先水平。美国在PEFC的开发方面是面向家庭用分散式电源,实现热电联供。PlugPower公司与GE合作,计划2001年使10kwPEFC进入商业化,价格达到S750—1000/kw,大批量生产后,使PEFC的价格达到$350/kw。

(2)市场预测

美国能源部(DOE)对美国潜在的燃料电池市场的预测认为:在2005年一2010年,美国年需求燃料电池发电容量约2335MW一4075MW。现在美国的燃料电池年生产能力为60MW,商业化的价格为$2000一$3000/kw,若年生产能力达到100MW/a,商业化的价格则可达到$l000—$1500/Kw。若能达到(2000—4000)MW/a的生产能力,燃料电池的原材料费仅$200一$300/kw。那么燃料电池的价格则有可能达到$900—$l100/kw,此时可完全与常规的发电方式竞争。

3.2日本燃料电池发电技术的发展进程及应用前景预测

(1)发展进程

日本在PAFC研究方面,走的是一条引进合作、消化吸收、再提高的路线。1972年东京煤气公司从美国引进两台PAFC燃料电池发电机组,大阪煤气公司也在1973年引进两台PAFC机组。日本政府于1981年设立了以开发节能技术为宗旨的“月光计划”,燃料电池发电是其中一项重要内容。此后,日本国内的电力公司、煤气公司和一些大型的制造厂纷纷投入燃料电池的研究开发,并与美国IFC合作,使日本的PAFC得到更大的发展。目前,日本的PAFC技术已赶上了美国,商业化程度超过了美国。5MW(富士电机制造)和11MW(东芝与IFC合制)均在日本投运,日本公司制造的PAFC机组已运行了近100多台。

日本有关MCFC的研究是从1981年开始的,通过自主开发并与美国合作。1987年10kwMCFC开发成功,1993年100kw加压型MCFC开发成功,1997年开发出1MW先导型MCFC发电厂,并投入运行。MCFC已被列为日本“新阳光计划”的一个重点,目标是2000年一2010年,实现燃用天然气的10MW一50MW分布式MCFC发电机组的商业化,并进行100MW以上燃用天然气的MCFC联合循环发电机组的示范,2010年后,实现煤气化MCFC联合循环发电,并逐步替代常规火电厂。

日本的SOFC技术也是从1981年的“月光计划”开始研究的,立足于自主开发。1989年一1991年,开发出l00W一400WSOFC电池堆,1992年一1997年开发出l0kw平板型SOFC。SOFC的研究进展也远远落后于NEDO原来的计划。“新阳光计划”中预计2000年一2010年,使SOFC达到MW级,并形成联合循环发电。日本的PEFC也被列入“新阳光计划”,目前开发的容量为(1—2)kw。

(2)政府采取的措施

日本政府在“月光计划”和“新阳光计划”中,先后资助了3台200kw、2台lMW和l台5MW的PAFC;1台100kw和1台1MW的MCFC示范电站研究开发、建设及运行。

在通产省和NEDO的统一组织和管理下,使公用事业单位(电力公司和煤气公司)和开发商及研究单位紧密结合,实现燃料电池研究开发和商业示范应用一体化。日本电力公司和煤气公司,过去十年来安装了约80多台燃料电池机组,装机容量达到20.1MW,燃料电池及电厂的费用主要由业主承担,但是制造商和政府也各承担一部分。这种政府和企业联合研究开发的方式促进了日本燃料电池的发展。使用燃料电池发电享有许多优惠政策:燃料电池的相关设备,在未超过一定规模时,其工程计划仅须申报即可动工。对500kw以下的常压燃料电池生产与使用的审批手续大大简化。在医院、旅馆、办公大楼等安装的燃料电池发电机组,政府提供的经费资助。新建的燃料电池发电设备享有10的免税额,并获有30%的加速折旧。对装设于电力公司或自备发电用的燃料电池项目,日本开发银行将提供投资额40%的低息贷款。

(3)市场预测

1990年,日本通产省发表了“长期电源供需展望”报告,预计日本国内的燃料电池发电容量到2000年约2250MW;2010年约10720MW,电力系统用5500MW,其中约有2400MW是MCFC和SOFC高温型燃料电池;2010年煤气化MCFC和SOFC达到实用化;发电效率达到50%一60%。由于燃料电池发电技术仍有许多技术上的难题没有突破,进展速度低于预期值,因此日本目前已将原目标做了修正,预计2000年燃料电池装机容量将达到200MW,其中分布式电源l12MW,工业用热电联产型为88MW;2010年将达到2200MW,其中分布式电源型为735MW,工业用热电联产型为1465MW。

3.3其它国家和地区的发展进程

目前,欧洲的燃料电池发电技术远远落后于美国和日本。80欧洲又重新开始研究燃料电池发电技术。它们采用向美国、日本购买电池组,自行组装发电厂的方式来发展PAFC发电技术。1990年成立了一个“欧洲燃料电池集团(EFCG)”。意大利已完成了一座1MW的PAFC示范工程,由IFC供应,BOP由欧洲制造。意大利、西班牙与美国IPC合作,于1993年在米兰建了一座l00kwMCFC电厂,1996年投运。德国正在开发250kwMCFC。德国西门子公司于1998年收购了美国西屋公司的管形SOFC技术后,现在拥有世界上最先进的平板型和管形SOFC技术。

加拿大在PEFC方面居世界领先地位,在继续开发交通用PEFC的同时,目前也将PEFC应用于固定电站,已建成250kwPEFC示范电站,目标是在近几年内使250kw级PEPC商业化。澳大利亚在1993年一1997年,共投资3000万美元,研究开发平板型SOFC,目前正在开发(20一25)kwSOFC电池堆。韩国电力公司于1993年从日本购进一座200kwPAFC进行示范运行。

3.4国外发展燃料电池发电技术的经验总结

回顾国外燃料电地发展的道路,有许多值得我们吸取和借鉴的经验。下面归纳几点:

美国在燃料电池发电技术的研究开发方面始终处于世界领先地位。除了雄厚的财力之外,还有三方面重要的原因:一是政府将燃料电池发电技术视为提高火力发电效率、减少污染物和温室气体排放的重要措施,列入政府的“改变气侯技术战略”中,并大力投入资金和力量研究开发;二是燃料电池技术提高到“国家能源安全并大力投入资金和力量研究开发;二是将燃料电池技术提高到“国家能源安全关键技术”的战略高度,DOD和DOE均投入资金研究开发;三是对燃料电池的应用前景充满信心,希望能形成新的高技术产业,给美国的经济注入新的活力,政府和企业共同投入资金研究开发,力图保持领先地位。

日本走的是一条通过与美国合作、引进技术并消化吸收实现产业化的路线,并在PAFC的商业化方面己超过了美国,在MCFC的研究开发方面也接近美国。成功的重要经验也是政府对燃料电池给予高度重视,先后列入了“月光计划”和“新阳光计划”,大力投入研究开发。另一条经验是研究机构、企业和用户联合,组成从研究、开发到商业应用一体化集团,既承担研究开发的风险,也享受成功的优惠。

加拿大Ballard公司在PEFC方面成功的经验告诉我们:只要坚定不移地进行研究开发,一个小公司也能在10—20年内成为举世瞩目的燃料电池技术拥有者。

燃料电池起源于欧洲,但是,现在欧洲的燃料电池技术已远远落后于美国和日本。主要原因是政府和企业对燃料电池发电技术重视不够。目前,欧洲已经意识到这一点,成立了—个燃料电池发电技术集团,引进美国、日本的技术,并进行研究开发。

4各种燃料电池发电技术综合比较

(1)AFC:与其它燃料电池相比,AFC功率密度和比功率较高,性能可靠。但它要以纯氢做燃料,纯氧做氧化剂,必须使用Pt、Au、Ag等贵金属做催化剂,价格昂贵。电解质的腐蚀严重,寿命较短,这些特点决定了AFC仅限于航天或军事应用,不适合于民用。

(2)PAFC:以磷酸做为电解质,可容许燃料气和空气中C02的存在。这使得PAFC成为最早在地面上应用或民用的燃料电池。与AFC相比它可以在180℃一210℃运行,燃料气和空气的处理系统大大简化,加压运行时,可组成热电联产。但是,PAFC的发电效率目前仅能达到40%一45%(LHV),它需要贵金属铂做电催化剂;燃料必须外重整:而且,燃料气中C0的浓度必须小于1%(175℃)一2(200℃),否则会使催化剂中毒;酸性电解液的腐蚀作用,使PAFC的寿命难以超过40000小时。PAFC目前的技术已成熟,产品也进入商业化,做为特殊用户的分散式电源、现场可移动电源和备用电源,PAFC还有市场,但用作大容量集中发电站比较困难。

(3)MCFC:在650℃一700℃运行,可采用镍做电催化剂,而不必使用贵重金属:燃料可实现内重整,使发电效率提高,系统简化;CO可直接用作燃料;余热的温度较高,可组成燃气/蒸汽联合循环,使发电容量和发电效率进一步提高。与SOFC相比,MCFC的优点是:操作温度较低,可使用价格较低的金属材料,电极、隔膜、双极板的制造工艺简单,密封和组装的技术难度相对较小,大容量化容易,造价较低。缺点是:必须配置C02循环系统;要求燃料气中H2S和CO小于0.5PPM;熔融碳酸盐具有腐蚀性,而且易挥发;与SOFC相比,寿命较短;组成联合循环发电的效率比SOFC低。与低温燃料电池相比,MCFC的缺点是启动时间较长,不适合作备用电源。MCFC己接近商业化,示范电站的规模已达到2MW。从MCFC的技术特点和发展趋势看,MCFC是将来民用发电(分散电源和中心电站)的理想选择之一。

(4)SOFC:电解质是固体,可以被做成管形、板形或整体形。与液体电解质的燃料电池(AFC、PAFC和MCFC)相比,SOFC避免了电解质蒸发和电池材料的腐蚀问题,电池的寿命较长(已达到70000小时)。CO可做为燃料,使燃料电池以煤气为燃料成为可能。SOFC的运行温度在1000℃左右,燃料可以在电池内进行重整。由于运行温度很高,要解决金属与陶瓷材料之间的密封也很困难。与低温燃料电池相比,SOFC的启动时间较长,不适合作应急电源。与MCFC相比,SOFC组成联合循环的效率更高,寿命更长(可大于40000小时);但SOFC面临技术难度较大,价格可能比MCFC高。示范业绩证明SOFC是未来化石燃料发电技术的理想选择之一,既可用作中小容量的分布式电源(500kw一50MW),也可用作大容量的中心电站(>l00MW)。尤其是加压型SOFC与微型燃气轮结合组成联合循环发电的示范,将使SOFC的优越性进一步得到体现。

(5)PEFC:PEPC的运行温度较低(约80℃),它的启动时间很短,在几分钟内可达到满负荷。与PAFC相比,电流密度和比功率都较高,发电效率也较高(45%一50(LHV)),对CO的容许值较高(<10ppm)。PEFC的余热温度较低,热利用率较低。与PAFC和MCFC等液体电解质燃料电池相比,它具有寿命长,运行可靠的特点。PEFC是理想的可移动电源,是电动汽车、潜艇、航天器等移动工具电源的理想选择之一。目前,在移动电源、特殊用户的分布式电源和家庭用电源方面有一定的市场,不适合做大容量中心电站。

5结论

选择适合于我国电力系统发展的燃料电池发电技术,应综合考虑以下几点:较高的发电效率;环保性能好;既能作为高效、清洁的分布电源,又具有形成大容量的联合循环中心发电站的发展潜力;既能以天然气为燃料,又具有以煤为燃料的可能性;技术的先进性及商业化进程;运行的可靠性和寿命;降低造价的潜力;国内的基础。综合考虑以上几点,对适合于我国电力系统发展的燃料电池发电技术,提出以下几点选择意见:

(1)优先发展高温燃料电池发电技术。即选择MCFC和SOFC为我国电力系统燃料电池发电技术的主要发展方向,这两种燃料电池既能以天然气为燃料作为高效清洁的分布电源,又具有形成大容量的联合循环中心发电站(以天然气或煤为燃料)的发展潜力。

(2)MCFC和SOFC各有特点,都存在许多问题,尚未商业化。若考虑技术难度和成熟程度以及商业化的进程,对于MCFC,应走引进、消化吸收、研究创新,实现国产化的技术路线,并尽快投入商业应用:对于SOFC,应立足于自主开发,走创新和跨越式发展的技术发展路线。

(3)随着氢能技术的发展,PEFC在移动电源、分散电源、应急电源、家庭电源等方面具有一定优势和的市场潜力,国家电力公司应密切跟踪研究。

(4)AFC不适合于民用发电。PAFC技术目前已趋于成熟,与MCFC、SOFC和PEFC比较,已相对落后。因此,AFC和PAFC不应做为国家电力公司研究开发的方向。

燃料电池技术论文范文第15篇

关键词:燃料电池技术路线

燃料电池发电是将燃料的化学能直接转换为电能的过程,其发电效率不受卡诺循环的限制,发电效率可达到50%一70%,被誉为二十一世纪重要的发电新技术之一。目前,国际上磷酸型燃料电池已进入商业化,其它几种燃料电池预计在2005年一2010年200kw一将全面进入商业此。对于这种蓬勃发展的发电新技术,国家电力公司应该采取怎样态度?要不要发展?怎样发展?这些问题亟待解决。

l燃料电池发电的技术特点和应用形式

1.1技术特点

燃料电池发电是在一定条件下使燃料(主要是h2)和氧化剂(空气中的02)发电化学反应,将化学能直接转换为电能和热能的过程。与常规电池的不同:只要有燃料和氧化剂供给,就会有持续不断的电力输出。与常规的火力发电不同,它不受卡诺循环的限制,能量转换效率高。与常规发电相比燃料电池具有以下优点:

(1)理论发电效率高,发展潜力大。燃料电池本体的发电效率可达到50一60%,组成的联合循环发电系统在(10—50)mw规模即可达到70%以上的发电效率。

(2)污染物和温室气体排放量少。与传统的火电机组相比,c02排出量可减少40%一60%。nox(<2ppm)和sox(<1ppm)排放量很少。

(3)小型高效,可提高供电可靠性。燃料电池的发电效率受负荷和容量的影响较小。

(4)低噪音。在距发电设备3英尺(1.044米)处噪音小于60db(a)。

(5)电力质量高。电流谐波和电压谐波均满足ieee519标准。

(6)变负荷率高。变负荷率可达到(8%一lo%)/min,负荷变化的范围大(20一120)。

(7)燃料电池可使用的燃料有氢气、甲醇、煤气、沼气、天然气、轻油、柴油等。

(8)模块化结构,扩容和增容容易,建厂时间短。

(9)占地面积小,占地面积小于lm2/kw。

(10)自动化程度高,可实现无人操作。

总之,燃料电池是一种高效、洁净的发电方式,既适合于作分布式电源,又可在将来组成大容量中心发电站,是2l世纪重要的发电方式。制约燃料电池走向大规模商业化的主要因素是:高价格和寿命问题。

2.1燃料电池的应用形式

(1)现场热电联供,常用的容量为200kw一1mw。

(2)分布式电源,容量比现场用燃料电池大,约(2—20)mw。

(3)基本负荷的发电站(中心发电站),容量为(100—300mw)。

(4)燃料电池还可用于100w—100kw多种可移动电源、便携式电源、航空电源、应急电源和计算机电源等。

2为什么要在我国电力系统发展燃料电池发电技术?

2.1采用燃料电池发电是提高化石燃料发电效率的重要途径之一

以高温燃料电池组成的联合循环发电系统,可使发电效率达到60—75(lhv),这一目标将在2005年左右实现。预计到2010年,发电效率可超过72%。煤气化燃料电池联合循环(igfc)的发电效率可达到62%以上。以燃料电池组成的热电联产机组的总热效率可达到85%以上。燃料电池本体的发电效率基本不随容量的变化而变化,这使得燃料电池既可用作小容量分散电源,又可用于集中发电应用范围广泛。

2.2燃料电池发电可有效地降低火力发电的污染物和温室气体排放量

燃料电池发电中几乎没有燃烧过程,nox排放量很小,一般可达到(o.139一0.236)kg/mw·h以下,远低于天然气联合循环的nox排放量(1kg/mw·h一3kg/mw.h)。由于燃料进入燃料电池之前必须经过严格的净化处理,碳氢化合物也必须重整成氢气和co,因此,尾气中s02、碳氢化合物和固态粒子等污染物排量也污染物的含量非常低。与常规燃煤发电机组相比,c02的排放量可减少40%一60.在目前co2分离和隔绝技术尚不成熟的状况下,通过提高能源转换效率减少co2排放是必然的选择。

2.3采用燃料电池发电可提高供电的灵活性和可靠性

燃料电池具有高效率、低污染、低噪声、模块化结构、体积小、可靠性高等突出特点,是理想的分布式电源。与目前一些可做为分布式电源的内燃机相比,燃料电池的发电效率更高、污染更低。在250kw—lomw的功率范围内,具有与目前数百兆瓦中心电站相当甚至更高的发电效率。作为备用电源的柴油发电机由于污染和噪声大不宜在未来的城市中应用。低温燃料电池不仅发电效率高,而且启动快、变负荷能力强,是很好的备用电源。现代社会对供电的可靠性和环境的兼容性要求越来越高,高效、低污染的分布式电源系统日益受到重视。近年来美国、加拿大、台湾相继发生因自然灾害或人为因素造成的大面积停电,许多重要用户长期不能恢复供电,给社会和经济造成了巨大的损失。北约轰炸南联盟,使电力系统严重受损。这些由不可抗力引起的电网破坏无不使人引发出一个重要的思考:提高我国电力系统供电的可靠性和供电质量,虽然主要依靠电网的改造和技术革新,但如果在电网中有许多分布式电源在运转,供电的可靠性将会大大提高。

对于象军事基地、指挥中心、医院、数据处理和通讯中心、商业大楼、娱乐中心、政府要害部门、制药和化学材料工业、精密制造工业等部门,对电力供应的可靠性和质量要求很高。目前采用的备用电源效率低、污染严重、电压波动大。而采用燃料电池作为分布式电源向这些部门提供电力,会使供电的可靠性和电力质量大大提高。他们将是燃料电池发电技术的第一批用户。

对于边远地区,负荷小且分散,若建设完善的电网,不仅投资大,线损大,且电网末端地区电力质量不稳定。对于这些区域若辅助燃料电池发电的分布式电源,更能有效地解决这些地区的电力供应问题。燃料电池的重量比功率和体积比功率均比常规的小型发电装置大,因此,它也是理想的移动电源,适合于各种建设工地、野外作业和临时急用。

2.4发展燃料电池发电技术是提高国家能源和电力安全的战略需要

美国已将燃料电池发电列为国家安全关键技术之一。美、日之所以能在燃料电池技术方面处于世界领先地位,与国家从战略高度予以组织、资助和推动密不可分。在目前复杂的国际环境下,高技术的垄断日趋严重,掌握清洁高效发电的高新技术对未来国家的能源和电力安全具有重要的战略意义,而燃料电池发电技术,正是这种高效清洁的高新发电技术之一。燃料电池突出的优点,以及发达国家竟相投入巨资研究开发的行动,足以说明燃料电池发电技术在21世纪会起到越来越重要的作用。

2.5发展燃料电池发电技术是国电公司“加强技术创新,发展高科技,形成高新技术产业”的需要

燃料电池发电技术是电力工业中的高新技术,己受到普遍重视。美国燃料电池发电技术的研究开发主要由美国能源部组织实施,其中一个重要的目的就是形成新的高技术产业,为美国的经济注入新的活力。日本的东京电力公司、关西电力公司及其它公用事业单位是日本燃料电池开发及商业化的主要承担者和推动者,其目的也是为电力公司注入新的经济增长点以获得巨大的经济效益和社会效益。

国家电力公司处在完成“两型”、“两化”、“进入世界500强”的历史时刻,恰逢党中央国务院号召全国各行业“加强技术创新,发展高科技,实现产业化”的有利时机,在国家电力公司内不失时机地进行燃料电池发电技术的研究开发是非常必要的。采取引进、消化、吸收和再创新的技术路线,以高起点,在尽可能短的时间内初步形成自主产权的燃料电池发电关键技术,不仅可以使我国在燃料电池发电技术领域与国外的差距大大缩小,而且,对国家电力公司进行发电系统的结构调整、技术创新、形成高新技术产业、实现跨越式发、提高国际竞争能力都具有非常重要的意义。

2.6燃料电池发电技术在我国有广阔的发展前景

未来二十年,随着我国“西气东送”,全国天然气管网的不断完善及液化天然气(lng)的广泛应用,燃用天然气的燃料电池发电将会有很大市场。煤层气也是燃料电池的理想燃料。我国丰富的煤层气资源也将是燃料电池发电的巨大潜在能源之一。燃料电池可与常规燃气一蒸汽联合循环结合,形成更高效率的发电方式。与煤气化联合循环(igcc)结合,形成数百兆瓦级的大型、高效、低污染的中心发电站,比igcc效率更高,污染更小。

燃料电池可与水电、风电和太阳能发电等结合,在高出力时,利用电解水制氢,低出力时用燃料电池发电,达到既储能,又高效发电的目的。采取气化或厌氧处理的方法将生物质变为燃料气,通过燃料电池发电,提高能源转换效率,并降低污染物排放量。对一些经济欠发达但有丰富的沼气资源的地区,利用燃料电池发电技术有可能更有有效地解决这些地区的电力供应问题。

2.7与国外有较大的差距

在燃料电池发电技术方面,我国与国际先进水平有较大的差距。在mcfc和sofc技术方面,国外已分别示范成功了2mw和100kw的燃料电池发电机组,而我国在这方面才刚刚起步,2000年才可望研制出2kw左右的试验装置。在pafc和pefc技术方面,国内与国外的差距更大。倘若我们现在不开始研究开发燃料电池发电技术,等到燃料电池完全成熟后再引进,不但会受制于人,还将付出更大的经济代价,更谈不上尽快形成燃料电池发电的产业化。若不能形成燃料电池的产业化并在电力系统广泛应用,那么,也谈不上提高发电效率和降低污染物的排放。只有从现在开始,在国外的基础上,高起点研究,经过10—20年的努力,有可能在国电公司形成燃料电池的产业和广泛的商业应用。

2.8在我国电力系统发展燃料电池发电技术是市场经济条件下的迫切要求

分散式电源作为大电网的有效补充己得到许多国家的重视,而电源提供者的多元化更是一种趋势。我国电网的容量大、技术水平和可靠性还较低、抵御各种灾害的能力较差,在这种情况下,小型高效的燃料电池分布式电源随着技术的商业化市场潜力巨大。

倘若电力系统不及时进行研究开发,在未来几年内,有可能被国外企业和国内其它其它行业或民营企业占领燃料电池分散电源市场。在市场经济条件下,国电公司既是用户,又是开发者。对于燃料电池这样重要的发电高新技术,应不失时机地着手研究开发,联合国内一些基础研究单位,争取纳入国家的攻关计划,获得国家支持,在尽可能短的时间内,形成燃料电池发电技术研究开发的优势,开发燃料电池发电关键技术和成套技术,形成国电公司的高新技术产业,既可优化调整电力结构,又能满足市场的不同需求。

3国外燃料电池发展计划及商业化的预测

研究美、日、欧洲等国家和地区燃料电池的发展进程及商业化的预测,对我们制定燃料电池的发展战略和预测应用前景会有一定的参考价值。

3.1美国燃料电池发电技术研究开发状况

(1)美国燃料电池发电技术的研究开发计划

1997年,美国总统克林顿颁发了"改善气候行动计划”,燃料电池被确定为一项关键技术,联邦政府为此制定了一项“美国联邦燃料电池发展计划”,目的是通过燃料电池的商业化来减少温室气体排放量。在这项计划中,对每一个燃料电池的新用户资助l000/kw的优惠。结果,仅在1998年,就有42台200kwpafc发电机组投入运行。

美国政府鼓励在一些对环境敏感的地区建立燃料电池发电站。此外,政府已促使美国所有的军事基地安装200kw燃料电池发电机组。通过这些措施,加速燃料电池的商业化,并提高国家能源的安全性。美国政府投入巨资研究开发燃料电池发电技术的另一个目的,就是要保持美国在这一领域的领先地位。随着商业化过程不断深入,将逐步形成新的高技术产业,为美国的经济注入新的活力,提供更多的就业机会。

美国doe的燃料电池发展计划如下:

pafc己商业化,不再投入资金进行研究开发。pafc目前的发电效率为40%一45(lhv),热电联产的热效率为80%(lhv)。

已完成250kw和2mwmcfc的现场示范,预计2002年进行20mw的示范;2003年左右,使250kw和mw级mcfc达到商业化;2010年,燃用天然气的250kw一20mwmcfc分散电源达到商业化,100mw以上mcfc的中心电站也进入商业化;2020年,100mw以上燃煤mcfc中心发电站进入商业化。mcfc技术目标是运行温度为650℃,发电效率达到60%(lhv),组成联合循环的发电效率为70(lhv),热电联产的热效率达到85(lhv)以上。

目前,己完成25kw和100kwsofc现场试验,正在进行sofc的商业化设计。预计2002年左右,进行mw级sofc示范;2003年左右,100kw一1mwsofc进行商业化:2010年,250kw一20mw燃用天然气的sofc以分布式电源形式进入商业化,100mw以上燃用天然气的sofc以中心电站形式进入商业化;2020年,100w及以上容量的燃煤s0fc以中心电站的形式进入商业化。sofc技术目标是:运行温度为1000℃,发电效率达到62%(lhv),组成联合循环的发电效率达到72%(lhv),热电联产的热效率达到85(lhv)以上,燃煤时发电效率可达到65%(lhv),这一目标预计2010完成。

美国是最早研究开发pefc的国家,但在大容量化和商业应用方面已落后于加拿大。目前美国生产的质子交换膜仍居世界领先水平。美国在pefc的开发方面是面向家庭用分散式电源,实现热电联供。plugpower公司与ge合作,计划2001年使10kwpefc进入商业化,价格达到s750—1000/kw,大批量生产后,使pefc的价格达到$350/kw。

(2)市场预测

美国能源部(doe)对美国潜在的燃料电池市场的预测认为:在2005年一2010年,美国年需求燃料电池发电容量约2335mw一4075mw。现在美国的燃料电池年生产能力为60mw,商业化的价格为$2000一$3000/kw,若年生产能力达到100mw/a,商业化的价格则可达到$l000—$1500/kw。若能达到(2000—4000)mw/a的生产能力,燃料电池的原材料费仅$200一$300/kw。那么燃料电池的价格则有可能达到$900—$l100/kw,此时可完全与常规的发电方式竞争。

3.2日本燃料电池发电技术的发展进程及应用前景预测

(1)发展进程

日本在pafc研究方面,走的是一条引进合作、消化吸收、再提高的路线。1972年东京煤气公司从美国引进两台pafc燃料电池发电机组,大阪煤气公司也在1973年引进两台pafc机组。日本政府于1981年设立了以开发节能技术为宗旨的“月光计划”,燃料电池发电是其中一项重要内容。此后,日本国内的电力公司、煤气公司和一些大型的制造厂纷纷投入燃料电池的研究开发,并与美国ifc合作,使日本的pafc得到更大的发展。目前,日本的pafc技术已赶上了美国,商业化程度超过了美国。5mw(富士电机制造)和11mw(东芝与ifc合制)均在日本投运,日本公司制造的pafc机组已运行了近100多台。

日本有关mcfc的研究是从1981年开始的,通过自主开发并与美国合作。1987年10kwmcfc开发成功,1993年100kw加压型mcfc开发成功,1997年开发出1mw先导型mcfc发电厂,并投入运行。mcfc已被列为日本“新阳光计划”的一个重点,目标是2000年一2010年,实现燃用天然气的10mw一50mw分布式mcfc发电机组的商业化,并进行100mw以上燃用天然气的mcfc联合循环发电机组的示范,2010年后,实现煤气化mcfc联合循环发电,并逐步替代常规火电厂。

日本的sofc技术也是从1981年的“月光计划”开始研究的,立足于自主开发。1989年一1991年,开发出l00w一400wsofc电池堆,1992年一1997年开发出l0kw平板型sofc。sofc的研究进展也远远落后于nedo原来的计划。“新阳光计划”中预计2000年一2010年,使sofc达到mw级,并形成联合循环发电。日本的pefc也被列入“新阳光计划”,目前开发的容量为(1—2)kw。

(2)政府采取的措施

日本政府在“月光计划”和“新阳光计划”中,先后资助了3台200kw、2台lmw和l台5mw的pafc;1台100kw和1台1mw的mcfc示范电站研究开发、建设及运行。

在通产省和nedo的统一组织和管理下,使公用事业单位(电力公司和煤气公司)和开发商及研究单位紧密结合,实现燃料电池研究开发和商业示范应用一体化。日本电力公司和煤气公司,过去十年来安装了约80多台燃料电池机组,装机容量达到20.1mw,燃料电池及电厂的费用主要由业主承担,但是制造商和政府也各承担一部分。这种政府和企业联合研究开发的方式促进了日本燃料电池的发展。使用燃料电池发电享有许多优惠政策:燃料电池的相关设备,在未超过一定规模时,其工程计划仅须申报即可动工。对500kw以下的常压燃料电池生产与使用的审批手续大大简化。在医院、旅馆、办公大楼等安装的燃料电池发电机组,政府提供的经费资助。新建的燃料电池发电设备享有10的免税额,并获有30%的加速折旧。对装设于电力公司或自备发电用的燃料电池项目,日本开发银行将提供投资额40%的低息贷款。

(3)市场预测

1990年,日本通产省发表了“长期电源供需展望”报告,预计日本国内的燃料电池发电容量到2000年约2250mw;2010年约10720mw,电力系统用5500mw,其中约有2400mw是mcfc和sofc高温型燃料电池;2010年煤气化mcfc和sofc达到实用化;发电效率达到50%一60%。由于燃料电池发电技术仍有许多技术上的难题没有突破,进展速度低于预期值,因此日本目前已将原目标做了修正,预计2000年燃料电池装机容量将达到200mw,其中分布式电源l12mw,工业用热电联产型为88mw;2010年将达到2200mw,其中分布式电源型为735mw,工业用热电联产型为1465mw。

3.3其它国家和地区的发展进程

目前,欧洲的燃料电池发电技术远远落后于美国和日本。80欧洲又重新开始研究燃料电池发电技术。它们采用向美国、日本购买电池组,自行组装发电厂的方式来发展pafc发电技术。1990年成立了一个“欧洲燃料电池集团(efcg)”。意大利已完成了一座1mw的pafc示范工程,由ifc供应,bop由欧洲制造。意大利、西班牙与美国ipc合作,于1993年在米兰建了一座l00kwmcfc电厂,1996年投运。德国正在开发250kwmcfc。德国西门子公司于1998年收购了美国西屋公司的管形sofc技术后,现在拥有世界上最先进的平板型和管形sofc技术。

加拿大在pefc方面居世界领先地位,在继续开发交通用pefc的同时,目前也将pefc应用于固定电站,已建成250kwpefc示范电站,目标是在近几年内使250kw级pepc商业化。澳大利亚在1993年一1997年,共投资3000万美元,研究开发平板型sofc,目前正在开发(20一25)kwsofc电池堆。韩国电力公司于1993年从日本购进一座200kwpafc进行示范运行。

3.4国外发展燃料电池发电技术的经验总结

回顾国外燃料电地发展的道路,有许多值得我们吸取和借鉴的经验。下面归纳几点:

美国在燃料电池发电技术的研究开发方面始终处于世界领先地位。除了雄厚的财力之外,还有三方面重要的原因:一是政府将燃料电池发电技术视为提高火力发电效率、减少污染物和温室气体排放的重要措施,列入政府的“改变气侯技术战略”中,并大力投入资金和力量研究开发;二是燃料电池技术提高到“国家能源安全并大力投入资金和力量研究开发;二是将燃料电池技术提高到“国家能源安全关键技术”的战略高度,dod和doe均投入资金研究开发;三是对燃料电池的应用前景充满信心,希望能形成新的高技术产业,给美国的经济注入新的活力,政府和企业共同投入资金研究开发,力图保持领先地位。

日本走的是一条通过与美国合作、引进技术并消化吸收实现产业化的路线,并在pafc的商业化方面己超过了美国,在mcfc的研究开发方面也接近美国。成功的重要经验也是政府对燃料电池给予高度重视,先后列入了“月光计划”和“新阳光计划”,大力投入研究开发。另一条经验是研究机构、企业和用户联合,组成从研究、开发到商业应用一体化集团,既承担研究开发的风险,也享受成功的优惠。

加拿大ballard公司在pefc方面成功的经验告诉我们:只要坚定不移地进行研究开发,一个小公司也能在10—20年内成为举世瞩目的燃料电池技术拥有者。

燃料电池起源于欧洲,但是,现在欧洲的燃料电池技术已远远落后于美国和日本。主要原因是政府和企业对燃料电池发电技术重视不够。目前,欧洲已经意识到这一点,成立了—个燃料电池发电技术集团,引进美国、日本的技术,并进行研究开发。

4各种燃料电池发电技术综合比较

(1)afc:与其它燃料电池相比,afc功率密度和比功率较高,性能可靠。但它要以纯氢做燃料,纯氧做氧化剂,必须使用pt、au、ag等贵金属做催化剂,价格昂贵。电解质的腐蚀严重,寿命较短,这些特点决定了afc仅限于航天或军事应用,不适合于民用。

(2)pafc:以磷酸做为电解质,可容许燃料气和空气中c02的存在。这使得pafc成为最早在地面上应用或民用的燃料电池。与afc相比它可以在180℃一210℃运行,燃料气和空气的处理系统大大简化,加压运行时,可组成热电联产。但是,pafc的发电效率目前仅能达到40%一45%(lhv),它需要贵金属铂做电催化剂;燃料必须外重整:而且,燃料气中c0的浓度必须小于1%(175℃)一2(200℃),否则会使催化剂中毒;酸性电解液的腐蚀作用,使pafc的寿命难以超过40000小时。pafc目前的技术已成熟,产品也进入商业化,做为特殊用户的分散式电源、现场可移动电源和备用电源,pafc还有市场,但用作大容量集中发电站比较困难。

(3)mcfc:在650℃一700℃运行,可采用镍做电催化剂,而不必使用贵重金属:燃料可实现内重整,使发电效率提高,系统简化;co可直接用作燃料;余热的温度较高,可组成燃气/蒸汽联合循环,使发电容量和发电效率进一步提高。与sofc相比,mcfc的优点是:操作温度较低,可使用价格较低的金属材料,电极、隔膜、双极板的制造工艺简单,密封和组装的技术难度相对较小,大容量化容易,造价较低。缺点是:必须配置c02循环系统;要求燃料气中h2s和co小于0.5ppm;熔融碳酸盐具有腐蚀性,而且易挥发;与sofc相比,寿命较短;组成联合循环发电的效率比sofc低。与低温燃料电池相比,mcfc的缺点是启动时间较长,不适合作备用电源。mcfc己接近商业化,示范电站的规模已达到2mw。从mcfc的技术特点和发展趋势看,mcfc是将来民用发电(分散电源和中心电站)的理想选择之一。

(4)sofc:电解质是固体,可以被做成管形、板形或整体形。与液体电解质的燃料电池(afc、pafc和mcfc)相比,sofc避免了电解质蒸发和电池材料的腐蚀问题,电池的寿命较长(已达到70000小时)。co可做为燃料,使燃料电池以煤气为燃料成为可能。sofc的运行温度在1000℃左右,燃料可以在电池内进行重整。由于运行温度很高,要解决金属与陶瓷材料之间的密封也很困难。与低温燃料电池相比,sofc的启动时间较长,不适合作应急电源。与mcfc相比,sofc组成联合循环的效率更高,寿命更长(可大于40000小时);但sofc面临技术难度较大,价格可能比mcfc高。示范业绩证明sofc是未来化石燃料发电技术的理想选择之一,既可用作中小容量的分布式电源(500kw一50mw),也可用作大容量的中心电站(>l00mw)。尤其是加压型sofc与微型燃气轮结合组成联合循环发电的示范,将使sofc的优越性进一步得到体现。

(5)pefc:pepc的运行温度较低(约80℃),它的启动时间很短,在几分钟内可达到满负荷。与pafc相比,电流密度和比功率都较高,发电效率也较高(45%一50(lhv)),对co的容许值较高(<10ppm)。pefc的余热温度较低,热利用率较低。与pafc和mcfc等液体电解质燃料电池相比,它具有寿命长,运行可靠的特点。pefc是理想的可移动电源,是电动汽车、潜艇、航天器等移动工具电源的理想选择之一。目前,在移动电源、特殊用户的分布式电源和家庭用电源方面有一定的市场,不适合做大容量中心电站。

5结论

选择适合于我国电力系统发展的燃料电池发电技术,应综合考虑以下几点:较高的发电效率;环保性能好;既能作为高效、清洁的分布电源,又具有形成大容量的联合循环中心发电站的发展潜力;既能以天然气为燃料,又具有以煤为燃料的可能性;技术的先进性及商业化进程;运行的可靠性和寿命;降低造价的潜力;国内的基础。综合考虑以上几点,对适合于我国电力系统发展的燃料电池发电技术,提出以下几点选择意见:

(1)优先发展高温燃料电池发电技术。即选择mcfc和sofc为我国电力系统燃料电池发电技术的主要发展方向,这两种燃料电池既能以天然气为燃料作为高效清洁的分布电源,又具有形成大容量的联合循环中心发电站(以天然气或煤为燃料)的发展潜力。

(2)mcfc和sofc各有特点,都存在许多问题,尚未商业化。若考虑技术难度和成熟程度以及商业化的进程,对于mcfc,应走引进、消化吸收、研究创新,实现国产化的技术路线,并尽快投入商业应用:对于sofc,应立足于自主开发,走创新和跨越式发展的技术发展路线。

(3)随着氢能技术的发展,pefc在移动电源、分散电源、应急电源、家庭电源等方面具有一定优势和的市场潜力,国家电力公司应密切跟踪研究。

(4)afc不适合于民用发电。pafc技术目前已趋于成熟,与mcfc、sofc和pefc比较,已相对落后。因此,afc和pafc不应做为国家电力公司研究开发的方向。

精品推荐