美章网 精品范文 电力系统通信论文范文

电力系统通信论文范文

电力系统通信论文

电力系统通信论文范文第1篇

目前,关于广域保护系统结构国内外学者提出不同的见解,一般可分为分布式、区域集中式、变电站集中式以及分层集中式。其中,在分布式广域保护系统中,广域保护算法内置于每个装设在变电站内部的保护IED中,分布式广域保护系统的广域保护决策过程完全在单个保护IED中实现,这使得分布式广域保护系统更适合于实现广域继电保护的功能。区域集中式广域保护系统其功能包括实现传统继电保护功能、通过通信网络与广域保护决策中心设备交换信息等。变电站集中式广域保护系统主要是利用收集到的信息实现广域保护算法,并向站内相应保护IED发送控制命令。分层集中式广域保护系统继承了区域集中式和变电站集中式广域保护系统的优势,而且它既能够与上层区域广域保护决策中心设备通信又能够与下层的保护IED通信,同时也能够弥补变电站集中式存在的一些缺点。

2电力系统信息综合传输调度算法研究

电力系统不同于其他系统的运行,尤其是顺利实现其信息的综合传输不可避免的需要解决诸多潜在的问题,尤其是信息业务综合传输过程中存在的流量冲突问题,特别需要注意的是不仅要保证实时信息业务的服务质量,同时也不可忽视各类非实时信息服务质量,这些非实时信息也是传输过程中重要的组成部分。实现基于IP技术和区分服务体系结构模型的网络通信模式的关键技术包括队列调度法,本文主要对队列调度算法进行深入讨论,使其在对电力系统信息综合传输的服务质量问题进行解决时能够发挥出关键的作用。WFQ算法的分组服务顺序与GPS模型有很大差异,它是一种模拟通用处理器共享模型的队列调度算法,本文在WFQ算法基础上提出了WF2Q+算法,并通过将“虚拟延迟时间”引入WF2Q+算法解决了该算法在推迟传输高优先级信息业务分组的问题,进而提出了提出以基于IWF2Q+算法的区分服务体系结构模型实现电力系统信息综合传输。

2.1WF2Q+算法介绍及分析WF2Q+算法是一种基于GPS模型的分组公平队列调度算法。在实际的信息业务传输过程中,分组到达各列队头部的时间会存在一定的微小差别,致使根据GPS模型得到的各队列头部分组服务顺序也出现微小差别,从而也会影响到WF2Q+调度器先为高优先级队列内分组提供服务,还是为低优先级队列提供服务。观察图1我们可以发现,优先级较高的信息业务在电力系统分组传输过程中不能保证其实时性,关键在于优先级较高的信息业务分组到达时间较晚,从而使得优先级较低的信息业务“捷足先登”,到达时间稍快,影响了电力系统高优先级信息业务分组传输的实时性。

2.2改进的WF2Q+算法——IWF2Q基于上述问题,为了保证电力系统信息综合传输中高优先级信息业务分组的实时性,本文采用了PQ调度算法,并用PQ算法原理对WF2Q+算法进行改进,按照这种方式获得的算法非常有可能将高优先级分组推迟传输问题轻而易举地解决,同时也能保持良好的公平性。具体操作如下:将优先级最高队列中传输个分组所需时间的倍定义为队列的“虚拟延迟时间。IWF2Q+算法与WF2Q+算法都采用SEFF分组选择策略,此时,不得大于系统虚拟时间,并且越小的队列中的分组越优先获得调度器的服务,通过这种方式高优先级队列中所转发分组的延时得到了降低。

3仿真分析

本文首先仿真对比电网发生故障时WFQ算法、WF2Q+算法和IWF2Q+算法情况下IEEE14母线系统各变电站与控制中心站之间变换信息时4类信息业务分组的平均延时,结果如图2所示。观察图2可知,WF2Q+算法与WFQ算法在保证信息业务实时性方面的性能不相上下,而WF2Q+算法推迟传输高优先级信息业务分组的问题可通过IWF2Q+算法解决,并且能够减小高优先级信息业务分组延时,同时也会导致低优先级信息业务分组延时变大。其次仿真对比电网发生故障时PQ算法、WF2Q+算法和IWF2Q+算法情况下得到的系统中各变电站与控制中心站之间传输四类信息业务的平均服务速率,如图3所示。该结果说明基于WF2Q+算法和IWF2Q+算法的区分服务体系结构模型能够较好地协调不同优先级信息业务获得的服务效率,达到了各类信息业务传输的公平性,且性能相当。

4课题研究结论及展望

电力系统通信论文范文第2篇

关键词:电力系统;通信;IT服务管理

一、电力系统通信部门的IT服务管理

电力系统通信部门IT服务管理体系包括展现层、功能层、数据层。通过对各种系统状态进行实时监控,将现有软硬件环境、网络资源、应用系统、人力资源、知识库有机地融为一体,合理调配资源,切实解决了机构人员、管理模式、业务流程、技术集成等方面实际问题,真正实现科学高效的IT服务管理。

二、典型处理流程

IT服务管理是一种面向流程的管理模式。在电力系统通信部门原有的业务流程的基础上,对其进行优化和改造,在此提出了IT服务管理四个典型处理流程,下面分别从流程目的、功能等角度进行说明:

(一)事件管理流程

事件是任何不符合标准操作且已经引起或可能引起服务中断和服务质量下降的事件。在ITSM引入以前,事件管理没有特定的流程,所有事件都通过通信故障专线通知到通信调度部门,然后由值班员派工单给检修班成员,并不区分事件的“轻重缓急”,也没有技术层面的审核,因此故障派修单回单率一直很低,很多单据由于不具备执行条件而在班组和通信科之间来回推诿,降低了故障解决时间,也没有相关考核指标。

事件管理的流程如下:首先,事件通过运行单位填报、用户填报或者通信检修部门巡视发现填报,所有事件记录进系统,对于已经处理的缺陷只要补报即可。接着通信调度进行分类预判断并分派,确定是事件的影响范围和优先等级:如果是事件处理影响范围小或无影响,则直接进行派单;如果事件处理影响范围大,则要求检修部门先进行停服役申请,再进行事件处理。然后,检修部门消缺完毕后,由用户和通信调度分别进行消缺验收,判断是否已解决确定问题:如解决,则由检修班回单给通信科,则纳入审核管理或者填报缺陷归档,关闭记录;如没有解决,则纳入通信科审核管理继续诊断,纳入下一季度大修工程,必要时转省调、厂商和集成商、服务商等进行支持解决等。最后更新文档,必要时进行回顾,事件支持人员将根据管理要求定期产生相关报表。

(二)问题管理流程

问题管理流程设立的主要功能是分析已被列为问题的事件(一组或一个)的根本原因,然后找出和建议永久性解决方案。其目的包括:(1)确保分析并确定事件的根本原因,以防止再次发生;(2)确保问题分派了正确支持人员,提高解决率。(3)根据IT资源情况分派问题优先级;(4)主动提供预防性措施;(5)提高IT服务的可靠性;(5)降低IT支持成本;(6)提高通信部门的整体形象和名誉。

(三)配置管理流程

通信部门的所有资源都通过手工和电子配置管理是通过手工形式派发“电路(设备、线路)投入、改接单”,单据与实际资源状况出入较大。待单据完成后,由专人进行手动的资料更新和管理,而经常出现资料忘记更新或资料更新出错,缺乏必要的考核体系。

配置管理的流程如下:首先进行配置申请。接着配置管理员根据需求进行方案设计,经配置管理经理审批后生成配置工单。配置工单由配置经理审核后进行工单派发,此时由于工单并未真正实施,配置资源处于预占状态。然后配置管理员根据班组回单进行完成确认,若确认完成,则将资源预占状态更改为运行状态;否则取消资源预占状态。并定期进行资源检查验证,流程回顾,每个一个季度由系统自动生成配置管理报告,据此可进行资源分析、预警等。

(四)变更管理流程

变更管理流程将通过标准统一的方法和步骤管理和控制所有对通信系统运行环境有影响的变更。其目的在于:通过对所有变更的正确评估,可以维护通信系统运行环境的完整性;确保变更和变更实施得到正确记录,并提供审核统计;减少或消除由于变更实施准备不当等原因出现的故障;提供一致性的变更实施质量控制;提高资源使用率(如未得到正确控制和授权的变更需要更多的后续资源);确保实施的变更不会超出预定的系统利用限值确保紧急变更请求得到快速实施。

三、IT服务管理体系的实施效果评价

杭州市电力局通信部门IT服务管理系统2006年初上线运行,截止到2007年9月30日,IT服务管理系统的配置项数据包括服务器、客户端设备、网络设备、变电站通信机房、变电站通信屏体信息、数据采集与监视控制系统(SCADA)采集点以及其他各种设备信息,总计有36个分类、95000多条记录。自投运以来总共记录有效服务呼叫8546条,电力通信网和管理信息化共关闭8492条,完成比率达99%。

杭州市电力局通信部门IT服务管理系统固化了18种处理流程及衡量标准、20项事件流程服务指标、10项工作量考核指标、28种事件分类指标等可量化的IT运行维护指标,电力通信网和管理信息化都分别设置了流程经理,每个流程又明确了流程负责人,负责处理流程时限、效率和质量。IT服务管理系统提供了可观、可测、可控、可量化的工作环境,工作量考核、系统风险识别、流程实施关键绩效指标(KPI)、人员技术能力等都可用“数字说话”。通过系统实施,事件处理更加高效,变更管理更加规范、问题管理更加可控、IT服务水平和人员素质得到了极大提高,为IT管理人员提供了方便高效的管理手段。

四、结语

IT服务管理系统运行两年的实践证明了ITSM是一套科学的方法论。实施效果表明该体系应用成效显著,流程清晰,责权分明,运行维护内容可量化,服务质量可考核,运作模式彻底告别了被动的救火队式的管理,开始步入主动的有预案的IT服务管理良性发展轨道。通过系统的实施,各流程的关键绩效指标越来越好,问题的可控程度也越来越高。因此,有计划、分步骤地将各流程应用在日常的系统运行维护和管理中去是现阶段最切实可行的方法。

参考文献

[1]曹汉平,王强,贾素玲.现代IT服务管理——基于ITIL的最佳实践[M].清华大学出版社,2005.

[2]孙强,左天祖,刘伟.IT服务管理——概念、理解与实施[M].机械工业出版社,2007.

电力系统通信论文范文第3篇

1.1技术特点MSTP的出现迎合了电力二次系统针对各类通信业务(如安稳系统、继电保护、远动通信、电力系统信息化等)接入和动态带宽处理的需要。基于SDH系统,MSTP具备集成对多种业务(主要是时分多工TDM、以太网业务和ATM业务)支持的能力,实现了对城域网业务的汇聚。其技术特点大致有以下几点:1)延续了SDH技术的诸多优势:如具有杰出的网络倒换保护性能和良好的TDM信号业务支持能力,能很好地兼容现有的TDM信号业务。2)对多种协议的支持。对多种协议支持以增强网络边界智能硬件性能,通过对各种业务的交换、聚合或路由划分来筛取不同种类的传输流,使MSTP对多种业务支持的能力得以实现。3)可支持波分复用(WavelengthDivisionMulti⁃plexing,WDM)扩展。MSTP的信号类型随所处网络位置的变化而发生变化,如MSTP设备被置于核心层时,信号类型最低可为OC-48,并能扩展为密集波分复用信号;当MSTP被置于汇聚层和接入层时,其信号类型则变为OC-3/OC-12,且可在必要时扩展至支持密集波分复用(DenseWavelengthDivisionMultiplexing,DWDM)的OC-48。4)支持动态带宽的分配。MSTP具备支持虚级联和级联的功能,因此MSTP可对所用带宽进行灵活多样的分配,其通常的带宽可分配颗粒为2Mbit/s,某些厂商甚至能将带宽可分配颗粒调整至576kbit/s。基于此,MSTP不但可以满足对SDH帧中的列级别以上带宽的分配需求,还能通过支持其链路容量调整机制(LinkCapacityAdjustmentScheme,LCAS)技术,动态地配置、调整链路带宽。5)提供综合网络管理功能。拥有对不同协议层的综合管理能力,有利于MSTP管理和维护网络[5-6]。MSTP管理涵盖整个网络,无论是对网内性能的告警监控还是对业务的配置,均基于直接为用户提供的网络业务。配置MSTP网管上的业务时,仅需要配置好网络业务的源、宿及相应的时隙、端口等参数,网络业务便能快速自动生成,避免传统的SDH系统需逐个对网元相关参数进行设置的繁复操作,进而实现业务的快速开通。此外MSTP还具备一些非电力通信需要但被运营商广泛使用的功能,如计费和带宽租用等。

1.2MSTP技术在电力通信中的应用广西某市地区电力通信网涵盖网内20多个变电站,每个变电站建立一个网元节点,组网采用产自UT斯达康公司的NetRing系列光传输设备,该系列设备均具有MSTP特性。其中NetRing10000-(IV2)系列设备主要针对大型网络的骨干网和城域核心层需求设计,是高集成STM-1/4/16/64(155M/622M/2.5G/10G)多业务传输平台,具有大容量高、低阶交叉连接矩阵,分插复用功能及Ethernet/ATM信元交换功能,最大交叉连接能力为512×512VC-4,4032×4032VC-12。此外该设备可按实际需要,灵活配置成2.5G或l0G,可平滑地由2.5G升级到10G。基于NetRing传输平台,该市地区电力通信网为电力系统提供了多条符合实际生产管理和管理信息需求的通道,如地区级综合数据网通道,承载的业务包括:综合信息化管理、电力统一通信、电视电话视频会议系统、营业所及变电站在线视频监控;地区调度数据网电力调度自动化、电能在线计费、电网一体化运行智能、VoIP(VoiceoverInternetProtocol)调度电话等。保障了该市地调与各变电站之间、发电厂之间及厂站间的各类专线信号;供电局与各下属二层机构之间的专线信号的信息传递与交互。

2MSTP设备的日常维护与故障分析

2.1MSTP设备的日常维护作为一项综合性较强的工作,MSTP光传输系统的日常维护项目很多,例如对光缆设备的定时巡视记录、设备电源清洁保养、配线架端子测试等。下面是MSTP设备日常维护的一些简单但值得注意的要求:1)供电电压不可超限。传输设备可正常工作的直流电压范围是-57.6~-38.4V,即MSTP设备的直流电压允许范围为-48±20%V。2)保证设备的运行环境。通常MSTP设备的允许机房温度是0~40℃,但根据实践经验,通信机房的建议保持温度约为25℃[7]。3)设备应按照行业规范采用三地联合接地,综合通信大楼的接地电阻要求小于1Ω,普通变电站内通信点接地电阻要求小于5Ω,否则雷击打坏设备的概率会大大增加;另外接地线的长度最好小于30m,并且尽可能短;两个接地体在最近点用导线短接。4)禁止小角度弯折尾纤,避免经常打开光连接器。5)网管、本地维护终端(LocalCraftTerminal,LCT)用电脑应专机专用,严禁挪作他用,以免电脑中毒瘫痪。6)插入单板时,先将单板的上下边沿与机框的左右导槽对齐,然后沿左右导槽慢慢推进单板,直至其刚好嵌入母板。更换单板时,在更换前要确认待换单板与在用单板型号一致。

2.2MSTP设备的故障分析高效地开展MSTP设备维护工作是电力通信网络安全稳定运行的保障。但由于网区内各个站点之间、厂站之间的距离较远,因此能否准确分析并定位故障,是MSTP设备故障处理中极为关键的切入点。与传统SDH故障定位方法一样,MSTP设备的故障定位也遵循“先系统,后单站;先线缆,后设备;先设备,后单板;先线路,后支路”的准则。通信检修人员可结合设备网管、光时域反射仪(OpticalTimeDomainReflectometer,OTDR)等测试仪表,充分利用性能事件、环回、在线检测帧等技术手段,分步、有计划地对MSTP设备故障定位。在故障出现初期,先分析告警的可能成因、相关业务流向及性能事件,初步判断后,再逐步缩小故障点的范围;然后通过分别对支路板和光板进行逐段环回(注意设备参照点)的方式,排除外部干扰,把故障点定位到单站,接着到单板。在MSTP设备故障处理过程中,首先应该排查SDH层面的问题,较为常用的SDH故障定位方法有告警性能分析法、仪表测试法、环回测试法及替换法等。1)告警性能分析法。该方法借助网管捕获有关的性能及告警信息,定位潜在故障。检修人员通过网管可以获得每一个站、每一块单板故障的详细情况;全网设备的故障状况,以及业务两端间的告警信号;告警信号的产生、结束时间和所有历史告警信息。例如检查网管时如果发现网管报TU-AIS和TU-LOP等SDH层告警,就可初步判定单板硬件有问题,需准备更换故障板件。2)仪表测试法。该方法需要采用各种仪表(如2M误码仪、万用表、光源、光功率计、以太网测试仪、SDH分析仪等)检查传输设备的故障点。如:用2M误码仪检测业务信号通断情况、误码数量;用光源、光功率计测试相关设备的收发光状况;用万用表检测设备的直流供电电压,判断是否存在电压越限影响设备运行的问题。用仪表定位故障的方法很有说服力,但前提是故障现场需要备有相关的仪器仪表。3)环回测试法。该方法使信号在网元的Tx、Rx端口间环回流转,藉此定位故障。环回测试法的两种典型方法:硬件环回和软件环回。硬件环回又分光接口、电接口两种,其中光接口的硬件环回,用尾纤或借助光纤配线架(OpticalDistributionFrame,ODF)配线端子,使光接口板的Tx端口和Rx端口互联;电接口的硬件环回,用电缆线或经由数字配线架(DigitalDistributionFrame,DDF)配线端子,将电接口板的Tx端口与Rx端口连在一起。软件环回则是指通过网管下发命令环回某一网元中的某一单板,又可分为内环回和外环回两种,如图2、图3所示。软环回的对象相对较多,包括电支路、光支路、光线路等。在分段自环设备的各种不同位置点后,便可将故障点从纷繁的信息中剥离出来,继而排除故障。值得注意的是,硬件环回光板时必须视具体情况在光板加入适当衰耗,以免损坏光板4)替换法。该方法是使用正常部件去替换疑似异常工作部件,以达到定位、排除故障的目的。这里的部件,是指与设备相关的物品,如线缆、单板、模块甚至于芯片等。这种方法在排除传输外部设备问题时应用较多,当故障被定位到单站后,替换法则更多地用于排除站内设备单板或模块的问题。通过上述方法排除SDH层面的问题后,检修人员可以转入以太网层面对故障进行定位。实践中一般采取环回手段+Ping和测试帧定位以太网层面的故障。例如在本端MSTP设备以太网单板端口Ping对端路由器或者交换机的IP地址,若能Ping通,则可基本确认本端设备以太网层无异常,Ping包的格式有很多种,常用的Ping包格式如下:pingxxx.xxx.xxx.xxx-11000-t11000表示数据包的包长是1000,-t即持续不断Ping包。其中的包长可视具体情况设定,在测试时不妨同时多开几个Ping窗口来尝试。如果Ping不通,则考虑检查线缆、网线、设备等硬件工作正常与否,在排除硬件方面的问题后,应在网管或LCT排查网元上的端口工作模式的设置、TAG属性、封装协议的匹配、虚容器(VisualContainer,VC)通道捆绑情况、端口VLANID的设置等,假如这些设置均被正确配置,但网络还是Ping不通,此时就应考虑检查两端站点路由器循环冗余校验码(CyclicRedundan⁃cyCheck,CRC)的配置情况。较常见的,如本端设CRC校验,对端不设CRC校验,也会造成Ping不通。但是即便Ping包正常也不可轻易认为本端MSTP设备以太网层无异常,因为当端口工作模式配置不正确时,也可能出现小流量Ping包能通过但大流量Ping包存在时延或丢包的现象。此时应考虑查验本端站点与对端站点设备的使能流控设置一致与否,两端设置不一致的情况下,大流量Ping包很可能存在丢包现象,故建议双方都关闭流控。此外这种现象也可能与带宽配置不够有关,带宽配置不够有用户业务量小但突发业务比较大或用户业务量大两种情况。带宽是否充足可通过多绑定几个2Mbit/s的方法来验证。针对基于多协议标记交换(Multi-ProtocolLa⁃belSwitching,MPLS)的报文类型或基于VLAN的报文类型的故障业务,最有效的手段是借助以太网性能分析仪辅助定位故障点,如果现场没有相关的测试仪表,则可借助“模拟发包”类的软件,使用计算机网卡模拟设备发送业务报文的办法来定位故障点。当涉及用户内网时,tracert也是一个非常实用的命令,其可用于圈定IP数据包访问目标所采取的路径。通过跟踪数据包的访问路径,检修人员可以了解数据走向,缩小故障范围,有助于故障信息的定位和处理。

3结语

电力系统通信论文范文第4篇

1.1应对蓄电池的失效以及相应的运行维护

不论是在中心机房还是直流系统等情况下,蓄电池组都发挥着自己的功效。我们都知道,在平常蓄电池组都是处于在线的浮充电备用状态,但是一旦交流失电或者是出现充电机故障的情况,蓄电池组则必须立即应对,为程控交换机和其他的直流负荷提供所需要的能量,在这之后,可逐步恢复由油机进行供电。从这里可以看出,在平常没有有效运用于基站运行的蓄电池,在发生事故的时候,却能够摇身一变成为唯一的负荷能量提供者。而假设如此重要的蓄电池出现了失效的情况,基站的其他设备便会因此难以运行而最终造成通信发生中断,从而给我们造成重大的损失。由于蓄电池类型不同,各自的失效机理也有着巨大差别。因此,面对不同类型蓄电池的失效机理,我们要对其进行相应的维护管理。

1.2常见的蓄电池的测试方式对比

虽说在一般情况下,高频开关电源设备的主机维护需求相对是比较小的,但是由于其具有的特殊性和重要性,我们也应该根据相关的一些维护规章的要求,对蓄电池进行应有的检查,其中包括每月的、每季度的以及年度的保养和检查。在平常的检查中,维护运行人员则要保持蓄电池的清洁,检查是否有过热的痕迹,并且对其电压进行测量,一旦发现有与规定电压有所差别时,便应该做出均衡充电等的及时反应。在现今社会,各种不同的蓄电池维护方法都被不断地发展并运用于我们的实际生活当中,其中包括了电导测试(内阻测试)、核对性放电测试、蓄电池网络化在线监测测量技术等,而这几种测量技术中又有着不同的优缺点。

(1)电导测试(内阻测试)

顾名思义,电导测试是通过利用交流或直流的信号电源,来对蓄电池进行简短的电导测试或者内阻测试。它的优点是测试所需时间短。相应的其缺点是在反馈蓄电池当前容量时有所欠缺,并且要求较高精度的测试仪器仪表以及更好的蓄电池运行环境。该技术在国内外的邮电、通信以及电力等行业运用较广。

(2)核对性放电测试

当蓄电池有多大容量,便能够相应地放出多大容量,这就是核对性放电测试--能够更好地真实地反映出来目前蓄电池的实际容量。放电测试过程中需要用蓄电池目前容量的百分之十的电流来对蓄电池恒流进行10h放电。核对性放电测试的优点是能够准确测量,并且在维护方面没有太大的需求。然而在测试过程中却要求观察充电过程并且进行放电观察。此项技术在邮电、铁路等方面运行较广。

(3)蓄电池网络化在线监测

蓄电池网络化在线监测是一项能够通过远端监控蓄电池的技术,只需要利用目前较为方便成熟的技术,便能够对蓄电池进行监控。如果想要达成远端遥控放电,只需要再加装上放电模块(负荷)。不过这项技术的缺点是需要在所有蓄电池上都加装系统。该技术也是在邮电和铁路方面使用较广。

2.针对蓄电池的维护提出的建议

2.1针对蓄电池系统的维护提出的建议

(1)以下情况应该避免发生:蓄电池长期搁置不用;蓄电池过放电;长期浮充却不放电;选择的充电机波纹过大。

(2)建立对应的温度补偿功能(蓄电池浮充电压随温度上升而下降,-2~+4mV/℃)。

(3)及时为使用过的蓄电池充电。

2.2关于发现和处理老化蓄电池的建议

(1)关于发现老化蓄电池的建议:①对电池的浮充电压进行监测;②对电池内阻的变化进行监测。

(2)关于处理老化蓄电池的建议:①对浮充电压长期处于偏低状态的蓄电池进行补充充电;②对老化蓄电池进行及时的监测,如果发现内阻偏大或者严重偏大,以及电压出现巨大问题的老化蓄电池,要进行及时的应急处理,例如活化或者更换。

2.3关于阀控式铅酸蓄电池如何维护的建议

(1)应该对以下项目进行定期的监测:①蓄电池电压;②连接处是否有松动;③电池壳体是否合格。

(2)应该对出现以下情况的电池充电:①浮充电压有2只以上低于2.18V;②放出20%以上额定容量;③全浮充使用时间达一个季度;④闲置不用超过一个季度。

(3)虽然蓄电池的容量和内阻并没有什么精确的相应联系。但我们可以通过对比上次的测量结果或者出厂时厂家提供的数据来进行比较,通过测量蓄电池的内阻,从而能够观察其离散性。如若出现了内阻或者离散型较为不正常的电池,更要特别注意处理。

(4)在蓄电池的核对性放电方面,应该保持一年一次的核对性额定容量的放电测试,如若发现了蓄电池组有故障,针对其再进行额外的测试。

(5)如若情况允许,则尽量选用多组蓄电池。或者是通过把大的蓄电池由一拆分为二的方法,并且进行电联。这样不仅能够更好地促进稳定安全性,并且并不会增加预算。

3.结语

电力系统通信论文范文第5篇

电力系统的光缆通信构建中,会用到有着具有金属材料构成的光缆组件。正是因为其基于金属特性的成分,因此就目前经验可能遇到的各种风险主要集中在如下的方面。

(1)在电力系统当中的强电电路中,如果因为不可抗力收到了瞬间故障状态冲击,在电力系统自身的光缆材料之上,就会因为这种故障状态竟受到相对于光缆材料自身所能够忍受的电压限额上限的动势能量数值。由于故障情况是难以预测的,因此具体造成再大的动量数值都是有可能发生的,而这种无法预估上限的数值甚至有可能把那些实际工艺质量稍次的东芯电缆的绝缘外皮给直接击穿,这种情况会直接压中损伤电力系统自身光缆材料的实际使用寿命。

(2)电力系统的强电部分进行工作的时候,因为含有金属材料的光缆极有可能跟强电线路的电动势发生强烈的感应,因此极有可能会让整个光缆的线路当中产生超过光缆材料所能承受的电压限额上限的数值构建。这种大幅度的电压改变就会让整个光缆通信系统的正常运作产生干扰和波动,进而对光缆的正常运行造成很大的损害。

(3)如果在当前不对称的强电线路构建中出现了针对光缆金属配件的感应情况,其最直接的后果就是直接导致电缆内部的通信系统当中的电压数值受到了干扰而产生极其剧烈的波动,而这种波动能够直接干扰到整个光缆系统当中的正常工作运用,同时让珍格格灌篮工作单元处于无法工作的瘫痪状态,对整个电力光缆通信系统来说是一个巨大的灾难。在当前电力系统构建下的光缆通信系统应用的实践过程当中,光缆所要承担起来的功能主要是针对各种电力业务进行联络的工作项目以及具有针对性的远程遥控工作,而不是单纯进行的信息传递工作。在这种情况的构建下,我们所要做的事情就是在整个光缆通信系统的整体设计过程当中对其防护设计进行适当地加固,并且按照《关于通信线路防止电力线有害影响导则》上面所提出的各项具体要求,对整个光缆通信进行整体框架下的设计进行重点处理,并保证在这个系统内的电压限额数值不会超出实际应用的范围。

2电力系统自身光纤通信的强电防护思路构建

为了保证整个电力系统当中的光缆通信系统可以正常的使用和实践,我们要在当前电力系统构建下的光缆通信系统当中进行强电防护设计,并针对以下的方面进行加固设计,避免出现各种意外发生。首先,在进行电力系统框架下的光纤通信强电保护设计和构建的时候,在对整个强电防护的措施进行保证经济效益前提下的构建基础之上,应该优先选择具有金属材质的光纤通信材料框架并进行施工。但是如果我们采用直埋式光缆材料进行电力系统光纤配置时,为了保证光纤材料可以进行高效有序的方向辨别和寻找,我们就要对非金属的材料进行选择和施工,以保证效果,防止因为干扰造成的信息失真。其次,在进行非含铜金属材料的光缆通信系统进行强电防护的施工过程当中,为了保证让强电干扰的数值降到最低,就要对下面的几个方面进行处理:在光缆材料当中添加相应的金属构件,比如针对光缆防护的金属保护层,这样就可以大幅度降低电动势积累的情况出现,也对强电中光缆通信系统的影响和干预降到最低。其次,在光缆连通到变电站或者是发电厂之前,也要采用对应的强电屏蔽方式来保护整体的光缆材料不会受到强电的直接干扰,比如说,把光缆材料直接传入到铁管当中,并且把光缆的整体接地系统设置好。

3结语

电力系统通信论文范文第6篇

电力系统通信电源的设计目标是能够为电力通信系统提供高效,稳定的能源,所以,电力系统通信电源技术将会从提高系统的安全性能和稳定性能着手,在提高供电性能、高效节能,实现网络化,数字化管理等方面快速发展。在高效节能方面,高频变化仍是电源技术发展的主流,通过功率集成技术来简化电力系统通信电源的结构,使其向模块化、集成化的方向发展,在降低损耗的同时提高供电效率。然而,随着互联网的普及和计算机的不断进步,网络化管理和数字化的控制也日渐成为通信电源发展的重要趋势。所以,保护通信互联网终端的电源设备必须具备数据处理和网络通信能力。此外,采用全数字化控制技术的电源的自我监控能力普遍增强,大大提高了设备的可靠性和对用户的适应性。

2.电力系统通信电源的日常维护

2.1通信电源设备的日常维护为通信系统电源建立起一套完善可行的运行维护制度是很必要的,这样就可以保证做到定期对设备进行检测,及时发现潜在的隐患,防患于未然。要定期检查设备的电器连接情况,尤其是重要负载与空气开关的连接和蓄电池连接,空气开关之间的连接,这些都极为重要。同时也应该定期检查交流配电设备的继电器开关、电表指示等。除了每次的定期检查,平时的日常巡查也是必要的。每次巡查的时候,应该仔细检查接地电缆和机架的连接是否牢固,检查电机房的接地电阻是否符合规定要求。除此之外,还要检查各模块的负载情况,在现场就要测量整个电力系统通信电源的电压,负载电流,交流电的电压和蓄电池的温度,环境温度和湿度以及检查告警功能等等。

2.2通信电源蓄电池的日常维护蓄电池是保证直流系统或者是交流系统能够不间断供电重要设备,是整个系统中最为关键的重要组成部分。日常对蓄电池的维护同样也是不能松懈的。对于蓄电池的日常维护,应该要先测出电池的电压,以此为主,用来发现各个电池间的电压是否均匀,并检查出有没有落后的电池。为了保证电池能够安全使用,要使电池在浮充状态下保持满容量,如果电池失去了容量,即使对前端的交流高低压系统、整流系统等配置管理得再好,都可能造成失电而引致通信故障。所以,我们在日常的维护工作中应改注意以下事项。蓄电池不能够过分放电,即使放电后也要及时的充电,同时也应该注意不能经常性的出现充电不足的现象,也不可以经常性的过分充电,这些行为都会使蓄电池受到损坏。对于阀控的密封电池,日常检测时则要注意检测极柱及周围安全阀是否有酸雾出现,连接情况是否松动和腐蚀,壳体是不是发生渗漏和变形。除了上述所提到了注意事项外,蓄电池也应该要保持清洁干净,室内外要保持干燥,通风情况良好,最好能够避免阳光直接照射到蓄电池本身。同时,值得注意的是,在存放蓄电池的室内不可以存放易燃,易爆和容易腐蚀的物品,更加不能将明火带入室内,以免造成不必要的伤害,甚至是引起火灾。在做好以上注意事项的基础上,平时注意不再蓄电池上放置任何金属物品,避免发生短路现象。并且还要做好日常维护,维修的记录。只有做到每个细节都层层把关,一丝不苟,才能保证电力系统通信电源能正常工作,提供高效的服务,带来可观的经济效益。

3.结语

电力系统通信论文范文第7篇

关键词:SCADA通信站环境监控系统研究与应用

一、通信站环境监控系统工程

通信站环境监控系统主要包括机房环境及动力设备监控系统、视频监控系统两部分。电力通信网目前通信站一般都位于变电所内,除了地调中心通信机房有人值班外,其他通信站均为无人值守通信站。实施这些通信站的通信电源乃至整个机房环境监控是很有必要的。

1.1通信机房动力环境监测量范围

1.1.1机房温/湿度。

1.1.2智能动力设备(配电屏、整流设备、蓄电池组)要求采集如下信息:①交流配电:三相交流输入电压、故障告警;交流输入故障(过压、欠压、缺相)。②直流配电:直流母线总电压;直流输出过压/欠压;压限告警。③整流单元:输出总电压、总电流;整流模块故障总告警。④蓄电池组:电池组总电压。⑤载波设备总告警。⑥通信机房消防报警由变电站统一考虑。

1.1.3无通信机房的110kV变电站,动力监测基本要求:①交流配电:三相交流输入电压、故障告警;交流输入故障(过压、欠压、缺相)。②直流配电:直流母线总电压;直流输出过压/欠压;压限告警。③整流单元:输出总电压、总电流;整流模块故障总告警。④蓄电池组:电池组总电压。⑤载波设备总告警。

1.2变电站端监测显示要求上述通信机房动力环境监测信号(遥信、遥测和开关量等)在变电站要求画面显示,告警画面变色闪动、声音告警。声音告警确认后可人工屏蔽。

1.3地调端监测显示要求各供电局所辖的变电站的无人值班通信机房动力环境监测信号要求送到本局调度自动化系统,开通供电局地调端通信中心机房登录Web服务器的权限,以浏览方式监视通信机房动力环境状态,其画面要求具备声、光告警。

1.4省网通信调度监测显示要求220kV及以上变电站通信机房动力环境监测信号要求送到中调调度自动化系统,通信调度员通过登录中调DMIS的Web服务器,浏览各通信机房动力环境状态和告警信息。

1.5通信机房闭路监视要求在通信机房安装摄像头,实现对整个机房的闭路监视。并将监视信号接入变电站闭路监视系统。同时可对异常/事故前状态及异常/事故时的状态进行录像。并将监视信号接入地调监控中心监视系统,由地调监控中心监视。

二、通信机房动力环境监测系统、视频监控系统实施

该系统按功能共分三个子系统:前端信号采集系统、监控子站和监控服务器系统。

2.1前端信号采集系统前端信号采集系统系统主要硬件是红外一体化摄像机、温湿度传感器、交流电压变送器、直流电压变送器组成。

2.2监控子站在通信机房的19”机柜里安装一台硬盘录像机,用于把通信机房内摄像头的模拟信号处理为数字信号通过网络传输,经过协议转换器,转换成E1信号接口,通过河池通信网络传输到监控中心。

2.3监控服务器系统(通过SCADA系统完成)。

2.3.1主站端硬件系统:利用调度中心现有的SCADA数据库服务器、音箱、以太网光纤收发器。

2.3.2主站端软件系统:利用调度中心现有监控软件、数据库软件、操作系统软件、杀毒软件。界面的开发任务由SCADA系统厂家完成。

三、设备主要功能和技术参数

3.1主站端

3.1.1主站端硬件系统:利用调度中心现有的数据库服务器、音箱、以太网光纤收发器。

3.1.2主站端软件系统:利用调度中心现有监控软件、数据库软件、操作系统软件、杀毒软件。界面的开发任务由SCADA系统厂家完成。

3.1.3主站端功能介绍:①以形象直观的图形界面方式实时显示本LSC所辖范围内各基站监控对象的分布状况、工作状态和运行参数。②提供整个监控系统网络构成模拟浏览图,能够快速进入所选择的基站,浏览基站监控信息。③监控系统数据信息的显示可按端局和按设备类别支持多种列表显示方式。④自诊断功能,对监控系统本身设备的故障及时监测并能发出告警。⑤信息打印功能具有:a出现告警立即打印;b根据管理需要定时打印;c屏幕拷贝打印。⑥实时接收各通站动力设备和机房环境的告警信息,具有以下告警功能:a分级告警功能显示;b紧急告警;c重要告警;d一般告警;e告警提示;f告警确认;g告警分类显示;h告警查询。⑦具有统计功能,能生成以下各种统计报表及曲线a日、月、年告警统计表;b日、月、年监测数据统计报表;c每天的设备运行参数或曲线;d监控中心中的告警数据、操作数据和监测数据等能保存一年以上。⑧安全管理功能:a用户和用户组管理功能,这些功能包括增加、删除、查询和修改等,此功能只能由授权的用户实施。b用户的权限配置和管理功能,对用户的权限级别可以进行配置。c系统操作权限的划分和配置功能。当操作人员取得相应权限时,可进行相应操作。对用户实施的操作进行鉴权的功能,保证具有权限的用户才能实施相应的操作。同时系统应有设备操作记录,设备操作记录包括操作人员工号、作设备名称、操作内容、操作时间等。⑨相关的控制机制,对于监控对象的接入以及监控设备的接入进行安全管理。⑩系统数据备份和恢复功能。报表管理功能:a用户利用监控系统提供的工具软件,生成并打印出各种统计资料、交接班日志、派修工单、机历卡及曲线图等。b提供历史告警纪录日、月、年及自定义时段的报表和相关统计报表。c提供按照告警级别、告警类型、设备类型等条件统计的历史告警次数或告警历时统计报表。d提供任意遥测量或遥测量组合自定义时段的历史数据曲线分析数据。e提供运行状态量曲线分析数据。f提供系统操作纪录输出报表。g提供登退录系统输出报表。h提供系统交接班日志管理输出报表;i提供自定义打印输出报表功能。显示功能:系统可实时显示和刷新监控范围内所有局站、设备以及全部监控点的运行参数、所处状态、配置属性。

提供可在线定制的组态页面显示综合性的局站或设备群组的监控信息。同时提供详细资料页面显示任意设备的监控信息。

对监控对象进行分层次、分类型的显示与管理。监控对象状态(告警、故障权限等)显示醒目清晰,可在指定的现场运行流程图上通过逐层扩展,最后将故障定位在监控对象上。

界面能够按照需要及时详细的提示和统计系统发生的任何告警和事件。

3.2分站端

3.2.1分站端硬件系统:监控主机、温湿度传感器、直流电压变送器、交流电压变送器。

3.2.2分站端功能介绍:①周期性地采集各监控模块的数据,进行数据处理和发送。②随时接收并快速响应来自监控主站的数据查询和控制命令,并将控制命令下发给监控模块。③收集故障告警信息,告警优先主动上报。④能进行基本的数据处理、存储,具备接入计算机进行现场维护操作的功能。⑤具有保存告警信息及监测数据的统计值至少2天的能力。⑥具有本地控制优先的功能,可屏蔽监控中心发出的遥控命令并以适当方式通知监控中心此时所处的控制状态。⑦具有告警过滤和屏蔽功能。

电力系统通信论文范文第8篇

【关键词】互联网技术电力保护通信系统设计

随着电力工业及互联网技术的迅速发展,电力企业对线路的保护也提出了越来越高的要求。通信系统作为高频保护的一种重要的组成部分被要求具有更高的可依赖性、安全性及快捷性。同时,通信技术越来越发达,特别是光纤通信的日益普及为数字保护通信系统的发展提供了强有力的动力。

一、电力保护通信系统的概述

随着人力资本成本的不断提高,电力系统变电所逐步开展和普及无人值班的运作方式。所以传输各类信息的远动通道便成为了解和控制变电所运行状况的唯一窗口。因此,通道的建设、保持及维护成了工作的重点及难点。一般来说,远动通道分为接收变电所各类信息的“上行”通道和下发各类控制信息的“下行”通道这两种通道。上行通道一般可以直接通过主站显示屏的画面查看其运行情况,而对传输遥控命令的下行通道,至今所有的调度自动化系统、厂站端的RTU或变电站综合自动化装置均不具备对下行通道的检测功能,这严重影响着整个电力系统的运行安全[1]。基于此为了提高电力系统运行的安全性,对线路保护提出了更高的要求。而作为线路保护重要组成部分的远方保护信号设备的安全性、可靠性及快速性必须要可以保证。

二、电力保护通信系统的运用现状及趋势分析

2.1电力保护通信系统的运用现状分析

目前,我国电力保护通信系统的运用主要集中在一些大型的电力企业中,而对于小型的发电企业则很少使用,造成这种现象的原因是多方面的。首先,对于一些小型的电力企业来说采用电力保护通信系统的必要性比较弱。其次,系统的运行对人才与资金的要求比较高,小型电力企业不具有具备专业知识的系统建设及维护的专业技术人员。就目前我国电网中运行的远方保护信号设备而言,大部分的电力企业采用的都是模拟系统,这个系统主要包括使用电力线为载体的保护专用收发信机和电力线音频复用通信系统两个部分[2]。

2.2电力保护通信系统的运用趋势分析

随着互联网技术的不断发展,数字保护通信系统必然代表保护信号设备的发展方向。原因主要体现在以下几个方面。第一,数字保护通信系统符合全球数字化的潮流,第二,数字系统抗干扰的能力强,第三,数字设备可靠性比较高,调试和维护非常方便,从长远来看,可以降低使用成本。第四,数字设备可以提供良好的人机界面。

三、复用式数字保护通信系统的设计分析

通过上面的分析可以看出复用式数字保护通信系统必然代表保护信号设备成为未来的发展方向。在电网改造中SDH、ATM等新的光纤通信技术在电力系统通信中都得到了普遍应用,这无疑可以看出复用式数字保护通信系统的运用潜力[3],同时电网改造也给复用式数字保护通信系统的运用提供了前所未有的发展机遇。现在高电压等级的变电站的保护信号通信设备首选是数字保护通信设备,而且实现的方式主要是将保护信号复用到SDH通信设备的时隙中,利用SDH设备的快速自愈性能进一步提高保护信号通信的可靠性[4]。基于此论文对复用式数字保护通信系统进行一个系统的设计。为了提高系统的整体性能,这套系统设计方案采用了特别的纠错编码解码方案,同时结合采用一些比较先进的技术设备,比如高速CPU、CPLD和流行的Windows人机界面等。这些都可以很大程度上提高设备的可靠性,使调试、维护和使用过程更加方便安全。复用式数字保护通信系统以具有自愈功能的SDH环状网为核心,提供行政电话、调度电话、远动数据和保护命令的全方位接入和传输。

四、结语

通过论文的分析可以看出数字保护通信系统必然代表保护信号设备的发展方向,这种数字保护通信系统不仅可以提高系统的整体性能,还可以提供行政电话、调度电话、远动数据和保护命令的全方位接入和传输,在实际运用中值得推广。最后,希望论文的研究为相关工作者及研究人员提供一些参考与借鉴价值。

参考文献

[1]吴玲燕.广域保护通信系统可靠性及其路由选择研究[D].重庆:重庆大学,2011

电力系统通信论文范文第9篇

【关键词】 电力通信网 安全风险 评估 可靠性

一、引言

电力系统是目前所知的最大最复杂的人造物理系统,包括发电、输电、变电、配电、用电六大环节。电网将各种不同的发电电源所产生的电能通过输电通道输送到用户侧,为人类发展提供动力支持。随着经济的发展、社会的进步、科技和信息化水平的提高以及全球资源和环境问题的日益突出,电网对于通信技术的需求越来越强,通信对于我国坚强智能电网的建设有很强的支撑能力。

电力通信网负责为电网提供信息传输和交换,电网实现实时信息和电力交换的重要的支撑系统,其安全性已经成为智能电网安全、可靠、经济运行的重要保障。光纤通信技术作为电力通信网中的一种主要通信技术,在电力系统发电、输电、配电领域广泛应用。因此建立电力通信网光纤线路的安全风险评估系统,对电力通信网光纤线路的安全风险进行实时评估,具有显著的社会效益和经济效益。

二、电力通信网光纤线路安全风险评估方法

电力通信网对电网的安全、稳定运行意义重大。电力通信网经过几十年的发展,现在已经形成了非常完整的网络。在电力通信网中,使用的通信技术非常全面,包括微波通信、无线通信、光纤通信、卫星通信、电力专网等通信手段。这些通信技术相辅相成,共同完场电力系统对于通信的需求。光纤通信技术由于其高带宽、高传输速率及低损耗等特点,在电力系统中广泛应用,在电力系统的发电、输电、配电领域中应用非常广泛,所以电力通信网中的光纤线路的安全稳定对电力通信网及电力系统来说意义重大。通过对电力通信网光纤线路的安全风险评估,可以提早发现风险,防止在电力通信网上传输、交换的电力调度、安稳等业务受到影响。

电力系统运行中的安全风险评估开展较早,国内外也有很多学者从事相关的工作,也有很多成果。电力通信网中的安全风险评估相对开展较晚,这方面的成果还较少,本文提出了一种新的电力电力通信网光纤线路安全风险评估方法。

电力通信网光纤线路安全风险评估方法分如下几步:

2.1确定评估对象范围

本文主要研究电力通信网光线线路的安全风险分析,所以评估对象是电力通信网光纤通信系统,主要是电力系统OPGW、ADSS光纤传输系统。

2.2确定评估对象中所包含的网元设备

电力通信网光纤系统主要包含光纤通信设备、OPGW光缆、ADSS光缆、网管系统、通信机房、通信电源等。

2.3确定影响评估对象包含的网元设备安全运行的指标因素

通过分析电力光纤通信系统运行特性,确定影响评估对象包含的网元设备安全运行的各指标因素,这些指标对电力通信网运行安全有一定的的影响。一些重要的指标。

2.4确定指标权重

电力通信网运行安全指标对于电力通信网安全稳定运行有影响,但这些指标中,有些指标相对重要一些,有些指标影响相对小一些。根据电力通信网中网元设备及业务重要度,由电力通信领域相关人员确定影响评估对象包含的网元设备安全风险因素并确定其对网元设备影响所占的权重

2.5利用D-S证据理论修正专家的权重确定

由于专家受理论知识及从事工作的限制,其给出的权重设定可能不符合客观规律,本文引入D-S证据理论修正专家的权重设定。通过修正,可以更客观的给出各个指标因素在电力通信网光纤线路安全风险的权重,使评价结果更加客观、公正。

2.6电力通信网光纤线路安全级别的给出

通过运用证据理论合成规则融合各条证据,根据融合的基本信度分配函数对各个风险因素的安全有效性进行分级,最终给出电力通信网光纤线路的安全风险级别。

三、总结

电力通信网对于电力系统安全稳定运行有至关重要的作用,本文提出了一种电力通信网光纤线路安全风险评估方法。通过应用此方法,可以评估电力通信网光纤线路的安全性,对光纤线路的安全风险可以做到早发现、早预防、早处理,保证电力系统的安全、稳定运行。

参 考 文 献

电力系统通信论文范文第10篇

【关键词】用电信息采集系统用电采集电能监测信息采集电能检测

中图分类号:X830.1文献标识码: A 文章编号:

一.引言

用电信息采集系统是对用户的用电数据进行采集、分析,通过数据处理,实现用电实时管理控制的系统。一个全面的用户用电采集系统主要包括:系统主站、传输信道、采集设备、智能电表。作为一般用电用户来讲,是将用户的预付费电能表的数据通过载波或窄带载波等现场终端,采用光钎专网或GPRS/CDMA无线公网,将数据上传至通信接口机,通过前置采集服务器、应用服务器或数据库服务器等进入信息内网,达到数据自动统计、分析、监测的集成系统。

二.电力企业中用电信息采集系统的结构及系统建设价值。

1.用电信息采集系统结构。

电力用户用电信息采集系统是对电力用户的用电信息进行采集、处理和实时监控的系统,其采集的对象是电力用户的用电信息(电能量数据、交流模拟量、工况数据、电能质量越限统计数据、事件记录数据以及控费信息等),采集的目的是为了实时监控现场设备、支撑多种管理业务的需求。系统主要功能包括系统数据采集、数据管理、实时控制、综合应用和运行维护管理以及系统接口等。

用电信息采集系统的逻辑架构是采集设备与对象层通过通信层与应用层进行通信,应用层实现数据处理、系统管理、负荷管理、费控管理、运行管理和现场管理的系统。

用电信息采集系统的工作原理:计量设备主动上报数据,通过用电信息采集终端和通信层,将数据传输给系统主站;系统主站通过用电信息采集终端,实现对计量设备的信息数据采集。

用电信息采集系统的基本功能包括数据处理、数据管理和实时监测以及运行维护管理。其扩展功能包括电能的质量监测、用电分析和管理、相关信息的、分布式能源监控、智能用电设备的信息交互等动能。

用电信息采集系统数据采集的模式包括定时自动采集、随机召测和主动上报。通过对采集任务的执行情况进行检查,分析采集数据,发现采集任务失败或采集数据异常,记录详细采集信息。

2.用电信息采集系统的建设价值。

通过用电信息采集系统的建设,可以提高管理和控制成本的能力,通过改变使用电网电力的时间来降低电费,通过检测实时能源消耗来管理成本,采用允许电网自动条件家庭电器配置来降低费用。同时可通过改变用电行为而节约用电,使用清洁能源降低能源消耗,减少二氧化碳的排放。采用信息采集系统后,可更准确的进行计费,不用估算电力使用情况,对准确的费用可以预测。

三.用电信息采集系统的现状。

目前,智能电网是全球能源界普遍关注的焦点,用电领域开始倡导智能用电。在我国,电力电网中长期存在缺电严重的现象,在用电系统建设中相对比较薄弱,自动化、信息化程度不高。为了加快电力用户信息采集系统建设,国家电网公司提出在系统范围内实现电力用户“全采集,全覆盖,全预付费”的工作目标,推进营销计量、抄表、收费模式的标准化以及电网公司信息化的建设。自2009年开始,国家电网公司就计划投入巨额资金,用3至5年的时间对用电信息采集系统进行建设。通过前期的发展和建设,采集系统规模得到了扩大,采集功能应用也逐步扩大了。

由于用电信息采集系统是各系统分别建设,在建设中缺乏对系统资源的整合,导致主站软件对多种信道的综合运用能力不足。在通信层建设中,由于缺乏统一管理,出现信道资源利用低、重复建设等问题,由于这些问题的出现,导致数据没有实现完全共享,数据的应用价值没有被充分挖掘。

四.用电信息采集系统在电力企业中的应用。

1.载波转485采集方案。

这种方式适用于城镇集中居住区,采用集中表箱方式安装表计。载波通信是采用集中器、采集器和RS485电表的形式。在集中器和采集器之间通过低压窄带载波的方式进行通信,采用GPRS或光钎上传数据,其优点是在通信中不用布线,建设工程施工简单快速,缺点是载波通信的成功率不太高,其维护成本大,对用于预付费控制的时候存在一定的风险。

2.全载波方案。

这种方式一般采用独立安装表计,安装载波电表,通过集中器和载波电能表结合的形式进行载波通信,适用于农村用户。全载波方案同载波转485方案一样,具有通信不布线,施工速度快,通信成功率低,维护量大,难控风险等特征。

3.载波和484混合模式。

此方案中既有集中表箱方式安装的表计,又有独立安装的表计,采用集中器和采集器、RS485电表以及载波电能表的混合形式,适用于县城及城郊地区。采用此种方案也无法杜绝载波转RS485模式和全载波模式的缺点。

4.全485方案。

此种方案采用集中表箱安装表计,通过RS485电缆连接集中器和表箱,一般适合多层、高层居住区。由于在配变到楼栋间需要在局部地方进行电缆沟挖掘,造成施工量大。

5.楼栋集中通信方案。

在多层或小高层的居住区,采用RS485有线通信方式,将楼栋局部集中直接上传,通过此种方式可提高通信的成功率,同时可以减少电缆的施工量。

6.光纤到户通信方案。

采用光纤通讯方式将表箱和主站之间进行连接,实现用电信息的采集。光纤通信适合新建居住区的用电信息采集系统建设,通过在表箱内安装ONU(光网络单元),OUN输出信号到居民户内,同时在表箱内的集中器通过通信端口和主站连接,实现数据通讯。

在光纤到户通讯中,EPON技术的出现解决了点到多点的远程通信问题。EPON技术是基于以太网的无源光网络技术,是一种新兴的光纤接入技术。该技术具有互通性强、标准化程度高、成本低、技术成熟等优点,实现了用电信息采集系统真正的“全覆盖、全采集”。目前,EPON技术是光纤接入技术中应用最广泛的技术。在EPON中,典型的组网结构为用户同过ONU通过ODN(光分配网络)和OLT(光线路终端)局侧设备进行通信。其中的ONU为用户侧设备,给用户提供网口,OLT是EPON网络的局侧设备,主要起到汇聚ONU数据的作用。

EPON系统可以与目前的以太网兼容,传输距离为20公里,采用EPON组网具有通信量大,传输频带宽,组网灵活,拓扑结构多,安全性强,设备使用寿命长,安装方便,后期不需要维护等优点,因此在现代用户信息采集系统中被广泛推广。

五.结束语

用电信息采集系统承担着用电信息自动采集、数据高效共享和实时检测的重要任务,是用户用电信息的重要来源,是智能用电服务体系的重要基础。建设智能电网,必须要加强用电采集系统的建设,实现全部用户的信息采集、支持全面的电费控制目标。

参考文献:

[1] 罗洁梅LUO Jie-mei 浅析用电信息采集系统在电力企业的应用 [期刊论文] 《企业技术开发(学术版)》2010年12期

[2] 刁培忠 用电信息采集系统在电力企业的应用分析[期刊论文] 《中国电力教育》2010年9期

[3] 王海燕 李晓辉 汤佩林WANG Hai-yanLI Xiao-huiTANG Pei-Lin 用电信息采集系统的建设与应用 [期刊论文] 《电力信息化》2012年9期

[4] 袁建英YUAN Jian-ying 用电信息采集系统高级应用构想 [期刊论文] 《电力需求侧管理》2011年6期

[5] 张莉莉 用电信息采集系统建设及技术选型浅析 [期刊论文] 《城市建设理论研究(电子版)》2012年22期

电力系统通信论文范文第11篇

关键词:故障诊断;故障识别;小波分析;熵理论

作者简介:杨朝兵(1982-),男,河北邢台人,国网河北省电力公司邢台供电分公司,工程师;付学文(1983-),男,河北邢台人,国网河北省电力公司邢台供电分公司。(河北 邢台 054001)

中图分类号:TM7 文献标识码:A 文章编号:1007-0079(2014)06-0238-03

近年来,随着社会对电力需求的日益增加,电网呈现出高电压、远距离、大容量的发展趋势,高压输电线路特别是超高压输电线路在电力网中所占的地位也越来越重要。超高压输电线路既担负着传送大功率的任务,还作为联合电力系统运行的联络线使用,其运行可靠性影响着整个电力系统的供电可靠性。[1-2]由于高压输电线路工作环境恶劣,故障时极难查找,在电力系统中又是发生故障最多的地方,随着现代大电网的结构和运行方式复杂多变,故障类型越来越复杂,对保护的要求也越来越高。因此,准确而迅速地排除故障不仅满足继电保护的速动性,缩短系统恢复供电时间,而且还能提高电力系统的稳定性,降低运行成本。而准确区分故障相是高压输电线路保护的重要前提,所以探索新的故障选相原理和方法、提高继电保护的性能是超高输电线路故障检测中的一个重要课题。

一、背景和意义

当输电线路发生故障的初始瞬间,通常都有一个既包含直流分量又包含高频暂态分量的暂态故障信号,其所包含的信息是继电保护动作的依据,所以需要先对采样的故障信号进行处理以便获得有意义的特征量。但高压输电线路的距离比较长,输电线路之间存在互感耦合,只有在故障发生的初始瞬间故障信号不容易识别等特点;而电力系统本身又是一个容易受环境干扰的动态系统,因此要准确地对故障进行检测与分类,并防止故障进一步发生是非常困难的。所以借助现代各种数字信号处理工具和方法准确地对故障信息的特征进行提取与分类就显得十分必要,特别是近年来基于暂态量原理的保护更需要快速、可靠的故障类型识别元件。[2-4]

随着小波分析技术的引入,电力系统暂态信号特征量提取及分类技术得到了迅速发展。但是,由于小波变换结果中包含了大量的分解信息和数据,通常的检测方法都少不了对特定工况的假设或对特征提取的人工干预。而分类方法中,由于小波分解信息量比较大,使得一些智能判别系统(如模糊理论与神经网络等)变得比较庞大。因此对于小波分析还需研究合适的信息提取方法,给新型继电保护原理、系统故障判断与预测提供有效的依据。这些信息提取方法中最有效的是提供一个或系列描述系统的普适量,用这些普适量来检测、分类电力系统的故障。[4]

信息熵是对系统不确定性程度的一种描述,若把一个信源当做物质系统,可能输出的消息越多,信源的随机性越大,越紊乱,熵值也越大,所以信息熵可以被看做是系统紊乱程度的量度。[5-7]小波分析和熵理论相结合,在生物医学领域和机械故障诊断领域已经得了很好的应用。[8-9]它结合了小波变换多分辨分析的特点和信息熵对信息具有较强的表征能力的优点,成功地分析了各种突变信号。所以,在暂态信号特征提取方面表现出独特优点的小波熵,在电力系统故障检测与分析中具有很好的应用前景。本文给出了小波包能量熵的定义及其应用领域,旨在探讨小波包能量熵在输电线路故障检测中应用的可能性,对于小波包能量熵在电力系统暂态信号分析中的应用研究具有重要意义。

二、故障类型识别的研究现状

传统的故障选相元件主要采用突变量与稳态量相结合,以工频量为基础。在多数情况下这些选相元件对于简单故障能正确地选择故障相,但其选相速度不够快,且易受系统的运行方式及故障接地电阻的影响,结果往往不理想。因此,新型快速的故障选相方法成为众多学者研究的方向。[10]

新型的故障选相方法主要有:基于行波故障的选相元件和基于故障暂态量的选相元件。基于行波的选相元件[11-14]主要是利用故障时信号的行波波头所包含的信息进行故障选相。虽然基于行波的选相元件能在故障发生的第一时间捕获故障信息,与传统的选相方法相比具有灵敏度高、识别率好等优点,且对波头进行处理的方法也有很多。但基于行波的故障选相方法存在一些缺点,如初始行波受初始角、反射波、故障电弧等因素的影响。基于行波的选相元件由于计算量大,对处理器的运算能力要求也比较高,费用相对也就比较高,在嵌入式系统中难以做到实时性,这使得基于行波的故障选相方法具有很大局限性。

基于故障暂态量的选相[15-16]是利用输电线路发生故障时所产生的故障暂态信号实现故障选相,故障暂态信号与线路参数、故障情况等有关,不受系统运行方式、过渡电阻、电流互感器饱和、系统振荡、长线分布电容等的影响。近年来又随着硬件条件的实现和小波变换等信号处理工具的发展,使得大量、准确、实时地获取故障时产生的暂态电压和电流信号,并使对其作进一步的处理成为现实。这些丰富的故障暂态信号蕴涵了大量的故障特征信息,其频率成分贯穿于整个频谱中,如果能充分利用这些信息就能快速地对故障相作出判断。因此,基于故障暂态量的选相方法具有很大的发展前景,使得越来越多的学者从事电力系统暂态信号的研究。

目前用于电力系统故障类型识别的方法有很多,如小波分析、神经网络和模糊理论等智能算法、数学形态学等。

1.小波分析

文献[15]利用小波对暂态电流的模分量进行分析,并通过比较各相暂态电流的能量和各模分量的大小进行故障相判断。文献[16]利用小波提取故障暂态电流信号的特征,通过计算提取的信号特征沿尺度分布的权重得到暂态电流信号的小波熵权,进而构造故障选相判据。文献[17]对线路两端模量方向行波之差进行小波变换,通过比较其幅值大小来判别故障类型,但对两相接地故障的具体类型区分不明确。文献[12-13,18]通过比较(零、线)模量电流行波的幅值之间的大小关系从不同角度进行故障选相。但是,由于零模量的严重衰减导致保护装置不能正确反映故障点处零模与线模的大小关系,当输电线路远端发生单相接地或两相接地故障时可能出现误判。文献[19]将小波奇异熵应用于识别高压输电线路的故障相,提出了一种基于暂态电压的选相方案。通过取各相的小波奇异熵相对比值反映故障相和非故障相间的相对差异,构成高压输电线路故障选相的依据。

2.神经网络和模糊理论等智能算法

文献[20-21]利用提升小波变换对故障信号进行处理,并作为神经网络的输入构造了一种新型的小波神经网络模型来识别输电线路故障。文献[22-23]通过小波包将故障电压和故障电流分解后分别获得分解后的故障暂态量的能量值和熵值,并将能量值与熵值分别对神经网络进行训练,对输电线路进行故障分类和定位。文献[24]在暂态信号多尺度的基础上定义了小波能量熵,并与模糊逻辑系统相结合形成故障类型识别方法。

3.数学形态学

文献[25]在分析EHV线路发生故障后电流模分量的基础上,利用数学形态学梯度提取暂态信号波头能量,构成故障选相方案。文献[26]提出了一种基于数学形态谱和神经网络相结合的识别接地短路故障类型的新方案。该方法对三相电流进行相模变换后,用数学形态学颗粒对电流各模量分析并提取模电流的形态谱,将各形态谱作为神经网络的输入,进而判断出接地故障的类型。

三、小波分析在电力系统暂态处理中的应用

20世纪80年代初Morlet等人第一次提出了小波变换的概念。它可以根据处理信号频率的高低自行调整窗口的大小,确保捕捉到有用的信息,可以对信号奇异点作多尺度分析。小波变换有以下特点:在高频范围内时间分辨率高;在低频范围内频率分辨率高;既适合于分析平稳信号及非平稳信号;有快速算法——Matlab算法;利用离散小波变换可以将信号分解到各个尺度(频带)上。

由于小波变换有以上优点,所以它在各个应用领域中都得到了广泛应用,比如生物医学工程、机械故障诊断、非线性动力系统、量子物理、模式识别、参数辨识、CT成像、数据压缩等。近几年小波变换技术在分析和处理电力系统暂态信号方面也显示了其优越性和良好的应用前景,主要应用领域包括电力信号去噪[6,27-28]、数据压缩、电力设备故障诊断、电能质量信号分析、故障定位等。文献[28]指出db6小波对电压暂升、暂降、闪变信号均能获得较好的去噪效果。文献[29]提出了一种小波包去噪算法,用以消除暂态扰动检测中噪声的影响,为在噪声环境中检测和定位暂态扰动提供了依据。电能质量信号分析方面:文献[31]将小波包用于对谐波的检测,并与IEC推荐的谐波检测方法进行了对比,仿真结果证明了基于小波包的检测方法对非整次谐波与间小波的检测要优于IEC推荐的方法。电力设备诊断方面:文献[30]通过对基于Shannon熵的最优小波包基的快速搜索算法的探讨,提出了基于最优小波包基小波包方法。

在输电线路故障定位方面:

(1)故障选线。文献[31]提出了基于单相电流行波的故障选线原理。文献[32]利用小波变换与电弧故障产生的突变相结合而进行故障选相。文献[33]提出用小波变换提取电流故障分量的暂态能量,并且以三相间暂态能量的大小及其相对关系来识别故障类型和判断故障相的新方案。文献[34]利用小波变换提取故障后电流行波的线、零模量,根据提取出的电流行波波前1/8周期的能量进行故障选相。文献[35]通过小波变换利用故障电流行波幅值及极性逻辑关系相结合的故障类型识别方法,并设计出了故障类型识别的实用算法。该方法可以提高以往行波故障选相方案中利用零、线模量之间幅值关系判别单相接地或两相接地故障时的可靠性。总的来说,目前基于暂态信号,利用小波变换工具进行选相的方法得到了很好的研究,但在实际应用时仍需进行相应的分析论证。文献[36]对电力系统暂态信号提取小波能量熵及能量熵权,并将其分别对神经网络进行训练,提出了小波能量熵与神经网络相结合的故障分类方法。

(2)故障测距。电力系统要求及时、准确地得知线路故障位置,以便用最短的时间清楚故障,尽快恢复供电,现已有可用于解决实际问题的各种故障测距方法。小波变换可以很好地表征输电线路故障行波信号的突变点,故很多文献提出用小波变换来进行行波故障测距。[37-41]主体思路是:运用小波变换对故障信号进行分解,并用小波变换模极大值表示故障信息,揭示了行波信号奇异、瞬时信号与小波变换模极大值的关系,运用小波对奇异点检测的原理,确定两次行波波头达到检测点的时间间隔及故障发生的时刻,推算出故障位置,以达到故障定位的目的。

四、熵理论的应用现状

1948年Shannon把通信过程中信源讯号的平均信息量定义成为熵,这就是信息熵。小波熵是小波变换和信息熵的结合,它具有小波变换和信息熵的特点,对动态系统参数的微小变化具有独特的敏感性,反映了暂态信号在时-频域空间的能量分布情况,随着小波熵理论的不断发展与完善,它被应用机械、生物、电力系统等众多领域。

生物领域中,文献[42]运用小波熵分析心跳信号,并识别其变化规律;文献[43-44]将小波熵应用于EEG等非平稳信号的分析,体现出小波熵区别非平稳信号复杂度的特点,又有其反映微状态信号快速变化的优点。在机械故障诊断领域里,文献[45]将小波包与特征熵结合提出了一种诊断高压断路器机械故障的新方法,并给出了切实可行的诊断步骤和分析。

这几年小波熵理论在电力系统中的应用才刚刚开始,所以这方面的文献较少。文献[46]提出采用离散小波变换和神经网络相结合的方法,对输电线路故障进行分类和定位,虽然训练好的神经网络可以准确地对故障进行分类和定位,但存在计算量大、运算费用高的缺点。文献[47]提出一种基于小波熵权和支持向量机相结合的故障识别方法。该方法识别速度快,有较好的通用和实用价值。文献[48]虽采用了小波分析理论与信息熵理论,但并没有对小波熵进行一个完整的、系统的定义。文献[49]综合阐述了小波熵在电力系统中各方面应用的可行性,表明了其在电力系统中具有良好的发展空间。文献[5-6,50-51]探讨了小波熵在电力系统故障检测征提取的应用机理,通过仿真一些输电线路故障检测对文中给出的几种小波熵进行了验证,仿真分析结果表明小波熵测度在暂态信号检测与分类中有望得到较好的发展。小波熵作为近年来才发展的一种新理论在电力系统故障检测中的应用具有广阔前景。所以,在电力系统暂态信号的检测和分类中运用小波熵理论具有重要的研究意义。

五、结束语

电力系统故障类型识别的研究为暂态信号检测分析开辟了新的道路,为暂态信号特征提取理论奠定了新的基础,进行了不同变换空间内信号特征和复杂程度的定量描述方法,建立了适合于电力系统暂态信号分析的小波熵理论。

参考文献:

[1]王志华.超高压线路故障行波定位及高压变频技术研究[D].武汉:华中科技大学,2004.

[2]魏智娟,李春明,付学文.输电线路故障诊断方法综述[J].电气技术,2012,(2):1-5.

[3]何正友,王晓茹,钱清泉.利用小波分析实现EHV 输电线路单端量暂态保护的研究[J].中国电机工程学报,2001,21(10):10-14.

[4]何正友.小波分析在电力系统暂态信号处理中的应用[M].北京:中国电力出版社,2011.

[5]何正友,刘志刚,钱清泉.小波熵理论及其在电力系统中应用的可行性探讨[J].电网技术,2004,28(21):17-21.

[6]何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J].中国电机工程学报,2005,25(5):23-43.

[7]李志民,李卫星,李勃龙.熵原理及其在电力系统可靠性中的应用[J].电力系统及其自动化学报,200l,13(3):37-39.

[8]任震,张征平,黄雯莹,等.基于最优小波包基的电动机故障信号的消噪与检测[J].中国电机工程学报,2002,22(8):53-57.

[9]Rosson OA,B1anco S,Ybrdanova Jetal.Wavelet entropy:a new tool for analysis of short duration brain electrical signals[J].J Neumsci Meth,2001,105(1):65-75.

[10]李东敏.基于多小波包和人工神经网络的电力系统故障类型识别研究[D].成都:西南交通大学,2008.

[11]葛耀中.新型继电保护和故障测距的原理与技术[M].西安:西安交通大学出版社,2007.

[12]Joe- AirJiang,Ching- ShanChen,Chi-WenLiu.A new Proteetion seheme for fault detection, direetion diserimination,elassifieation and location in transmission lines[J].IEEE Trans on Power Delivery,2003,18(l):34-42.

[13]危韧勇,刘春芳.基于小波理论的超高压线路故障定位与选相方法[J].中国电机工程学报,2000,20(5):85-88.

[14]段建东,张保会,周艺.利用电流行波进行超高压输电线路故障类型识别的研究[J].中国电机工程学报,2005,25(7):58-63.

[15]Duan Jiandong,Zhang Baohui,Ha Hengxu.A novel preach to faulted-Phase selection using current traveling waves and wavelet analysis[C].IEEE Power Conference 2002,Kunming,China,2002,(4):1146-1150.

[16]何正友,陈小勤,罗国敏,等.基于暂态电流小波熵权的输电线路故障选相方法[J].电力系统自动化,2006,30(22):39-44.

[17]Li Zewen,Yao Jiangang,Zeng Xiangjun,Deng Feng.Power grid fault traveling wave network protection scheme[C].Electrical Power and Energy Systems,2011:875-879.

[18]董新洲,贺家李,葛耀中.基于小波变换的行波故障选相研究第二部分仿真实验研究[J].电力系统自动化,1999,23(1):20-22.

[19]何正友,符玲,麦瑞坤,等.小波奇异熵及其在高压输电线路故障选相中的应用[J].中国电机工程学报,2007,27(1):31-35.

[20]P.S.Bhowmik a,P.Purkait b,K.Bhattacharya.A novel wavelet transform aided neural network based transmission line fault analysis method[J].Electrical Power and Energy Systems,2009,(31):213-219.

[21]王忠民,乐全明,杨光亮,等.基于提升小波和神经网络的超高压电网故障类型识别[J].华东电力,2006,34(2):30-33.

[22]张举,王兴国,李志雷.小波包能量熵神经网络在电力系统故障诊断中的应用[J].电网技术,2006,30(5):72-76.

[23]Sami Ekici,Selcuk Yildirim,Mustafa Poyraz.Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition[J].Expert Systems with Applications, 2008, (34):2937-2944.

[24]张斌,何正友,钱清泉.基于小波能量熵和模糊逻辑的故障选相元件[J].电网技术,2006,30(15):30-35.

[25]卜春霞,张义含,姜自强,等.超高压线路暂态保护选相研究[J].电力系统保护与控制,2010,38(16):30-34.

[26]谢添卉,刘明光,杨罡.基于数学形态谱和人工神经网络的高压输电线接地故障类型识别方法[J].电气自动化,2009,31(3):62-65.

[27]杨霁,李剑,王有元,等.变压器局部放电监测中的小波去噪方法[J].重庆大学学报,2004,27(10):67-70.

[28]薛蕙,杨仁刚.基于小波包除噪的电能质量扰动检测方法[J].中国电机工程学报,2004,24(3):85-90.

[29]Barros J,Diego R I.Application of the wavelet-packet transform to the estimation of harmonic qroups in current and voltage waveforms[J].IEEE Transactions on information Theory,2006,21(1):533-535.

[30]任震,张征平,黄雯莹,等.基于最优小波包基的电动机故障信号的消噪与检测[J].中国电机工程学报,2002,22(8):53-57.

[31]Omar A.S.Youssef.A wavelet-based technique for discrimination between faults and magnetizing inrush currents in transformers [J].IEEE Transactions On power Delivery,2003,18(1):170-176.

[32]Youssef Q A S.New Algorithm to Phase Selection Based on Wavelet Transforms[J].Power Engineering Review,IEEE,2002,22(6):60-61.

[33]段建东,张保会,周艺.基于暂态量的超高压输电线路故障选相[J].中国电机工程学报,2006,26(3):1-6.

[34]麦瑞坤,何正友,符玲,等.基于电流行波能量和小波变换的输电线路故障选相研究[J].电网技术,2007,31(3):38-43.

[35]G.Sudha,T.Basavaraju.A comparison between different approaches for fault classification in transmission lines[J].International Conference on Information and Communication Technology in Electrical Sciences,2007,20(22):398-403.

[36]Zhengyou He,Shibin Gao,Xiaoqin Chen.Study of a new method for power system transients classification based on wavelet entropy and neural network.[J].Electrical Power and Energy Systems,2011, 33(3):402-410.

[37]葛耀中,董新洲,董杏丽.测距式行波距离保护的研究(一)——理论与实现技术[J].电力系统自动化,2002,26(6):34-40.

[38]李泽文,姚建刚,曾祥君,等.基于整个电网行波时差的故障定位方法[J].中国电机工程学报,2009,(4):60-64.

[39]谢民.220kV电网行波测距系统组网运行实践探讨[J].电力自动化设备,2010,30(5):136-138,141.

[40]徐伟宗,唐昆明.基于导数法的故障行波法识别改进算法[J].电网技术,2010,34(1):198-202.

[41]郑州,吕艳萍,王杰,等.基于小波变换的双端行波测距新方法[J].电网技术,2010,34(1):203-207.

[42]A.M.PetrocIk,DL S.Reisman,Dr I.Darrd,et al.Wavelet entropy analysis of cyclic exercise protocol on herrate Variability[C].IEEE,2004:91-92.

[43]Quiroga RQ,Rosso OA,Basar E,et al.Wavelet entropy in event—related potential:a new method shows ordering of EEG oscillations[J].Biological Cybernetics,2001,84(4):291-299.

[44]H.A.Al-Nashash,J.S.Paul,N.VThakor.Wavelet entropy method for EEG analysis:Application to obal brain injury[C].Conference on Neural Engineering,IEEE,2003:348-351.

[45]孙来军,胡晓光,纪廷超.改进的小波包-特征熵在高压断路器故障诊断中的应用[J].中国电机工程学报,2007,27(12):103-108.

[46]杨健维,罗国敏,何正友.基于小波熵权和支持向量机的高压输电线路故障分类方法[J].电网技术,2007,31(23):22-26,32.

[47]Ming-Yu Yang,Yu-Kun Yang.A study of transient-based protechion using wavelet energy entropy for power system EHV transmission line [J].Proceedings of the 2010 International Conference on Wavelet Analysis and Pattern Recognition,2010:283-288.

[48]Wen Junli,1Yhan Chunli.Arc fault detection based on wavelet packet[C].PID feedings of the Fourth International Conference on Machine Learning and Cybemetics,IEEE,2005:1783-1788.

[49]Zhimin Li,weixing Li,Ruiye Liu.Applications of entropy principles in power systems:A Survey[C].IEEE/PES 1rransmission and Distribution:Asia and Pacific Dalian China,2005:1-4.

电力系统通信论文范文第12篇

【关键词】电路;信号与系统;教学方法

《电路》和《信号与系统》课程是电气工程及其自动化本科专业的重要专业基础课,所涉及的基本概念和研究方法已逐渐应用于电气技术中的各个领域。《电路》课程研究电路的基础知识,《信号与系统》课程研究信号与系统的基本概念、基本理论和基本分析方法,应用现代数学的方法和结论阐述和解决物理问题,将物理意义与数学论证紧密结合。由于该课程理论性较强,公式和理论推导证明较多,在教学上具有一定的难度,并且该课程的教学质量关系到后续课程的教学质量。本文结合笔者对上海电力学院电气工程及其自动化专业本科大学二年级和大学三年级学生的《电路》和《信号与系统》教学过程中的实践和体会,在教学内容、教学方法和实验教学等方面进行了一些探索和研究。

一、教学内容的选择

针对上海电力学院电气工程及其自动化专业本科的学生,选择由我院教师编写的中国电力出版社出版的《电路》和由我院教师编写的清华大学出版社出版的《信号处理原理与应用》作为教材,教材介绍了电路的基本原理和连续时间信号及离散时间信号与系统的分析[1-2]。我院电气工程及其自动化专业大学二年级的《电路》课程包含正弦交流电路频域分析(相量法)、非正弦电流电路分析(傅里叶级数展开分析方法)、电路的复频域分析(拉普拉斯变换的方法)、系统的网络函数、状态方程等内容,这些内容在传统的《信号与系统》课程中也是授课内容。对于这部分内容,《信号与系统》课程重点从“系统”的角度进行讲授。由于电气工程及其自动化专业后续课程中不再开设《数字信号处理》课程,在《信号与系统》课程中加入了离散傅里叶变换、滤波器的原理与设计等相关知识,让学生能够更多了解数字信号处理的相关技术。

二、教学方法和教学手段的改革

为了提高《电路》和《信号与系统》课程的教学质量,培养学生实践能力及创新能力,对教学方法和教学手段进行改革。

(一)将《电路》课程和《信号与系统》课程的内容有机结合

《信号与系统》课程的核心是几种变换域方法的原理和应用[3],通过建立“电路、信号与系统”的概念,帮助学生理解各种变换方法。对于连续时间信号与系统,“电路”课程从“路”的角度分析电路的电压、电流和功率;《信号与系统》课程从“系统”的角度分析电路,将该电路看作系统,研究该系统的输入与输出的关系。“时域分析”用数学的方法求解电路,阐述信号与系统的物理意义;“频域分析”研究是系统的幅度频率响应和相位频率响应;“复频域分析”通过拉普拉斯变换的方法,将时域变换到复频域,以较简便的数学方法求解电路。

在《电路》课程中,用相量法对正弦交流电路进行分析,其实质就是采用变换域的方法,将时域变换到频域下进行研究,在讲授“电路”课程的时候,强调变换域的思想;在后续章节讲授拉普拉斯变换,继续阐述变换域的方法,并说明两种变换之间的关系。学生在《电路》课程中较早接触到变换域的思想,学习《信号与系统》课程中连续时间与系统的傅立叶变换,离散时间与系统的Z变换和傅里叶变换,教学方法上突出了承上启下、循序渐进的教学理念,学生容易掌握,教学效果良好。

(二)用类比的方法授课

《信号与系统》课程学习过程中,大部分学生对连续时间信号与系统能够较好的理解和掌握,但是学习离散时间信号与系统存在一定的困难。针对课程中的连续时间信号与系统和离散时间信号与系统具有平行相似的特点,采用类比法讲授两类信号与系统的基本概念、基本理论和基本分析方法,学生在了解数学基础较好的连续时间信号与系统理论的同时,通过联想举一反三的充分理解数学基础比较薄弱的离散时间信号与系统理论。《电路》课程中介绍一阶电路的时域分析方法,总结出来三要素法,直观清楚。二阶电路的时域分析方法比较复杂,引入了复频域的拉普拉斯变换,分析高阶电路非常有效,学生直观的意识到通过变换域的方法带来很大的方便。对于《信号与系统》课程中的z域变换的方法可以采用类似的方法授课,让学生较好的理解离散系统[4]。

(三)理论与实际相结合

课堂教学内容要与实际生活联系,让学生保持学习的热情和兴趣。《电路》和《信号与系统》课程的理论性比较强,内容相对比较枯燥。要激发学生的学习兴趣,选取一些生动的实例融入到课堂教学中。电力系统中的谐波分析,通过快速傅里叶变换的方法进行分析。学阶电路的放电过程时,从时钟的钟摆入手。推动钟摆开始摆动,它将以某种频率振荡,控制频率的主要是钟摆的长度。在钟摆中,能量在势能和动能之间转换,这两种形态间的能量的转换就是导致振荡的原因。最后由于摩擦的作用,任何物理振荡都会停止。将电容器和电感器连接在一起组成的二阶电路, 电容器储存电场能量,而电感器储存磁场能量,电容器将通过电感器进行充放电,直到金属导线中的电阻耗完能量振荡结束,振荡频率取决于电感器和电容器的大小。理论联系实际的教学有利于增强学生创新意识和实践能力,提高学生的综合素质。

三、加强实验教学

结合我院的实际情况,将Matlab软件引入《电路》和《信号与系统》教学中,坚持结合工程应用需要,培训学生实验能力。Matlab软件具有完备的图形处理功能,实现计算结果和编程的可视化,为该课程的实验体系提供了强大的支持。结合科技界、产业界的应用要求,课程组明确将MATLAB运用技术,并作为实验考核的内容。经过这样训练的学生,既能掌握基本理论和主要算法,又能将它作为工程实现,实践能力得到培养。

四、结束语

前文结合我院“信号与系统”课程教学改革的实践,从学生评教和督导听课来看,学生和督导认可教师的授课方式,大部分学生增强了学习热情,考试成绩也有很大的提高。结合教学要求,科学编排教学内容;结合学生能力培养需要,科学设计实验;结合教学效果需要,推动教学互动,促进教学相长。教学改革有助于提高教学质量,增强学生的实践能力及创新能力。

参考文献:

[1]杨欢红,杨尔滨,刘蓉晖.电路[M].北京:中国电力出版社,2007.

[2]靳希,杨尔滨,赵玲.信号处理原理与应用[M].北京:清华大学出版社,2008.

[3]许波等.“信号与系统”课程教学改革思考与实践[J] .南京:电气电子教学学报, 2008, 30(1):8-10.

[4]郭荣艳,刘晓青.“电路”与“信号与系统”课程优化整合与改革实践[J].中国电力教育,2011, 16(16):80-82.

基金项目:

本文系“上海电力学院2014年度教改项目”(项目编号:20141403)的研究成果。

电力系统通信论文范文第13篇

关键词:电网故障诊断 ;故障诊断方法;展望

Abstract: this paper introduces the network fault diagnosis of the significance and all kinds of fault diagnosis methods, and the current power grid failure diagnosis direction was studied, and prospected.

Keywords: power grid failure diagnosis; Fault diagnosis method; looking

中图分类号:U665.12文献标识码:A 文章编号

1引言

我国电力正处于一个高速发展的时期,电力系统的迅速发展、受端负荷的持续增长、跨区域联网规模的扩大、电力工业市场化改革以及生态环境的约束使电网结构和运行方式日趋复,使电网状态趋近其运行极限,系统运行的不稳定因素增多,种种情况导致因偶发故障引发大规模停电风险的概率增高。电网是国民经济发展的大动脉,一旦发生大面积停电[1],后果不堪设想。客观上讲,电力系统作为一个庞大的、高度复杂的动态系统,常处于不同的扰动之中,故障的发生又往往是无法完全避免的,这些问题给电网故障诊断提出了新的挑战。随着我国电力工业的发展,故障诊断研究具有很大的现实意义和实用价值[2]。

2 电网故障诊断方法研究

电力系统故障诊断是根据事发环境下各类信息进行故障识别的过程。电力系统发展使得电网的规模越来越大,结构越来越复杂,电网发生故障关系到电力系统安全稳定运行的重要问题。为了适应各种简单和复杂事故情况下故障的快速、准确识别,需要电网故障诊断系统进行决策参考。因此,从20世纪80年代起国内外专家学者们进行了大量的研究工作,提出了多种故障诊断技术和方法[3],主要有专家系统、人工神经网络、优化技术、Petri网络、粗糙集理论、模糊集理论、贝叶斯网络、基于电网潮流分布特征法和信息理论法。下面分别介绍这几种应用在电网故障诊断的研究发展状况。

2.1专家系统法

专家系统是发展最早,也是比较成熟的一种人工智能技术。它利用计算机技术将相关专业领域的理论知识和专家的经验知识融合在一起,通过数据库、知识库、推理机、人机接口、解释程序和知识获取程序的有机连接,达到具备解决专业领域问题的能力。

70年代初期专家系统就被引入到电网故障诊断研究领域。其在电网故障诊断[4]中的典型应用是基于产生式规则的系统,即把保护、断路器的动作逻辑以及运行人员的诊断经验用规则表示出来,形成故障诊断专家系统的知识库,进而根据报警信息对知识库进行推理,获得故障诊断的结论,具有直观性、实时性和有效性;能够在一定程度上解决不确定性问题;能够给出符合人类语言习惯的结论并具有相应的解释能力等优点。但是不可避免在实际应用中存在一些缺陷:知识获取瓶颈、系统维护难、容错能力差等问题。现在多是将专家系统与其他方法结合起来进行故障诊断。

2.2 人工神经网络

人工神经网络是通过模拟人类的神经系统来处理信息过程的一种人工智能技术。它具有并行处理、非线性映射、联想记忆能力和在线学习能力等特点,在电力系统和其他领域中都有着广泛的应用。

电网中不同的故障组合模式会产生不同的故障信息组合模式,可以将故障诊断问题视为模式识别问题,采用人工神经网络进行处理。为此需要建立比较完全的训练样本,用预选事故集作为输入,故障信息集作为监督输出,对神经网络进行训练。文献[5]较早将BP(误差反向传播)神经网络应用于电力系统故障诊断,但该方法存在训练速度慢的缺点。径向基函数(RBF)神经网络具有任意函数逼近能力,且学习速度更快,因此文献[6]提出用新型神经网络解决故障诊断问题。与专家系统诊断方法相比, 神经网络故障诊断方法可避免专业知识和专家启发性知识的形成、表达及管理等繁琐工作。同时, 如何保证训练神经网络所用的样本库的完全性、提高训练速度和收敛性,仍是神经网络需要重点解决的问题。

2.3 优化技术

随着计算机技术和计算数学的发展,国内外学者提出了多种优化算法,采用优化算法进行电网的故障诊断是一种新的思路。采用优化算法需要根据电网故障的特点设定假想事故集的目标函数或适应度函数,各种优化算法根据适应度值对假想事故集进行更新,直至搜索到适应度最大的假想事故集,以作为最终故障诊断的结果。其实质是将故障诊断问题转化为无约束的一整数规划问题进行寻优处理。目前研究得较多的是遗传算法、禁忌搜索、模拟退火等算法等等。

2.4 Petri网

Petri网是数学家C.A.Petri于1960-1965年提出的一种通用的数学模型,可用图形表示,并用矩阵运算进行严格的数学描述。Petri网既可用位置节点(Place)和变迁节点(Transition)对系统进行静态的结构分析,又可以通过节点上的令牌(Token)进行动态的行为分析,可用于描述电网故障及切除的离散事件动态行为。

Petri网作为一种简洁、高效的形式化语言,在故障诊断领域有着巨大的潜力。但另一方面,在对大规模或复杂性网络进行网建模时,可能出现状态组合爆炸的情况,,而且Petri网容错能力较差,不易识别错误信息。为此还需研究对网进行化简和分解的归纳分析技术,或考虑采用更高级的有色网。

2.5粗糙集理论

粗糙集理论是一种新的研究不完整、不确定且不精确信息的表达、学习和归纳的数学工具。它建立在分类机制的基础之上,将分类理解为等价关系, 用这些等价关系对特定空间进行划分,提取出组涵的“知识”,知识约简是粗糙集理论的核心内容之一。

文献[7]根据电网故障信息中的冗余性,利用粗糙集理论对不同故障模式所对应的警报信息组合进行化简,识别出必不可少的警报信息,在决策表中剔除可有可无的警报信息,以便从样本数据中提炼出简洁、高效、具有一定容错能力的规则知识库。粗糙集理论用于电网故障诊断的缺点是有些先验信息不能得以有效利用, 且电网规模过大时, 决策表的形成也会比较困难。

2.6 模糊集理论

模糊集理论是在模糊集合理论的基础上发展起来的,它采用模糊隶属度的概念来描述不精确、不确定的对象,并采用近似推理规则,使专家知识得以有效表达,且具有很强的容错能力。

综上可看出,模糊集理论比较适合用来处理电网故障诊断中继电保护动作的不确定性和故障信息的不完备性。文献[8]不仅引人了保护和断路器的动作信息,而且按额定值将遥测量进行模糊化用于故障诊断,为故障诊断的多信息融合提供了新的思路。采用模糊集理论进行电网故障诊断也存在一些问题:像隶属度函数的选择无明确的标准、可维护性较差等。所以在电网故障诊断领域中,模糊集理论通常与其他诊断方法相结合,互相渗透、取长补短。

2.7贝叶斯网络

贝叶斯网络是基于图论和严格的概率理论的一种不确定性知识表达和推理模型。目前贝叶斯网的理论研究主要集中在其网络的构造、学习、推理和应用等几个方面。它将因果知识和先验概率信息有机结合,使用概率理论来处理不同知识成分之间因条件相关而产生的不确定性,同时它能够有效的进行多源信息的表达和融合。

基于贝叶斯网络及其改进方法的电网故障诊断方法[9]能针对电网故障中存在的信息不完备和不确定性问题,建立完备和不完备信息下的贝叶斯网络模型进行故障诊断,但该方法需要先验概率信息,给出的亦是故障概率,而且贝叶斯的训练复杂,从理论上讲,它是一个NP-complete问题,也就是说,对于现在的计算机是不可计算的。但是,对于某些应用,这个训练过程可以简化,并在计算上实现。

2.8 基于电网潮流分布特征法

基于电网潮流分布特征法[10]立足故障前后电网潮流分布特征的变化,借助支路开断分布因子,智能选择量测支路和量测数据,在线预生成故障模式库,供不断提取的潮流分布特征模式进行匹配,具有快速、准确、自适应智能诊断的特性。

此方法能自适应跟踪电网运行方式并动态选择量测对象和量测数据,在线分析电网潮流分布特征与网络结构变化的关系,以提取潮流分布特征与故障模式库中模式进行匹配来实现电网故障的在线诊断。文[10]中算例表明,此方法准确高效,具有在线自适应智能诊断的功能,有助于提高把握网络事态和正确应对事故的能力。

2.9 信息理论法

信息理论由Shannon于1948年首先提出,它从概率论出发,建立了信息熵、互信息等概念,比较科学地解决了概率信息的测度问题。目前,信息的统计定义已扩展到能够对非统计意义的信息予以度量。从信息理论的角度看,电网故障诊断还可视为一个多信息融合[11]的过程。如何将保护和断路器的动作信息、遥测量信息、录波信息、历史统计信息及专家经验信息等多种信息加以有效综合利用,这些难题将来也许可借鉴多信息融合技术中的信号处理、参数优化、统计和模式识别等方法加以解决。

3.结论

本文介绍了电网故障诊断的意义及其各种故障诊断方法的研究状况,为以后研究电网故障诊断的学者们奠定了一定的基础,具有现实的意义。

4.电网故障方法研究展望

电力系统是一个分布式的高维数、高度非线性的动态系统,而且有一系列比较特殊的物理特点,受其影响,电网的故障诊断也有一些比较突出的难点。目前,电网发生故障时候,故障信息反应为电气量、继电保护和开关量的异常变化。而事实表明:依靠单一信息往往不能满足诊断的性能要求,多源信息的异构特性,加上诊断中的不确定性,使综合利用多源信息以及信息融合非常困难,目前这方面的理论研究也还远远不够,所以信息融合技术方法研究是以后研究的方向。

参考文献:

李春艳,陈洲,肖孟金等.西欧“11.4”大停电分析及对华中电网的启示[J].高电压技术, 2008,34(1):163-167.

郭创新,朱传柏,曹一家,等.电力系统故障诊断的研究现状与发展趋势[J].电力系统自动化,2006,30(8):98-103.

陈玉林,陈允平,孙金莉等.电网故障诊断方法综述[J].中国电力,2006,39(5):27-31.

Angeli C.Online expert systems for fault diagnosis in technical processes[J].Expert Systems,2008(3):115-132.

CHEN E.Application of neural network computing in intelligent alarm processing[A].Power industry Computer Application Conference[C].Seattle,USA:IEEE,1989.246-251.

刘志远,吕剑虹,陈来九.新型RBF神经网络及在热工过程建模中的应用[J]. 2002,22( 9):118-122.

刘育名,周全,唐捷,等.粗糙集理论提取配电网故障诊断规则的方法[J].高电压技术, 2006,32(8):97-99.

周明,任建文,李庚银等.基于模糊推理的分布式电力系统故障诊断专家系统[J].电力系统自动化,2001,25(24):33-36.

吴欣,郭创新,曹一家.基于贝叶斯网络及信息时序属性的电力系统故障诊断方法[J].中国电机工程学报,2005,25(13):14-16.

陈彬,于继来.基于电网潮流分布特征的在线故障智能诊断[J].电力系统自动

化,2007,31(16):29-34.

电力系统通信论文范文第14篇

【关键词】:电力系统;自动化控制;技术

引言

近年来,电力系统自动化控制技术应用日渐普遍,其主要包括远方调度管理、配电站集中监控和继电保护等。它是电力系统中的关键性环节及重要内容,对电力系统整体建设质量具有积极影响。电力工作人员要依据具体工程背景,认识到自动化控制技术的重要性,并对其进行合理运用,提高电力系统整体性能及运行质量。

1、电力系统自动化现状及优势分析

1.1电力系统自动化的现状

现阶段,电力行业也得到了空前发展,电力行业中先进科技的应用程度较深,而智能技术在电力自动化系统的应用也在不断深入和完善。智能技术的应用,仍具有不同程度的局限性,如应用时间较短,系统协调能力不足,无法达成资源的完全共享,致使电力系统自动化程度较低等。同时,由于我国电网技术起步较晚,且理论多于实践,使得无论是从研发或应用上,均与国外发达国家具有一定的差距。但随着电力行业的进一步发展,电力自动化系统正逐步向智能化电力系统转变,这不仅是由单一化向多元化转变,更是电力行业可持续发展的必经之路。

1.2自动化控制的优势

1)可以快速、准确地对电力系统中各元件的运行参数进行收集、检测及处理。2)可按照电力系统当前的运行状态及主要元件的技术与安全要求,为运行人员提供调控决策,或直接对元件进行调控。3)能够实现整个系统各个层次及元件之间的综合协调,为优质供电和经济运行提供最佳的运行方式。4)可以大幅度节省人力资源,并减轻工作人员的劳动强度,有利于工作效率和水平的提升。5)可进一步减少电力系统事故的发生几率,有效延长了电气设备的使用年限,改善并提高了运行性能,基本不会出现大范围停电的情况。

2、实现电力系统自动化控制的关键技术

2.1计算机远动控制技术

2.1.1数据采集技术的具体应用

在数据采集过程中,需要利用一种装置从系统外部进行数据采集,然后输入到系统内部的一个接口。针对于在电力系统中众多的高电压及大功率设备,在远动控制系统对这部分设备数据信息进行处理过程中则需要借助于变送器技术进行转化,将这些数据信息转化了 TTL 电平信号。数据信息传送过程中还需要借助于光电隔离设备,通过对数据信息进行二次进编码处理,并将其收入到b信数据帧中,由数字多路开关将数据信息向接口电路进行传输,利用 CT、PT 和传感器对数据信息进行过滤,然后传送取样,从而完成同步采工作,这样所得到的数据信息则会与信号源保持一致性,从而使其成为有价值的数据。

2.1.2信道编码技术的具体应用

在实际数据信传输时,不可避免的会受到多种因素的影响,从而使传送的数据流出现语码,影响接收端所接收到的效果。利用信道编码技术来处理数据流,能够有效的提高系统的纠错能力和抗干扰能力,确保数码流传送过程中的正确率,有效的规避误码现象,提高数据传输的效率和可靠性。在信道编码技术在电力系统实际应用过程中,主要包括信道编码、译码和信息的传输协议等具体内容,能够有效的提高信息传输过程中的抗干扰能力,确保数据传输的安全性。

2.1.3通信传输技术的具体应用

在远动控制系统中,通信传输技术作为非常重要的一项技术,在具体运用过程中主要表现为两个方面,即调制和解调。电力线载波完成数据通信过程中,通过对信号发射端进行编码,从而产生基带信息,最终完成通信任务。这其中电力线中涉及到的高频谐波信号作为载波信号,并借助于调制技术来完成模拟信号的转化,采用电压和电流的方式完成传输工作。在传输通信接收端,需要利用解调技术将模拟信号向数据信号转化,从而完成通信传输任务。将通信传输中的调制和解调有效的结合在一起,就能够产生调制解调器,其作为当前电力系统自动化中的核心部件。

2.2智能综合控制技术

智能综合控制技术具备综合性特征,它不仅能够对电力系统进行智能化控制,而且与现代化控制和自动化控制的理论和方法等相契合,实现了对各先进技术对现代化理念的充分应用。分别将神经网络与模糊控制、模糊控制与专家系统、专家系统与神经网络相结合。自动化电力系统建立过程中应用最广泛的是模糊控制、自适应控制和神经网络技术的相互融合。神经网络是一种非结构化信息处理方式,模糊系统则在结构化信息处理过程中应用比较普遍。依据电力系统运行背景及实际情况,选用科学合理的自动化控制技术,提高电力系统整体运行质量及性能。

2.3 线性控制

线性控制,也可称为线性最优控制,此种研究是建立在优化理论基础上的研究形式,也是现代控制理论中重要的构成部分。并且,此种线性控制形式,也是当前阶段现代控制理论中研发深入程度最大,且最为成熟的理论控制形式。这也使得线性最优控制成为了当前应用最为广泛的控制形式之一。部分研究线性最优控制的科研人员,通过不懈的努力,终将线性最优控制的理论在实践中得以研发及应用,并明确论述出线性控制理论的应用依据。即通过最优控制中的励磁控制,能够使长距离输电线路的输电能力得到进一步加强,并能使动态品质得到显著的改善。并且,经过长期、反复的试验得出结论:将此种最优励磁控制方式应用与大型设备之中,所起到的效果最佳。除此之外,通过理论与实践的充分结合,也促使制动电阻器通过水力发电时间达成最优控制模式得以实现,并在电力系统中得到了普遍的应用。

结语

综上所述,将职能技术应用与电力系统自动化控制中,能够在提升电力系统自动化程度的基础上,进一步增强电力生产、运输以及管理的效率,使电力企业在缩减成本的同时,使自身的经济收益得以显著提升,将极大地促进电力行业的发展进程,使电力行业运用全新的技术手段,在激烈的市场竞争中立于不败之地。

【参考文献】:

[1]何章玮. 浅析电力系统自动化与智能技术[J]. 装备制造技术,2013(11):50 ~51,60.

电力系统通信论文范文第15篇

论文摘要:发电侧avc子站通过远动专线接收内蒙省调avc主站下发的电厂侧220kv母线指令。中控单元在充分考虑各种约束条件后, 计算 出对应的控制脉冲宽度,以通讯方式下发至avc执行终端,由执行终端输出增减磁信号给励磁系统(或输出至dcs),调节机组无功功率,发电机无功出力与机端电压受其励磁电流的影响,当励磁电流发生改变时,发电机的无功出力与机端电压也随之增减,并通过机端变压器进一步影响到母线电压的高低,励磁电流的增减可通过改变励磁调节器(avr)给定值实现。

一、选题背景及其意义

近年来,随着我国电力 工业 的迅速 发展 ,电网规模的不断扩大,电力系统的安全、 经济 运行已成为电力生产的重大课题。必须不断采用新技术在保证电力系统安全运行的前提下,提高电能质量、降低 网络 元件中的电能损耗,从而获得满足安全运行条件下的最大经济性和最好的电能质量。其中电网的自动电压控制及无功优化(简称avc)就是电力生产中提高电能质量,降低网损的重要手段。国家电力调度中心已经把这一项目列入了“十一五规划”。

自动电压无功调控系统avc系统将发电厂母线电压的调整由人工监控改为自动调控,具有以下意义:

1.提高稳定水平:网内电厂全部投入装置后,通过合理分配无功,可将系统电压和无功储备保持在较高的水平,从而大大提高电网安全稳定水平和机组运行稳定水平。WWw.133229.coM

2.改善电压质量:电压监督电压合格率得到大幅度提高。

3.消除了人为因素引起误调节的情况,有效降低了运行人员的工作强度。

二、国内无功电压控制现状

国内目前对发电厂无功电压的管理考核方式,主要是由调度中心按照高峰、平谷和低谷等不同时段划分母线电压控制范围,按季度向各发电厂下达曲线指标,发电厂则根据曲线要求,实行人工24小时连续监视盘表,及时调节发电机无功出力,以维持母线电压在合格范围内。这种沿用了多年的就地分散控制管理模式,在当前电网结构日益复杂的形势下逐渐暴露出了一些弊端,存在的主要问题是:

1.事先给定的电压曲线和无功设备运行计划是离线确定的,并不能反映电网的实际情况,按照这种方式进行调节往往带来安全隐患。

2.电网运行人员需要时刻监视系统电压无功情况,并进行人工调整,工作强度大,而且往往会造成电网电压波动大;

3.电厂之间,无功调节对相互母线电压影响大,无功调节矛盾突出。由于各电厂只关注自身母线电压,没有从全局角度协调无功分配,电网无功功率无谓搬运现象突出,经常出现无功环流现象,造成不必要的有功损耗。各厂、站无功电压控制没有进行协调,造成电网运行不经济。

上述问题的存在,既增加机组进相深度,影响机组和电网安全稳定运行,也使网损增加,影响经济性。因此,有必要发展avc(自动电压控制)系统,从全局对电网无功潮流和发电机组无功功率进行协调控制,实现电厂母线电压和无功功率的自动调控,合理协调电网无功分布,以保证电网安全稳定运行,提高电压质量和减少网损,降低运行人员劳动强度。近几年来国际上几次重大的电网事故如美加大停电,都有无功电压的问题造成电压崩溃,致使电网瘫痪。无功电压自动控制技术越来越引起重视,在华北电网,基于分层分区控制技术的二/三次电压控制技术在某些电厂逐步进入应用,而本论文依据包头第二热电厂现场改造的实际情况,将重点讲述电厂侧无功电压控制方案在包头第二热电厂的应用。

三、课题研究的主要内容:

发电厂侧avc实施方案

信息来源:http:/1.自动电压无功调控系统控制方案

在发电侧增设一套电压无功自动调控系统,与调度中心共同组成avc系统,以主站-子站星型网络方式运行,主站和子站系统之间通过现有数据采集系统及数据通信网互连并完成信息交换。发电侧avc子站通过远动专线接收内蒙省调avc主站下发的电厂侧220kv母线指令。中控单元在充分考虑各种约束条件后,计算出对应的控制脉冲宽度,以通讯方式下发至avc执行终端,由执行终端输出增减磁信号给励磁系统(或输出至dcs),调节机组无功功率,发电机无功出力与机端电压受其励磁电流的影响,当励磁电流发生改变时,发电机的无功出力与机端电压也随之增减,并通过机端变压器进一步影响到母线电压的高低,励磁电流的增减可通过改变励磁调节器(avr)给定值实现。所以系统的无功电压控制通过励磁系统来实现。自动电压调控系统avc是通过改变发电机avr的给定值来改变机端电压和发电机输出无功的。信息来自:输配电设备网

包头第二热电厂300mw机组自动电压控制(avc)系统框图

2.合理的设备配置方案

2.1.安全可靠的硬件配置

本工程采用中控单元/执行终端配置方式,共安装两套独立的系统,每套设备配置台中控单元(主/备)和2台avc执行终端,终端与机组一对一配置。avc子站中控单元接收内蒙省调avc主站下达的电厂侧高压母线电压指令,在充分考虑各种约束条件后,计算出对应的控制脉冲宽度,下发至avc执行终端,执行终端输出增减磁信号给励磁系统,由励磁系统调节机组无功功率。

中控单元有主备功能,主中控单元故障时,可切换至备用中控单元,保证系统正常运行。主中控单元恢复后,自动切回主中控单元控制。

本工程共有中控单元2台,执行终端2台。

2.2.人性化的发电厂avc子站软件配置方案

2.2.1.包括完整的数据采集、处理、通信和诊断等各种软件,应具有告警、具体故障内容的中文提示及事故记录功能。软件配置满足功能规范的要求,具有良好的实时性和可维护性。

2.2.2软件遵循国际标准,满足开放的要求。

2.1.3.便于用户的二次开发和在线安装、生成、修改新的应用功能。

2.1.4.配备一套完整的、可运行的软件备份。

2.2.5.系统有较强的防计算机病毒、反入侵能力,提供硬件防火墙或其它安全设施的接入能力。

2.2.6.具备较强的数据存储功能,能够长时间存储运行数据、运行事件、系统参数和离线电压设定曲线等数据。

3.对功能模块的要求

3.1计算模块应具有下列功能:

ü根据高压母线电压调整量目标值计算电厂对应机组发出无功功率目标值。

ü按照给定的无功分配策略,将总的无功目标值分配给各台机组。

ü选择需要调整的机组,给出合适的调整指令。

ü自动识别母线检修,双母线结构一条母线检修,控制母线自动切换至另一条母线。

3.2.运行约束条件:

üavc主站下发的调节信号突变限值;

üavc主站控制无效时间限值;

ü发电机参与调节的有功功率限值。

ü发电机在不同的有功出力下对应的无功功率上下限;

ü发电机的机端电压上下限;

ü发电机的机端电流上下限;

ü高压侧母线电压上下限;

üavr自动信号消失;

ü实时数据波动过于剧烈,超过设定值;

ü实时数据不刷新;

ü省调通信中断;

ürtu通信故障;

ü机组有功越闭锁值;

ü机组无功越闭锁值;

ü机组机端电压越闭锁值;

ü机组机端电流越闭锁值;

ü母线电压越闭锁值。

ü机端电流耦合校验

avc子站在满足以上运行约束条件时,装置闭锁输出并发出增减闭锁信号,一旦运行条件正常,增减闭锁信号消失,装置自动恢复正常运行。

3.3avc子站的控制模式

ü退出:只能工作在研究方式下。

ü闭环:avc主站与子站闭环运行。

ü开环:avc子站系统根据本地设定电压运行

3.4防误措施

ü中控单元 计算 错误时有保护措施,能可靠保证不误输出。

ü执行终端掉电时不会误输出。

ü任一硬件模块或连线损坏,均不会造成设备误输出。

ü防止输出控制节点粘死措施,当输出节点粘死导致输出控制脉冲过长时,应自动切断控制输出信号保证机组安全。

4.gps对时接口

子站系统提供rs485串口(rs232口备用),可与厂内卫星定时系统gps实现精确对时(对时误差不大于1ms)。

5.自动电压无功调控系统调试中注意问题。

自动电压调控系统的各种限制功能必须与发电机励磁系统avr的各种限制以及和发变组保护很好的配合。根据发电机励磁系各种限制数据以及发电机p-q曲线、发变组保护定值对自动电压调控系统定值进合理整定,杜绝配合不好带来的不良后果。

试验时,调度及电厂运行加强监视控制点参数,必要时,无条件退出avc运行,并恢复参数。调试中注意和发电厂侧进相数据的配合,调整中要保证6kv厂用电系统的稳定运行,如果调整中6kv电压过低,有必要调整发电机电压定值。

在无功调控设备中采取措施防止增磁和减磁出口继电器接点粘连。

四、研究的难点和重点

(1)本文着重阐述该系统如何通过合理的硬件配置实现安全可靠运行、如何实现人性化、可视化、智能化的软件系统配置。

(2)在参数设定中,既要保证电网电压及无功优化问题、又要考虑到本厂汽轮发电机组在调节过程中的安全稳定问题,因此avr执行终端的无功功率调节死区、脉冲计算斜率、最大脉冲宽度的定值是avr成功运行的关键因素,也是本文的重点和难点。

(3)自动电压调控系统的各种限制功能必须与发电机励磁系统avr的各种限制以及和发变组保护很好的配合。根据发电机励磁系各种限制数据以及发电机p-q曲线、发变组保护定值对自动电压调控系统定值进合理整定,杜绝配合不好带来的不良后果。

五、预期成果

本课题研究成功投入使用后,将发电厂母线电压的调整由人工监控改为自动调控,消除了人为因素引起误调节的情况,有效降低了运行人员的工作强度,保证系统电压低于规定的最大数值,以适应电力设备的绝缘水平和避免变压器过饱和,并向用户提供合理的最高水平电压;信息来自:大机组无功出力分配必须满足系统稳定的要求,单机无功必须满足p-q曲线,保证了机组安全运行,尽可能地降低了电网的有功功率损耗,取得较好的 经济 效益。

参考 文献

1.唐茂林.庞晓艳.李曼.刘柏私.尹晓澜.张蓓.李建.郭庆来.孙宏斌计及梯级电站的省地一体化avc系统研究及实现方案[期刊 论文 ]-电力自动化设备2009(6)

2.惠建峰.焦莉.张世学自动电压控制系统建设与应用分析[期刊论文]-陕西电力2009(2)

3.李钦.温柏坚广东电网电厂avc子站建设研究[期刊论文]-电力系统保护与控制2008(21)

4.郭庆来.孙宏斌.张伯明.吴文传.王彬.李柱华.汤磊.王蓓.宁文元.郑燕涛.袁平自动电压控制中连续变量与离散变量的协调方法(一)变电站内协调电压控制[期刊论文]-电力系统自动化2008(08)

5.郭庆来.孙宏斌.张伯明.吴文传.王彬.李柱华.汤磊自动电压控制中连续变量与离散变量的协调方法(二)厂站协调控制[期刊论文]-电力系统自动化2008(09)

6.孙鸣.吴兆文.李家仁电厂侧avc子站系统控制策略的研究[期刊论文]-仪器仪表用户2008(03)

7.杨银国.崔丽华.李扬絮.李力.向丽玲.杨雄平广东电网2007春节电压调控存在问题与对策[期刊论文]-广东电力2008(04)

8.郭庆来.张伯明.孙宏斌.吴文传电网无功电压控制模式的演化分析[期刊论文]-清华大学学报( 自然 科学 版)2008(01)

9.sanchajl.fernandezjlsecondaryvoltagecontrol:analysissolutionsandsimulationresultsforthespanishtransmissionsystem1996(2)

10.vuh.pruvotp.launaycanimprovedvoltagecontrolonlarge-scalepowersystem1996(3)

11.lefebvreh.fragnierd.boussionjysecondarycoordinatedvoltagecontrolsystem:feedbackofedf2000