美章网 精品范文 防震设计论文范文

防震设计论文范文

防震设计论文

防震设计论文范文第1篇

桥梁的总体布置

1立交匝道桥的特点

互通立交的匝道桥,受地形、地物和占地面积等影响,其总体布局跟其它桥梁相比,有以下特点:

(1)由于互通立交区匝道的最小平曲线半径可达30m,如果桥梁刚好位于小半径平曲线上,则该桥就可能做成曲线梁桥,且往往超高值较大,故桥梁的横坡较大。

(2)由于要在短距离内实现高差,匝道桥往往纵坡较大。

(3)桥面较窄。

(4)匝道桥有时候需要跨越主线或其他匝道,以及非机动车道,因此匝道桥的单跨跨径受到限制,不能减小。

由于匝道桥具有斜、弯、坡、异形等特点,属于不规则桥梁,在地震作用下的响应相对比较特殊,其抗震设计将更复杂,不仅要满足常规桥梁所规定的构造,而且在某些方面需要提出更高的要求。震害表明,曲线梁桥具有较高的地震易损性,薄弱环节较多,因此其抗震概念设计就显得尤为重要。

2上部结构

由于匝道桥很多是弯、窄桥,其在荷载作用下,包括静力荷载和动力作用,上部结构的扭矩较大,上部结构受力处于弯扭耦合状态,故需要采用抗扭刚度较大的截面,且桥梁上部结构的整体性要好。因此,对于匝道桥,特别是在小半径曲线上的匝道桥,宜采用箱形截面(跨度相对较大时)或者实心截面(跨度相对较小时)。也正是因为如此,为增加刚度和稳定性,上部结构宜采用结构连续。所以,对于匝道桥,上部结构采用连续箱梁或者连续实心板,将有效地提高其抗震性能。

3下部结构

3.1桥墩的形式

匝道桥一般相对较窄,桥墩一般采用双柱墩或者独柱墩,桥墩的刚度相对较小。在地震作用下,墩身的弯矩和剪力一般不大,但是位移相对较大,如有较好的限位措施,对于抗震来说,未必是不利的。而对于小半径匝道桥来说,地震作用下,可能会导致桥墩产生较大的扭矩,故桥墩的墩身宜采用抗扭刚度相对较大且整体性较好的结构,如独柱实心墩或者空心墩。如采用双柱式墩,应对其进行全桥空间地震响应分析,对关键部位进行加强。

3.2桥墩的刚度

对于连续梁桥,同一联内各桥墩的高度不同而导致其抗推刚度相差较大,则水平地震力在各墩间的分配不均衡,刚度大的墩将承受较大的水平地震力,严重时可能导致刚度较大的桥墩发生破坏,从而导致全桥的损毁。如果刚度扭转中心和质量中心偏离,上部结构还将伴随产生水平转动,又可能导致落梁或者上部结构的碰撞。而匝道桥恰好容易符合这两个条件:纵坡较大,桥墩高差将会比较大;在小半径曲线上,地震作用下可能会出现上部结构的水平转动。

虽然匝道桥的桥墩高度相差较大,可以通过改变桥墩截面的形式或大小来对其抗推刚度进行调节。对于相对较高的桥墩,可以采用刚度较大的截面形式,或者增加其截面尺寸。如此一来,可以使得地震作用下各桥墩的水平地震相应达到均衡。

如桥梁位于小半径曲线上,地震来临时,桥墩承受的水平力方向是不确定的,且有扭矩的存在。因此,桥墩截面的刚度在各个方向大致相同将会是比较好的处理方法,如采用独柱墩或者空心薄壁墩。

3.3桥墩的配筋方式

近年来,桥梁结构的稳健性(robustness)越来越受到重视。稳健性的意思,即当参数摄动时,仍能保持整体稳固性的能力,故亦称为“参数摄动不敏感性”。对于工程结构,则指意外作用下的结构的整体牢固性,或者说结构破坏的后果与原因的不对应(不相称)时的牢固性。桥梁的抗震设计,除遵守通常规范的承载力准则外,还需力求避免意外的次生损毁、再次垮塌,缩小损毁范围以及损坏的可修复、快修复性。匝道桥一般相对较窄,其桥墩要么是独柱墩,要么是双柱墩,没有“冗余约束”,从结构本身来看,其稳健性相对较差。故需通过配筋来提高其在地震作用下的稳健性。

提高桥墩的延性,是提高其稳健性的有效方法之一。配置数量足够的、锚固合理的横向钢筋,对于墩柱来说,可以起到3个方面的作用:约束塑性铰区域内的混凝土,提高混凝土的抗压强度和延性;提高抗剪能力;防止纵向钢筋压曲。因此,箍筋或螺旋筋的间距小一些。各国抗震设计规范对塑性铰区横向钢筋的最小配筋率都进行了具体的规定。对于尺寸较大的墩柱,除须配置间距足够小的箍筋或螺旋筋外,还应配置横向加劲钢筋甚至是双层箍筋,以满足其对核心混凝土的套箍作用(如图1所示),以提高桥墩的延性,从而提高其地震作用下的稳健性。

其他构造

1支座

为保证桥梁刚度均衡,设计时应优先考虑采用等跨径、等墩高、等桥面宽度的结构形式。如不能满足,也可通过调整墩的截面形式和尺寸,或者调整支座等方法来改善桥墩的刚度均衡情况。其中,调整支座可能是最简单易行的办法,效果也很显著。当采用橡胶支座后,由墩和支座构成的串联体系的组合抗推刚度为:式中:kt是墩和支座的组合抗推刚度,kz和kp分别为橡胶支座的剪切刚度和桥墩的水平刚度。如地震作用下,桥墩仍处于弹性状态,其水平地震力就是按墩的组合抗推刚度的比例分配的,从上式可以看出,调整支座的刚度可以有效地改善桥的刚度均衡状况。

另外,如果地震设防烈度较高(超过8度),须考虑将支座设计成抗震支座,以达到减、隔震的目的。

2墩梁连接方式

一般情况下,桥墩跟上部结构之间,采用支座连接。但是,有些情况下,可以将抗推刚度较小的桥墩和上部结构固结来考虑,刚度较大的桥墩与上部结构之间通过支座连接。如此,一方面可以增加桥梁的整体稳定性,另一方面,也可以让桥墩之间的抗推刚度均衡。

3限位装置

对于桥墩刚度较小的情况,由于地震作用下的墩顶水平位移较大,限位装置是不可或缺的。横桥向的限位措施主要有剪力键和防震锚栓,纵向限位措施包括剪力键、防震锚栓、链索式和拉杆式限位器等(如图2所示)。限位装置应允许梁体在小范围内自由移动,该自由移动范围的大小一般以不影响支座的正常变形为宜。为减小碰撞力和碰撞损伤,限位器常在梁间和主梁与剪力键间设置橡胶等缓冲材料。

工程实例

1工程概况

云南某高速公路的互通立交区桥梁,位于平曲线半径42m的匝道上,超高0.08,最大纵坡5%,桥宽7.75m,设计采用3~20m现浇箱梁,下部结构采用桩径1.4m独柱墩,①号桥墩墩高8m,②号墩高13m。其立面图如图2所示。

原设计未进行概念设计。桥墩高度不同,而截面相同;未设限位装置。现将原设计做局部修改,增加防震销,桥墩截面随高度增加,使其抗推刚度接近一致。对该桥的原设计方案和按照本文前述内容进行修正后的方案进行地震响应分析,比较其地震响应的区别。

2有限元模型

取全桥为分析模型,主要分析纵桥向的地震响应。墩底为完全固结。根据桥址的场地土条特性,选用El-Centro波作为非线性时程分析地震输入,因该桥抗震设防烈度为8度,故将El-Centro波水平地震加速度峰值调至0.2g。计算模型如图3所示。3.3地震响应分析本文对优化前后的桥梁地震响应进行分析和比较。

设置限位装置之后的墩顶位移与原设计墩顶位移对比分析:①号墩仅有微小的变化,②号墩位移相比原来小了14.27%,抗震性能提高明显。可见,限位装置效果的体现对较高的柔性墩有明显的影响。

(2)统一桥墩抗推刚度后的影响(见表2)②号墩直径加大,使其刚度与①号墩一致,计算结果分析对比:桥墩底的内力均有不同程度的改善,其中②号墩改善最显著,墩底内力与墩顶位移均有大幅度的提高。

①号墩也有相对②号墩较小的变化。可见,让各墩的刚度尽量相等,对整座桥桥墩的内力和位移都有影响,优化之后的①、②号墩刚度趋向于一致,使全桥的内力分配更均匀,从而提高的桥梁的抗震性能。

防震设计论文范文第2篇

选址与结构体系选择

应通过合理的规划选址,避开地质灾害发生地段和活动断层,确保场地的安全性,避免在抗震不利的地段上建造。选择合理的结构体系,采用对抗震有利的建筑平面、立面布置。平面布置应力求简单、规则,尽量避免应力集中的凹角和收进;避免建筑物竖向体型复杂、外挑内收变化过多,力求刚度均匀,避免产生应力集中。平面或竖向不规则的建筑结构,其计算模型有特别要求,计算工作量大,计算难度提高且并不能保证其计算结果的准确性,造成结构安全度难以控制。因此,设计中应尽量避免采用不规则的方案。

结构构件应有明确的计算简图和合理的地震作用传递途径;尽量减轻结构自重,减小地基土压力,降低地震作用,对可能出现的薄弱部位,采取措施提高抗震能力,确保节点的承载力大于构件的承载力;从构造上采取措施,防止地震作用下节点的承载力和刚度过早退化。

由于地形及建筑功能布局的原因,教学楼平面不规则、体型复杂,在一些不影响建筑使用和立面效果的部位设置防震缝,具置设在1号教学楼、2号教学楼、实验楼的教师办公、通用技术教室、连廊等不同使用功能、不同柱网的建筑单体之间,从而形成了6个单独的、较规则的抗侧力结构单元,有效地解决了可能产生的过大的内力和变形问题以及抗震问题。防震缝宽度取值比规范规定值大50mm,以避免地震中可能发生的碰撞。教学楼结构单元划分如图2所示。

刚度与承载力分布

结构需具有合理的刚度和承载力分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑性变形集中。结构布置应使结构平面在两个主轴方向均具有足够的刚度和抗震能力,同时还应具有抗扭转刚度和抵抗扭转振动的能力。由于设计内力计算模型是建立在楼盖平面内刚度无限大的假定基础上,设计应使楼盖系统有足够的平面内刚度和抗力,并与竖向结构有效连接,从而保证梁、板、柱、墙能协同工作。

由于报告厅与食堂的使用功能相对独立,利用中间庭院天井设置伸缩缝,划分成两个独立的结构单元:报告厅单元和食堂单元。报告厅结构单元在二层标高处仅在观众厅两侧、门厅区域有楼板,其余部位均为楼板大开洞,形成空旷大空间,且由于建筑使用功能和隔声的要求,北侧柱较密,柱网开间较小,南面部分柱稀少,刚度分布不均匀,对抗扭不利。通过在适当的部位布置少量剪力墙,调整结构的整体刚度,使各项计算指标能满足规范要求。报告厅、食堂平面图如图3所示,报告厅剖面如图4所示。

设置多道抗震防线

框架结构尤其是教学楼、报告厅这种大开间、大柱网、纵横向刚度不均匀的结构,应合理布置柱间支撑或柱翼墙,增加结构纵向刚度,加强结构的空间整体性,使结构具备必要的抗震承载力、良好的变形能力和消耗地震能量的能力。

延性结构设计

结构的延性是结构抗震设计中一个很重要的概念。结构的延性一般用延性系数来表示,它表示结构极限变形与屈服变形的比值。其值越大,则结构的延性越好,在地震作用下,结构已无强度安全储备,结构的抗震性能主要取决于结构的变形能力。因此,一个结构的变形能力越大,在地震作用时,就能更好地消耗地震能量,保证结构的可靠度。钢筋混凝土结构是由各种钢筋混凝土构件组成,组成结构的各构件延性越大,整个结构的延性就越好,结构的延性越好,结构的抗震能力也越好。在大震下,即使结构构件达到屈服,仍然可通过屈服截面的塑性变形来消耗地震能量,从而避免发生脆性破坏。当地震后的余震发生时,由于塑性铰的出现,结构的刚度明显变小,周期变长,所受的地震力会明显减小,震害减轻。延性结构设计的具体内容有以下几点。

(1)强柱弱梁。控制塑性铰在框架中出现的位置,塑性铰出现的位置或顺序不同,将使框架结构产生不同的破坏形式。塑性铰应先出现于梁端部,使结构在破坏前有较大的变形,吸收和耗散较多的地震能量,因而具有较好的抗震性能。

(2)强剪弱弯。控制梁柱构件的破坏形态,使其发生延性较好的弯曲破坏,避免脆性的剪切破坏,而且保证构件在塑性铰出现后也不会过早剪切破坏。

(3)强节点、强锚固。由于节点区受力状态非常复杂,所以在结构设计时只有保证各个节点不出现脆性的剪切破坏,才能使梁柱充分发挥其承载能力和变形能力。即在梁柱塑性铰出现之前,节点区不能过早破坏。

(4)严格控制梁的配筋率。钢筋混凝土的破坏分为受拉钢筋达到屈服状态的延性破坏和混凝土先被压碎或剪切破坏等脆性破坏两种形式。设计时应按计算或构造选取适宜的配筋率,避免出现梁受拉钢筋过多或出现超筋现象,使结构发生脆性破坏。应选取适宜的梁截面尺寸,严格控制梁截面相对受压区高度。规范规定,对于一级抗震,相对受压高度不大于0.25,二三级抗震不大于0.35,且受拉钢筋最大配筋率不大于2.5%。同时控制受拉钢筋的最小配筋率,保证梁不会在混凝土受拉区刚开裂时就屈服甚至拉断。此外,梁上部钢筋间距不宜太密,否则会造成混凝土浇筑困难,从而造成混凝土缺陷。

(5)梁受压区配置适量受压钢筋,可提高梁的延性。

(6)加密箍筋。可提高箍筋对混凝土的约束力,避免梁的纵向受压钢筋产生弯曲,从而提高梁的延性;同时,还可提高梁的抗剪强度,防止剪切脆性破坏的发生。

(7)柱轴压比限制。对不同烈度下有着不同延性要求的结构会有不同的轴压比限制。设计时应严格控制柱的轴压比,尽量避免采用短柱,因为短柱的破坏是脆性破坏,加密柱箍筋采用复合箍,都可提高对混凝土的约束力,以防柱受压钢筋被压曲,从而提高柱的延性。另外,柱端箍筋用量的控制不是简单的配箍率,而是有配箍特征值,它同时考虑了箍筋强度等级和混凝土强度等级对配筋量的影响。

抗震构造措施

在青川中学的结构抗震设计中,应吸取汶川地震建筑震害的经验教训,特别重视结构抗震的构造措施。

(1)框架结构节点钢筋须满足锚固要求(图5),梁柱箍筋按规范要求加密,注意箍筋和纵筋的比例,填充墙不到顶形成短柱时,框架柱应全高加密,从构造上保证强剪弱弯、强节点、强锚固。

(2)突出屋面的楼梯间、水箱、女儿墙等附属物,由于沿房屋高度的刚度骤减而产生“鞭梢效应”,从而加大了地震作用,对出屋面建筑本身和主体建筑物的抗震都非常不利。在出屋面建筑的设计中,宜通过综合考虑来选择其适当的平面位置,并尽量降低其高度,减轻重量,使屋顶建筑结构的重量和刚度分布较均匀,并与主体结构有可靠连接,从而使其具有良好的抗震性能。

(3)位于建筑物出入口上方的挑檐、雨篷、玻璃幕墙、吊顶、构架等非结构构件应与结构主体有可靠连接,且具有良好的变形能力,避免地震时脱落。

(4)由于楼梯段侧向刚度较大,山墙较高,休息平台与楼层存在错层,地震时最易破坏,作为逃生通道,对楼梯间的抗震设计应予以充分重视。支撑楼梯的框架柱应考虑楼梯休息平台板的约束作用和可能引起的短柱,按短柱的抗震要求进行加强。楼梯间两侧的填充墙与柱之间加强拉结。楼梯间的混凝土梯段、梁、板应参与计算,并按规范要求设置构造柱和拉结钢筋。楼梯梯段板采用现浇钢筋混凝土,梯段板采取双层双向配筋。

(5)教学楼、报告厅、图书馆等的屋顶均为坡屋面,在阁楼层标高处设置了框架拉梁,以加强结构的整体性。

(6)在框架结构中,填充墙的构造措施很重要(图6,7)。在水平地震作用下填充墙与框架是共同作用的,一方面墙体受到框架的约束,另一方面框架受到填充墙的支撑,由于填充墙的侧向刚度较大,所受到的地震作用大,而填充墙的抗剪强度又较低,变形能力小,所以填充墙在地震发生时易出现裂缝。因此,填充墙与框架的连接除按国家有关规范的要求设置构造柱、拉结筋和水平拉梁外,还应按西南标准图集《框架轻质填充墙构造图集》(西南05G701)相应的构造措施进行加强。

防震设计论文范文第3篇

在其他许多国家的抗震规范中,也或多或少地采用了这一设计原则,即便如此,各国规范在具体的设计程序上绝大多数仍坚持以安全设计地震为准的单一水平设计手法,并认为第一设计水准的要求自动满足[3]。近年来,专家已建议对两个设防水准的地震力都要进行设计,这在一定程度上更加保证了桥梁结构的抗震安全性,也是未来桥梁抗震设计的一个发展方向。理念的提出基于性能的抗震设计思想是一个比较抽象的概念,它没有明确的力的大小的物理意义,也没有单纯的材料强度或结构位移的具体量化结果。因此,基于性能的抗震设计思想不能比较明确的用一个参数来衡量结构的抗震性能,它是对以往的结构的响应的一个综合考量,结构的性能往往与结构的受力大小、强度或位移,耗能能力以及结构的功能有关,更为直接地反映的是为满足人们的正常使用要求或结构功能性或安全性的性能综合考量。因此,对于不同的需求和功能要求,同样一座桥梁的抗震评估结果将有所不同[1]。基于性能的抗震设计可以简要的概括为,用总少的投入,建总可靠的桥梁。正如著名的地震工程学家胡聿贤先生所讲,工程抗震不仅与工程技术有关,而且与社会经济密切相关。基于性能的抗震设计思想是桥梁抗震设计思想发展的一种必然趋势,对于人类进步和社会发展都将起到积极的作用。基于性能的抗震设计思想是一个全新的思想体系,目前已经取得了一些研究成果,但到广泛的应用还有一定的距离,甚至目前都没有形成完全统一的概念。但这并不妨碍基于性能的设计思想的进一步完善。

设计方法的体现

传统的桥梁抗震设计思想即对某一性能目标进行比较,如对结构的地震响应力、地震位移、结构耗能等单一性能参数进行考虑。从严格意义来讲,这并不能反映结构的真实安全性能。而基于性能的抗震设计,其目标即为业主的期望目标或结构性能,包括地震动性能目标和结构抗震性能目标。基于性能的抗震性能目标,是一个对传统的结构的性能的一个综合考虑,因此,各单一结构性能之间的相互关系显得十分重要而又相互制约,如连续梁桥梁结构的梁端位移与墩底弯矩即为相互制约的关系,基于性能的设计思想即要从这两者之间找到一个平衡点,以达到各单一性能的充分而平衡的发挥。同时,基于性能的抗震设计思想也要对结构的经济指标提出要求。人们总是希望结构设计以社会效益和经济指标为目的,基于性能的抗震设计思想即在对结构进行抗震设计时,对桥梁结构遭受地震破坏所造成的损失、维修成本、社会影响等进行综合评估,这也是基于性能的抗震设计思想所必须考虑的一个关键所在。基于性能的桥梁抗震设计是一个涉及多门学科的综合型研究领域,需要对多个领域,如地震学、桥梁工程、经济等都要有一定程度的认知才能进行基于性能的抗震设计,这也对桥梁抗震设计工程师提出了更高的要求。

防震设计论文范文第4篇

关键词:高层建筑;抗震;结构设计;理论

中图分类号:[TU208.3] 文献标识码:A

1 我国的高层建筑发展历程

上世纪80年代,我国高层建筑在设计计算机施工技术等领域快速发展,100m左右及以上的将建筑快速发展,多以钢筋为主要材料,在层数与高度增加的同时,功能与类型也日益增多。各大城市几乎都建立了具有各自特色的建筑,以上海锦江饭店为代表:高度达到153.52m,全部采用的钢结构体系;而深圳的发展中心大厦有43层,高度达到165.3m,算上天线高度达到185.3m,是我国第一幢大型的高层钢结构建筑。到了90年代,我国的高层建筑结构从设计到施工进入到一个新的阶段,除了体系与材料的多样化,高度上也有了质的飞跃。在1995年完工的深圳地王大厦,共有81层,高度达到385.95m,居世界第四高。

2 建筑抗震的理论

2.1 建筑结构的抗震规范

一般的抗震规范都是各国结合具体的情况进行的经验总结,是指导抗震设计的法定文件,及反应国家经济与建设的发展水平,也反映了各个国家的抗震经验。尽管抗震理论不断完善,技术水平也在不断地提高,但是必须要有实践的指导,要将建筑工程的安全性放在首要位置,容不得任何的大意与疏忽。基于这一认识,现代建筑部分条文被列为强制条文,使用了“严禁、不得”等绝对性的字眼,同时也有不同条文有较大的自由空间。

2.2 建筑抗震设计的理论

当前建筑抗震设计的理论主要分为拟静力理论、反应谱理论及动力理论。拟静力理论起源于20世纪10~40年代出现的理论,在估测地震对结构的影响时,假设结构为刚性,地震水平作用在结构或构件的质量中心,地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论是在上世纪40-60年展起来的,以强地震动加速度观测记录的增多与对地震地面运动特性的进一步了解,及结构动力反应特性的研究为基础,是加理工学院的学者对地震加速度记录的特性进行分析后获得的成果。

动力理论是上世纪70-80年代的应用较为广泛的地震动力理论,是在60年代以来电子计算机技术与试验技术的发展为基础,人们对各类结构在地震作用下的线性与非线性的反应过程也有了较多的了解,随着强震观测台的增加,各种受损结构的地震反应记录也在不断地增加。进一步动力理论也称地震时程分析理论,它将地震作为一个时间过程,选择具有代表性的地震加速度时过程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,完成设计工作。

3 高层建筑的抗震结构设计

3.1 必要的抗震对策

在高层建筑结构的抗震设计中国,出了要考虑到概念的设计,还要进行验算,结合地震的情况,要在高度允许的范围内建造,增加结构的延性。在当前的抗震设计中,抗震验算及构造与措施等角度入手进行分析,提高结构的抗震性与消震性能。建立地震力与结构延性互相影响的双重设计指标,直到达到预期的抗震效果。当前强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3.2 高层建筑的抗震设计思想

在《建筑抗震规范》中有明文规定,建筑的抗震设防要符合“三水准、两阶段”的要求。所谓的“三水准”就是指“小震不坏,中震可修,大震不倒”。当遇到第一设防烈度地震即低于本地区抗震设防烈度的地震时,结构处于弹性变形阶段,建筑物可以正常使用。一般情况下,建筑物不会被损害,也不需要修理即可使用。所以,高层建筑结构的抗震设计要满足地震频发下的承载力极限,要求建筑的弹性变形不超过规定的弹性变形限值。当遇到第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物结构会发生损害,但是不经修理或者简单修理就可以继续使用。所以,建筑结构必须要有足够的延性能力,不会出现脆性破坏。当发生第三设防烈度地震的情况下,就是遇到本地区地震极限外的情况,结构会受到非常严重的损害,但是结构的非弹性变形距离倒塌仍有一段距离,不致产生危及生命的损害,保障了居住人员的安全。所以在进行高层建筑结构设计的过程中,要保证建筑的足够变形能力,其弹塑变形要在规范的数值之内,保证结构良好的抗震性能。三个水准烈度的地震作用水平是根据不同超越概率进行区分的,一般情况下是:

多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。

从高层建筑的抗震水准来看,设防的要求是通过“两个阶段”设计来实现的,具体方法如下:第一环节,第一步采用与第一水准烈度相应的地震动参数,提前计算出高层建筑结构在弹性状态下的地震作用效应,与风力、重力荷载进行高效组合。同时引入承载力抗震调整系数,进行构件截面的准确射击,进而达到第一水准的强度要求;然后是运用同一地震参数计算出结构的层间位移角,使其可以在抗震规范设定的限值之内;同时采用相应的抗震构造对策,确保结构可以有足够的延性、变形能力与塑形耗能,进而达到第二水准的变形目的。而第二阶段则是运用与第三水准对应的地震动参数,算出结构的弹塑性层间位移角,使其在抗震规范的限值之内,然后进行必要的抗震构造对策,进而实现第三水准的防倒塌目的。

3.3 现代高层建筑结构的抗震设计方法

在《建筑抗震设计规范》中对各类的建筑结构的抗震计算应该采用的方法都有明确的规定:高度要在40m之内,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

结语

地震是威胁较大的天灾之一,必须要加强防御,从上文的分析中我们可以看到,高层建筑的抗震结构设计必须要在要求的限值之内,保证结构的良好性能,提高建筑的使用性能。

参考文献

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.

[2]李彬.对于高层建筑结构的抗震设计探讨[J].中国新技术新产品.2012(02).

防震设计论文范文第5篇

【关键词】高层建筑;抗震;结构设计;探讨

前言

80 年代,是我国高层建筑在设计计算及施工技术各方面迅速发展的阶段。各大中城市普遍兴建高度在 100m 左右或 100m 以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,它是一座现代化的高级宾馆,总高 153.52m,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦43 层高 165.3m,加上天线的高度共 185.3m,这是我国第一幢大型高层钢结构建筑。进入 90 年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。深圳于1995 年 6 月封顶的地王大厦,81 层高,385.95m为钢结构,它居目前世界建筑的第四位。本文在此谈了谈自己的一些观点和看法。

一、概述建筑结构抗震理论

1、建筑结构抗震规范。建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容) 的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2、抗震设计的理论。拟静力理论。拟静力理论是 20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。反应谱理论。反应谱理论是在加世纪40~60 年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是 20世纪70-80 年广为应用的地震动力理论。它的发展除了基于 60 年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

二、高层建筑结构抗震设计问题分析

1、抗震措施。在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用) 等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

2、高层建筑的抗震设计理念。我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率 63.2%,重现期 50 年;设防烈度地震(基本地震):50 年超越概率 10%,重现期 475年;罕遇地震:50年超越概率 2%-3%,重现期1641-2475 年,平均约为 2000 年。对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

3、高层建筑结构的抗震设计方法。我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除 1 款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

三、结语

现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。

防震设计论文范文第6篇

[论文摘要]高层建筑抗震工作一直建筑设计和施工的重点,概述高层建筑的发展,对建筑抗震进行必要的理论分析,从而来探索高层建筑的设计理念、方法,从而采取必须的抗震措施。

现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。

一、高层建筑发展概况

80年代,是我国高层建筑在设计计算及施工技术各方面迅速发展的阶段。各大中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,它是一座现代化的高级宾馆,总高153.52m,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦43层高165.3m,加上天线的高度共185.3m,这是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。深圳于1995年6月封顶的地王大厦,81层高,385.95m为钢结构,它居目前世界建筑的第四位。

二、建筑抗震的理论分析

(一)建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

(二)抗震设计的理论

1、拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

2、反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

3、动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

三、高层建筑结构抗震设计

(一)抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

(二)高层建筑的抗震设计理念

我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率 10%,重现期475年;罕遇地震:50年超越概率 2%-3%,重现期 1641-2475年,平均约为2000年。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

(三)高层建筑结构的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:1、高度不超过 40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法。2、除1 款外的建筑结构,宜采用振型分解反应谱方法。3、特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

参考文献

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.11.

防震设计论文范文第7篇

关键词:民用建筑;结构抗震;理念

中图分类号:TU24文献标识码: A

引言

随着当前我国社会主义现代化建设以及城市化进程的逐渐向前推进,建设用地变得紧张,不断地促进了建筑功能变得多样化,民用建筑获得了加大的发展。

1、建筑抗震的理论探讨

1.1、建筑结构抗震规范

建筑结构抗震规范主要是各个国家的建筑抗震经验具备权威性的总结,同时也是指导建筑抗震设计的法定性文件。可以在一定程度之上反映出每一个国家经济以及建设的时代水平,也可以反映出每个国家的具体抗震实践经验。其收到了抗震相关科学理论的引导,逐渐转向了技术经济合理性的方向,然而其具备着坚定的工程实践基础,将建筑工程的安全性置于首位,不能出现顶点冒险以及不实。正是因为此种认识,现代规范之中的条文一些被列为强制性条文,一些条文之中使用了“严禁,不得,不许,不宜”等等表现出不同程度限制性以及“必须,应该,宜于,可以”则体现出了不同程度灵活性的用词。

1.2、抗震设计理论发展历程

1.2.1、拟静力理论

拟静力理论主要是在上个世纪的40年展起来的一种理论,其在估计地震对于结构的作用之时,仅仅假定结构是钢性,地震力水平只是作用在结构或构件的质量中心之上。

1.2.2、反应谱理论。

反应谱理论主要是在上个世纪的40~60年展起来的,其可以不断加强地震动加速度观测记录的增多以及对于地震地面运动特性的作出进一步的了解,将结构动力反应特性的研究作为基础,也是理工学院的一些研究学者对于地震动加速度记录的特性,进行分析之后得到的一个成果。

1.2.3、动力理论

动力理论则是在20世纪的70-80年代之中被广泛使用的地震动力理论。其发除过了基于60年代之后,电子计算机技术以及试验技术的发展之外,人们对于种种结构在地震作用之下的线性以及非线性反应过程具备较多的了解,也可以随着强震观测台站的逐渐的增多,种种受损结构的地震反应记录也在逐渐提升。进一步动力理论同时也可以被称之为地震时程分析理论,其将地震看成是一个时间过程,挑选具备代表性的地震动加速度时程当做地震动输入,建筑物简化成为多自由度体系,计算获得每一时刻建筑物的地震反应,这样就可以完成抗震设计工作。

2、高层建筑结构中抗震设计特点

2.1、控制建筑物的侧移是重要的指标在地震荷载作用下,建筑结构所产生的水平剪切力占主导地位,所以建筑物会产生明显的侧移,随建筑结构的高度不断曾加,结构的侧向位移迅速增大,但该变形要在一定限度之内,这样才能保证结构安全以及使用功能。

2.2、地震荷载中的水平荷载是决定因素水平荷载会使建筑物产生倾覆力矩,并且在结构的竖向构件中引起很大的轴力,这些都与建筑物高度的两次方成正比,故随建筑结构高度的增加,水平载荷大相径庭。对高度一定的建筑物而言,竖向荷载基本上是不变的,但是随着建筑物的质量、刚度等动力特性的不同,水平地震荷载和风荷载的变化是比较大的。

2.3、要重视建筑结构的延性设计高层建筑结构随着高度增加,刚度减小,显得更柔,在地震荷载作用下变形较大。这就要求建筑结构要有足够的变形能力,使结构进入塑性变形阶段仍然安全,需要在结构构造上采取有利的措施,使得建筑结构具有足够的延性。

3、建筑抗震的主要影响因素

3.1、抗震设计标准

现阶段,我国在各个地区设置的基本设防烈度,主要是根据该地区以及具体建筑在一定时间段内遭受的地震及其强度的概率而定的。若是一般性的建筑,就根据基本烈度设防,若是较重要的建筑物,就相应的提高设防烈度,同时造价也会随着建筑物烈度的提升而升高。

3.2、建筑结构形式

为了切实的保证建筑物“小震不坏,大震不倒”,在最新的设计规范中,砖混内框架结构被严格的取消了。目前,主要采用的是剪力墙结构、框架结构等。虽然单纯的框架结构造价相对较低,但是,它们的抗震性能差,所以,它们普遍适用于一些地震发生的概率较低、级别较小的地区。

3.3、抗震措施

抗震措施主要是依据建筑物的重要性来说的。在确定建筑物等级以及其场地的类型的基础上,把先进的抗震理念和系统的分析计算纳入到抗震设计中,这样就可以改善建筑抗震设计,同时也可提高建筑抗震效果。

4、民用建筑结构抗震相关措施

4.1、合理布局地震外力能量的传递吸收途径

作为提升建筑结构抗震能力的第一步,通过这样的合理布局,可以确保支柱、墙以及梁的轴线在同一平面之内,这样就会使得构件双向抗侧力体系形成。使用这样的布局,当地震发生之时,支柱、墙以及梁呈弯剪破坏,塑性屈服尽量在墙的底部产生。同时,当地震发生的之时,连梁应该在梁端塑性屈服,需要具有充足的变形能力。通过这样的结构以及布局,当地震发生之时,在墙段可以充分发挥其的抗震作用,依照强墙弱梁的原则不断提升墙肢的承载力,那么就会使得墙肢的剪切应力破坏,这样就可以使得建筑结构的抗震能力获得提升。

4.2、选择合理的建筑结构体系

一般而言,选择合理的建筑结构体系是结构设计的项重点内容,而且结构方案选择的合理与否,会直接影响到建筑的安全性以及经济性。通常情况下,建筑结构体系的选择要满足以下要求;第一,建筑结构体系要最大限度避免由于部分机构问题所影响整个机构抗展能力。抗震设计应该遵循的原则就是具有一定的内力重分配,这样如果地震中部分的构建停止工作,也不会影响其他构件负荷承载力,最大限度防止整体结构的失灵;第二,建筑结构体系应该具备良好的变形能力、一定的承载能力以及消耗地震量的能力。由于钢筋混凝土具有较强的塑性内力重分布能力,这样就能够更好地耗散地艇能量;第三,建筑结构体系的设计应该具有较明确的计算图以及科学的地震作用传递途径.在这个环节中,布置竖向结构要选择竖向构件在垂直重力荷载状况下的压应力水平趋向均匀;布置楼屋盖梁系时,要将数值重力负荷通过最短的路径来传输到竖向的构件墙;布置转换结构,要促使上部的结构竖向构件传输的垂直重力荷载进行转换;最后,建筑结构体系具备一定的强度和刚度也是很有必要的。应该有科学的强度及刚度的分布,最大限度防止由于局部变形所产生的变形集中。而且框架结构的设计也应该保证节点不被破坏,底层柱底的塑性通常较晚形成,这样塑性胶就应该相互分散,对于明显的薄弱部分,要采取措施切实提高抗震能力。在我国建筑结构中,所说的结构对称性是指达到抗侧力主体结构的对称。通常结构的规则性体现在:第一,建筑主体抗侧力的结构两个主轴方向的刚度以及变形特性都应该相似;第二,建筑主体抗侧力的机构往往是竖向断面非常均匀,防止突变;第三,建筑主体抗侧力的结构进行平面布置时,要体现出同一个主轴的方向各片抗侧力的刚度要尽可能均匀。

4.3、房屋建筑的地基设计

首先,在建造房屋建筑期间,同一个房屋建筑不允许建造在性质不同的地基上。并且在地基应用上,尽量全然应用天然地基或是桩基,尽可能避免出现两种地基各一半的状况。从而增强房屋建筑的整体刚性,提高房屋建筑的抗震性能。其次,在埋置房屋建筑的基础时,需注意其埋置深度的控制。若基础埋置深度过浅,将会减少房屋建筑的嵌固作用,增强房屋建筑在地震期间的振幅,提高震害发生几率。因此在设计房屋建筑的基础埋置深度时,应尽量增加其埋置深度。并认真做好基槽回填工作以及夯实工作,确保回填土可基础侧面的紧密接触,提高房屋建筑地基稳定性。最后,房屋建筑是由上部建筑、基础两个部分所构成的一个整体。因此在建筑室外地坪下,不应应用内外交圈基础圈梁,以免影响上部建筑和基础的整体性。此外,应将上部结构构造柱钢筋嵌入基础圈梁内,从而加强上部建筑和基础的连接牢固性。若建筑建造地段的土质刚度较弱,则还需设置圈梁在基底底部。

4.4、房屋建筑结构设计的规则性

4.4.1、合理处理房屋建筑的防震缝若房屋建筑结构不规则,需处理好建筑的防震缝。设置防震缝期间,应将房屋建筑划分为相互独立且规则的结构。防震缝两边需具备足够宽度,彻底分开防震缝两边的上部建构。并顺着建筑高度,在防震缝两侧布置墙体。

4.4.2、合理布置房屋建筑的纵横墙墙体属于房屋建筑的主要承重构件,由于房屋建筑的刚度大小主要取决于墙体数量,若承重墙体上,将会加大墙体间隔,进而降低房屋建筑的刚度以及抗震能力。因此在设计期间,需均匀分布房屋建筑的横墙以及纵墙,从而确保房屋建筑的整体抗震性能。5.合理布置构造柱以及圈梁构造柱、圈梁等均属于提高房屋建筑抗震性能的重要组成部分。其中构造体有利于增强建筑墙体的抗剪性能,并优化建筑结构变形能力,从而使建筑结构在外力作用不大的影响下仅发生变形,不对建筑结构整体的稳定性产生影响。因此,在布置构造柱时,需以《抗震规范》作为布置依据,在墙体交叉处均设置构造柱,促使墙体材料由脆性演变为延性。另外,圈梁有利于缓解地震对于建筑的损害,提高墙体之间的连接牢固性,对于增强房屋稳固性、整体性等可起到明显的促进作用。在一定情况下,还可抑制墙体产生裂缝。

4.5、设置多道抗震防线

为了提升建筑结构抗震能力,那么应该设置多道抗震防线。而这也是在一个抗震结构体系之中,如果地震发生之时,在地震作用之下,一部分延性比较好的构件第一达到屈服,可以担负起第一道抗震防线的作用。而其他的构件同样起着抗震防护的作用。并且,只有当第一道抗震防线屈服后,其他的抗震防线才会依次屈服。设置多道抗震防线,形成第一道、第二道、第三道甚至更多的抗震防线,当一道抗震防线失去作用后另外的抗震防线便可以发挥作用。这种结构对提高建筑结构抗震能力具有非常重要的作用。

4.6、结构抗震概念设计

4.6.1、结构设计的内涵

结构设计由两部分组成:概念设计和理论设计。概念设计指的是设计过程中不需要经过较精细的、较理性的分析,也不需要处理规范中难以界定的问题,只需要根据从结构体系整体与部分间的力学关系、工作经验、地震灾害以及实验现象中总结的设计原则和理念,从而确定建筑结构的设计和细部的设计构造过程。而理论设计则是工程人员对设计好的结构模型进行计算和应力假定前提下,依据设计规范和计算原理计算出结果,再根据结果进行合理的设计。

4.6.2、结构概念设计的应用

通过运用概念设计的思想和抗震措施,减少了对结构设计的局限,拓宽了思路。由于传统结构设计配筋量不合理,所使用的混凝土等级太高,造成其造价超出正常范围。这是由于传统结构设计中,结构合计和计算理论大致注重如何增强结构抗力。之所以出现肥梁、胖柱、深基础随处可见,是因为结构工程师往往只注意到不超过最大的配筋率。而结构概念设计是保证结构具有优良抗震性能的一种方法。概念设计包含极为广泛的内容,选择对抗震有利的结构方案和布置,采取减少扭转以及不断加强抗扭刚度的措施,设计延性结构以及延性结构构件,同时分析了结构薄弱部位,使用与之相应的措施,这样就可以避免薄弱层过早破坏,制止局部破坏导致的连锁效应,也可以避免设计静定结构,使用二道防线措施等等。应该说,从方案、布置、计算到构件设计、构造措施每个设计步骤之中都应该贯穿了抗震概念设计的内容。

4.7、合理的结构体系及构件的延性

对于整个建筑结构来讲,设计合理的结构体系并保证构件的延性相当重要,在设计过程中要遵循以下几项原则:

4.7.1、在进行结构计算时,要有明确的计算简图和说明,而且要保证建筑结构在地震作用时有合理的传力路径。

4.7.2、保证结构有足够的强度和变形能力。在地震作用时,有大量的能量瞬间传递到建筑结构构件中,如果结构构件有较好的变形能力,就可以吸收大量的地震能量,避免结构损坏。因此,在抗震设计时,要尽可能采用延性较好的构件。

4.7.3、保证结构强度和刚度合理分布。在设计时,尽可能使结构强度分布均匀,刚度在竖直方向上分布均匀,这样可以避免在地震作用时,结构物局部出现应力集中,从而造成结构物整体损坏。

5、结语

本文主要从抗震的方面进行粗略探求,在时展的推动之下,不断出现新的抗震理念,比如说在工程的结构之中使用隔震减振的措施来进行“隔”震的中心思想获得了广泛的关注。为了逐渐提升建筑物抗震的性能,我们应该确保民用建筑依照规定的抗震进行设防,同时不断进行研究以及发展新抗震设计的方法,实现较为的科学的防灾减灾。

参考文献:

[1]卢伟峰.浅谈民用建筑结构抗震理念设计[J].中华民居(下旬刊),2013,08:59-60.

[2]赵剑.基于抗震理念的民用建筑结构设计探究[J].科技与企业,2013,11:243.

防震设计论文范文第8篇

【关键词】建筑结构抗震设计

中图分类号:TU3文献标识码: A

随着施工技术的不断进步,再加上各种新材料的出现,使得建筑结构有更多复杂的形式,然而,在建筑设计中,抗震设计始终占据着重要的地位,尤其超高层建筑的出现,更是对抗震提出了更高的要求。我国是一个地震多发国家,目前人类还没有掌握地震的有效规律,这也增加了抗震设计的难度,结构抗震设计是摆在设计师和工程师面前的一项迫切任务,更是保证建筑结构安全性能的重要问题。

一. 概念设计的必要

概念设计应用范围较广泛,几乎组成包含了所有的结构设计。在不确定因素多、受力状态变化较大的抗震设计、基础设计、高层建筑设计中,概念设计的应用尤显重要和突出。概念设计的重要性,主要体现在三方面:

(1)因为现行的结构设计理论与计算理论存在许多缺陷或不可计算性。为了弥补计算理论的缺陷,或实现对世界存在的大量无法计算的结构构件的设计,都需要用概念设计来满足结构设计的目的。

(2)由于在方案设计阶段,初步设计过程是不可能借助于计算机来实现的。这就需要结构工程师综合运用其掌握的结构概念,选择效果最好、造价最低的结构方案。概念设计在设计人员中提得比较多,但往往被人们片面地理解,认为其主要是用于一些大的原则,如确定结构方案、结构布置等。其实,在设计中任何地方都离不开科学的概念作指导。

(3)由于计算机计算结果的高精度,容易给结构设计人员带来对结构工作性能出现的可能误解,过分地依赖于计算机和设计软件,进行习惯性、传统的结构设计,对计算结果明显不合理、甚至错误的地方不能及时发现,使许多的建筑结构留下安全隐患。因此,概念设计在结构设计中具有重要的地位。

二、建筑设计和建筑结构的规则性

建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。体型复杂、平立面特别不规则的建筑结构,可按实际需要在适当部位设置防震缝,形成多个较规则的结构单元。

结构体系的选择

结构体系应根据建筑的抗震设防类别、抗震设防烈度、建筑高度、场地条件、地基、结构材料和施工等因素,经技术、经济和使用条件综合比较确定。结构体系应符合下列各项要求:应具有明确的计算简图和合理的地震作用传递途径;应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载力;应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力;对可能出现的薄弱部位,应采取措施提高抗震能力。

结构体系应符合下列各项要求:

宜有多道抗震防线。多道抗震防线是指:一个抗震结构,应由若干延性较好的分体系组成,通过构件的连接协同作用,有意识地在结构内部、外部建立一系列分布的屈服区,使结构在先屈服的部分耗散大量的地震能量,而使最后的“防线”得以保存,便于结构的修复。

例如,在有填充墙的框架结构中,填充墙为第一道防线,框架为第二道防线;此时填充墙本身应有一定的刚度和承载能力,并均匀、对称地布置在框架结构中。在强烈地震的冲击下,第一道防线遭受破坏后,结构的动力特性(如自振周期等)得以改变,可使第二道防线承受的地展作用得以缓解和受到保护。

在高层钢筋混凝土房屋中,应用较多的另一种结构形式是框架一剪力墙体系(在抗震设计中,剪力墙也称为抗震墙)。剪力墙是第一道防线,框架为第二道防线。

在一般情况下,应优先选择不承受重力荷载的构件,如上述的框架填充墙、轴压比不太大的钢筋混凝土剪力墙或柱间支撑、竖向支撑等作为第一道防线。

宜具有合理的刚度和承载力分布。建筑物承受的静力荷载是基本稳定的(如自重、楼面活荷载等),而地震时所受的地震作用大小则与结构的动力特性密切相关:建筑物的侧移刚度越大,则自振周期越短,地震作用也越大,要求结构构件具有较高的承载力。提高结构的侧移刚度,往往以提高造价和降低结构变形能力为代价,因此在确定结构体系时,需要在刚度、承载力之间寻求较好的匹配关系。结构在两个主轴方向的动力特性宜相近。此时,结构在两个主轴方向的地震反应相当,不致造成一个方向过强、一个方向过弱的现象。根据房屋高度选择合理的结构体系。从技术经济指标而言,各种结构体系都有其最佳适用高度。

三、建筑结构抗震设计方法

(1)构减轻结构自重。研究表明,地震效应与建筑物的质量成正比,高层建筑高度较大,其重心也较高,在地震作用下,倾覆力矩也随质量的增加而增大,这就会对结构物带来极大危险。因此,在进行设计和建造时,要尽可能采用强度大、质量轻的建筑材料,减轻建筑物的质量。

(2)提高短柱延性。在建筑结构中,要尽量提高短柱的承载力,并采取有效措施提高短柱的延性,这样就可以大幅度增强其抗震性能,确保建筑结构的安全。

(3)选择合理的建筑材料。在设计阶段,要进行抗震分析和计算,在选择建筑材料时,要对其参数进行可靠度分析,也要充分考虑材料参数的变异性,而且尽可能选择自振频率不同的材料,避免在地震作用时结构物局部或者整体发生共振,造成严重破坏。

(4)设置多道抗震防线,这样可以避免在地震作用下,由于局部损坏而造成整个建筑结构的损坏,例如框架一抗震墙结构系统,抗震墙可以抵抗较大的侧压力,是第一道防线,当在地震作用下抗震墙发生破坏时,框架结构就起到抗震的第二道防线。 多道抗震防线可以极大的消耗地震能量,延缓或者减轻地震作用对高层建筑的损坏。

(5)加强建筑物内部的薄弱部分。在高层建筑中,由于层数较多,建筑面积较大,难免存在一些受力比较大而比较薄弱部分,在建设过程中,要及时对薄弱部分进行加强,采取有效措施增强其强度和刚度,这样就可以极大提高其承载力,避免在地震作用下过早的屈服产生较大变形,导致建筑结构局部损坏或者整个结构的损坏。

四、结束语

建筑结构的抗震设计是一个完整、系统的概念,从场址的选择到建筑物的结构设计,抗震设计贯穿了整个过程,也是衡量建筑结构设计是否符合要求的重要指标。使抗震设计与设计、施工完美结合,最终实现适用、安全、经济、美观是我们追求的目标。

参考文献:

[1] 晏斌斌. 高层建筑结构抗震设计分析[J]. 江西建材, 2011,(04)

[2] 方浩波. 论高层建筑结构设计中的问题[J]. 科协论坛(下半月), 2008,(05)

防震设计论文范文第9篇

关键词:地震理论、建筑抗震设计

中图分类号:U452文献标识码: A

我国的城市化建设非常迅速且规模巨大,人们大量涌入城市成为其中的一员。地震作为一种破坏性很强的自然灾害,对建筑结构安全的影响尤其重大,也直接关系到每个人的安全。本文在这里就建筑结构抗震设计作一概述,使人们对抗震设计有一个初步而又清晰的认识。

地震理论概述

我国处于世界两大地震带,东部的环太平洋地震带和西部、西南部的欧亚地震带之间,据统计我国大陆地震约占世界大陆地震的三分之一。因此我国是一个多震国家。建筑的抗震设计非常重要。

地震多发生在距地表几十公里内的地壳层和地幔层的上部。按成因地震可分为四种类型:构造地震、火山地震、冲击地震、诱发地震。其中构造地震占绝大多数。地震的破坏程度与震级、震源深度都有关系。震级是地震发生强度的一种度量,地震越强,震级就越大。震级相差一级,能量相差约30倍。地震震级和地震烈度不同,震级代表地震本身强弱,烈度表示同一次地震在地震波及的各个地点所造成的影响程度,它与震源深度、震中距、方位角、地质构造以及土壤性质等因素有关。地震烈度是在没有仪器记录的情况下,凭地震时人们的感觉或地震后工程建筑物破坏程度、地表的变化状况而定的一种宏观尺度。一般来说震级越大、震源越浅、震中距越近,地震烈度越大。宏观的地震烈度加上各国抗震规范规定的与之相应的地震加速度,就成为指导抗震设计的依据。

二、建筑抗震理论分析的进程

1、拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小相当于结构的重量乘以一个比例常数(地震系数)。

2、反应谱理论。反应谱理论是在20世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础。是美国的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

3、动力理论。动力理论是20世纪70-80年代广为应用的地震动力理论。它的发展基于60年代以来电子计算机技术和试验技术的发展,以及人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解。同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成建筑抗震设计工作。

三、建筑抗震设计

(一)建筑的抗震措施

在建筑的抗震设计中,除要考虑概念设计、结构构件抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手。在将抗震与消震(结构延性)结合的基础上,建立计算地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用。使得建筑在地震中有良好而经济的抗震性能,是当代抗震设计发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件等要求在提高结构延性方面的作用已得到普遍的认可。

(二)建筑的抗震设计理念

我国《建筑抗震规范》(GB50011-2010)对建筑的抗震设计提出“三水准、两阶段”的要求。“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率 10%,重现期475年;罕遇地震:50年超越概率 2%-3%,重现期 1642-2475年,平均约为2000年。实际应用上,多遇地震烈度可取比基本地震约低1度多,罕遇地震烈度比基本地震约高1度。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的。其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能能力,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是薄弱楼层)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

(三)建筑的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2010)对各类建筑结构的抗震计算应采用的方法作了以下规定:1、高度不超过 40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法。2、除1 款外的建筑结构,宜采用振型分解反应谱法。3、特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,当取3组加速度时程曲线输入时,计算结构宜取时程法的包络值和振型分解反应谱法的较大值;当取7组及7组以上时程曲线时,可取时程法的平均值和振型分解反应谱法的较大值。

总之,建筑的抗震设计是一个浩大而复杂的问题,也是关系到每个人切身安全的问题。本文就其作一概述,希望对人们对建筑抗震设计理解的加深有所帮助。

[1]建筑抗震设计规范

北京:中国建筑工业出版社

[2]高层建筑混凝土结构技术规程

北京:中国建筑工业出版社

[3]黄世敏 杨沈.建筑震害与设计对策

北京:中国计划出版社

[4] 赵西安.现代高层建筑结构设计【M】.

防震设计论文范文第10篇

Abstract: In oder to make construction projects really be able to reduce or even avoid the earthquake disaster, a good grasp of the relevant seismic design is a fundamental measure to mitigate earthquake disasters. Based on the summary of experience and relevant information, this articles studied and discussed the seismic design issues of reinforced concrete high-rise housing.

关键词:高层建筑;混凝土房屋;抗震设计;抗震设防

Key words: high-rise building;concrete housing;seismic design;seismic fortification

中图分类号:TU3文献标识码:A文章编号:1006-4311(2011)05-0084-02

0引言

地震是人类在繁衍生息、社会发展过程中遇到的一种可怕的自然灾害。强烈地震常常以其猝不及防的突发性和巨大的破坏力给社会经济发展、人类生存安全和社会稳定、社会功能带来严重的危害。据统计,历史上各种自然灾害曾毁灭了世界各地52个城市,其中因地震而毁灭的城市有27个。地震之外的其它各种灾害,如水灾、火灾、火山喷发、风灾、沙灾、旱灾等毁灭的城市为25座。因此,地震占灾害总数的52%。可见地震灾害确系“群害之首”。研究表明,在地震中造成人员伤亡和经济损失最主要的因素就是房屋倒塌及其引发的次生灾害(约占95%)。无数次的震害告诉我们,抗震设计是防御和减轻地震灾害最有效、最根本的措施。

1建筑抗震的理论分析

1.1 建筑结构抗震规范 建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

1.2 抗震设计的理论拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

2高层建筑结构抗震设计

2.1 抗震措施 在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

2.2 抗震设计理念 我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合。并引入承载力抗震调整系数。进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

2.3 抗震设计方法我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

3结语

在建筑工程项目建设中,设计阶段是整个工程最为关键的一个环节,在设计中要考虑到多方面的因素。本文结合工作实践对高层建筑结构抗震设计进行理论上的研究,从设计理念、设计原则到设计方法进行了探讨,虽然有些粗浅,希望对同行们有一定的参考作用。

参考文献:

[1]朱镜清.结构抗震分析原理[M].地震出版社,2002.11.

防震设计论文范文第11篇

【关键词】建筑抗震; 结构设计;

中图分类号:TU973+.31 文献标识码:A 文章编号:

引言

现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性、动力响应、计算理论、稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用

一、建筑抗震的基本要求

我们所说的抗震设防,指的是对建筑物进行抗震设计,同时有针对性的采取一定的抗震构造的措施,最终实现结构抗震的效果和目的。一般来说,抗震设防主要依据的是抗震设防烈度。通常情况下,是采用国家地震局颁发的地震烈度区划图中规定的基本烈度的。从当前国内外抗震设防目标的发展总趋势来看,其基本要求是建筑物在使用期间,可以应对不同频率和强度的地震,即“小震不坏,中震可修,大震不倒”。这是我国抗震设计规范所采用的抗震设防目标。建筑工程在施工中的设防的目标如下:

(一)如果所遭受的是低于本地区设防烈度多遇的常规地震,建筑物不受损坏不需修理仍可继续使用;

(二) 如果遭受到本地区规定的设防烈度的地震,建筑物,包括结构和非结构部分,可能损坏,但不会对人民生命和生产设备的安全造成威胁,经修理仍可使用;

(三)如果遭受高于本地区设防烈度的罕遇地震,保证建筑物不倒塌。也就是说,在建筑结构的防震设计上,设计方可以按照多遇烈度、基本烈度和罕遇烈度这三个层次进行考虑。从概率上看,多遇地震烈度是发生机会较大的地震级别。建筑物将进入弹塑性状态,但一般不会发生严重破坏;当遭遇罕遇烈度作用时,建筑物可能会有严重破坏,但不至于倒塌。

二、建筑抗震的理论分析

(一)建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。正是基于这种认识,现代规范中的条文有的被列为强制性条文.有的条文中用了“严禁,不得,不许。不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

(二)抗震设计的理论

拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性.地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的质量乘以―个比例常数(地震系数)。

反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加州理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的―个重要成果:动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解.同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为―个时间过程.选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

三、建筑结构抗震设计的基本内容

(一)建筑结构抗震设计的基本内容

(1)应重视建筑结构的规则性。建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案。因为震害表明,对称建筑在地震时较不容易破坏,容易估计出其地震反应,宜于采取相应的抗震构造措施和进行细部处理。

(二)抗震概念设计应坚持的原则

(1)结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能

①结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。

②对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。

③承受竖向荷载的主要构件不宜作为主要耗能构件。

(2)尽可能设置多道抗震防线

①一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架一剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。

②强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部沉余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

③适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。

④在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

(四)抗震措施

有抗震设防要求的高层建筑除应满足强度、刚度要求外,还要满足延性的要求。钢筋混凝土材料本身自重较大,所以对于高层建筑的底层柱,随着建筑物高度的增加,其所承担的轴力不断增加,而抗震设计对结构构件有明确的延性要求,在层高一定的情况下,提高延性就要将轴压比控制在一定的范围内而不能过大,这样则必然导致柱截面的增大,从而形成短柱,甚至成为剪跨比小于1.5的超短柱。众所周知,短柱的延性很差,尤其是超短柱几乎没有延性,在建筑遭受本地区设防烈度或高于本地区设防烈度的地震影响时,很容易发生剪切破坏而造成结构破坏甚至倒塌。

(1)使用复合螺旋箍筋

高层建筑框架柱的抗剪能力是应该满足剪压比限值和“强剪弱弯”要求的,柱端的抗弯承载力也是应该满足“强柱弱梁”要求的。因此,使用复合螺旋箍筋来提高柱子的抗剪承载力,改善对混凝土的约束作用,能够达到改善短柱抗震性能的目的。

(2)采用分体柱

由于短柱的抗弯承载力比抗剪承载力要大得多,在地震作用下往往是因剪坏而失效,其抗弯强度不能完全发挥。因此,可人为地削弱短柱的抗弯强度,使抗弯强度相应于或略低于抗剪强度,可以在柱中沿竖向设缝将短柱分为各柱肢组成的分体柱,分体柱的各柱肢分开配筋在组成分体柱的柱肢之间可以设置一些连接键,以增强它的初期刚度和后期耗能能力。一般连接键有通缝、预制分隔板、预应力摩擦阻泥器、素混凝土连接键等形式。

对分体柱工作性态的理论分析和试验研究表明:采用分体柱的方法虽然使柱子的抗剪承载力基本不变,抗弯承载力稍有降低,但是使柱子的变形能力和延性均得到显著提高,其破坏形态由剪切型转化为弯曲型,从而实现了短柱变“长柱”的设想,有效地改善了短柱尤其是剪跨比过小的超短柱的抗震性能。分体柱方法已在实际工程中得到应用。

(3)提高短柱的受压承载力

提高短柱的受压承载力可减小柱截面、提高剪跨比,从而改善整个结构的抗震性能。减小柱截面和提高剪跨比,最直接的方法就是提高混凝土的强度等级,即采用高强混凝土来增加柱子的受压承载力,降低其轴压比;但由于高强混凝土材料本身的延性较差,采用时须慎重或与其他措施配合使用。此外,可以采用钢骨和钢管混凝土柱以提高短柱的受压承载力。

建筑工程结构的抗震设计是一个系统、复杂、艰巨的任务,建筑物的抗震设计水平在很大程度上决定了建筑物整体结构的设计质量,在地震灾区更是关系到人民群众的生命财产安全。所以,在具体设计时,要综合考虑建筑物的特点、施工环境等多种因素,寻求最合理的抗震设计方法

参考文献:

[1] 刘大海,高层建筑抗震设计[M ],北京;中国建筑工业出版社,2006。

防震设计论文范文第12篇

【关键词】高层建筑;抗震设计

随着高层建筑的普及,高层建筑的抗震工作也成为我们必须关注的重点。那么如何更好地实现高层建筑抗震的理想?我从以下几方面论述:

1.建筑抗震的理论分析

1.1建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

1.2抗震设计理论发展历程

(1)拟静力理论。拟静力理论是20世纪40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

(2)反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

(3)动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

2.高层建筑结构抗震要求

2.1高层建筑的抗震设计理念

我国《建筑抗震规范》对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

2.2抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。

2.3抗震等级的确定

(1)抗震等级:是设计部门依据国家有关规定,按“建筑物重要性分类与设防标准”,根据烈度、结构类型和房屋高度等,而采用不同抗震等级进行的具体设计。以钢筋混凝土框架结构为例,抗震等级划分为四级,以表示其很严重、严重、较严重及一般的四个级别。

(2)地震烈度:是国家主管部门根据地理、地质和历史资料,经科学勘查和验证,对我国主要城市和地区进行的抗震设防与地震分组的经验数值,是地域概念。抗震设防类别分为甲、乙、丁类建筑,全国大部分地区的房屋抗震设防烈度一般为8度。

2.4抗震措施的要求

(1)甲类、乙类建筑:当本地区的抗震设防烈度为6~8度时,应符合本地区抗震设防烈度提高一度的要求;当本地区的设防烈度为9度时,应符合比9度抗震设防更高的要求。当建筑场地为Ⅰ类时,应允许仍按本地区抗震设防烈度的要求采取抗震构造措施。

(2)丙类建筑:应符合本地区抗震设防烈度的要求。当建筑场地为I类时,除6度外,应允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施.按建筑类别及场地调整后用于确定抗震等级烈度,按调整后的抗震等级烈度。

(3)抗震设计时,多高层建筑钢筋混凝土结构构件应根据设防烈度、结构类型和房屋高度采用不同的抗震等级,并应符合相应的计算和构造措施要求。

(4)建筑场地为Ⅲ、Ⅳ类时,对设计基本地震加速度为0 15G和O.30G的地区,宜分别按抗震设防烈度8度(0.20G)和9度(0.40G)时各类建筑的要求采取抗震构造措施。

(5)抗震设计时、与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级;主楼结构在裙房顶部上、下各一层应适当加强抗震构造措施。

(6)房屋高度大、柱距较大而柱中轴力较大时,宜采用型钢混凝土柱、钢管混凝土柱,或采用高强度混凝土柱。

(7)高层建筑结构中,抗震等级为特一级的钢筋混凝土构件,除应符合一级抗震等级的基本要求外,尚应符合下列规定:

1)框架柱应符合下列要求:

①宜采用型钢混凝土柱或钢管混凝土柱。

②柱端弯矩增大系数`Η_C`、柱端剪力增大系数`Η_VC`.应增大20%。

③钢筋混凝土柱柱端加密区最小配箍特征值`Λ_V`,应按表5-13的数值增大0.02采用;全部纵向钢筋最小构造配筋百分率,中、边柱取1.4%,角柱取1.6%。

2)框架梁应符合下列要求:

①梁端剪力增大系数应增大20%。

②梁端加密区箍筋构造最小配箍率应增大10%。

3)框支柱应符合下列要求:

①宜采用型钢混凝士柱或钢管混凝土柱。

②底层柱下端及与转换层相连的柱上端的弯矩增大系数取1.8,其余层柱端弯矩增大系数`Η_R`应增大20%;柱端剪力增大系数`Η_VR`应增大2U%;地震作用产生的柱剪力增大系数取1.8,但计算柱轴压比时可不计该项增大。

③钢筋混凝土柱柱端加密区最小配箍特征值`Λ_R`应按原来的数值增大0.03采用,且箍筋体积配箍率不应小于1.6%;全部纵向钢筋最小构造配筋百分率取1.6%。

4)筒体、剪力墙应符合下列要求:

①底部加强部位及其上一层的弯矩设计值应按墙底截面组合弯矩计算值的1.1倍采用,其他部位可按墙肢组合弯矩计算值的1.3倍采用;底部加强部位的剪力设计值,应按考虑地震作用组合的剪力计算值的1.9倍采用,其他部位的剪力设计值,应按考虑地震作用组合的剪力计算值的1.2倍采用。

②一般部位的水平和竖向分布钢筋最小配筋率应取为0.35%,底部加强部位的水平和竖向分布钢筋的最小配筋率应取为0.4%。

防震设计论文范文第13篇

本文探讨了目前钢结构抗震设计中存在的两个主要问题:其一是钢结构地震作用,由于多层和高层钢结构房屋被列入“建筑抗震设计规范”(GB9001-2001)中。没有考虑钢结构塑性好和弹性阶段阻尼比较小的特性,使得钢结构地震作用较大,偏高用钢量;其二是钢结构承载力抗震调整系数对梁和焊缝的规定与母材强度低于焊缝强度的实际而不符,本文对现在抗震规范作用的相关要求、“抗震动态与建筑工程理论设计原则”和UBC关于美国规范的地震波动作用进行了比较和分析,按照钢结构的承受能力将体系化分为四大类,在上述理论将体系调整系数引入,对结构的抗震作用,提出恰当意见,对梁柱刚性连接体系,从抗震设计角度分析,对设防烈度区分别建议了适合采用的连接形式,并给出了小震和大震下的设计验算公式。

关键词:

钢结构;地震作用;梁柱刚性连接;门式刚架抗震设计

我国每年有超万亿吨之多的钢产量,加快我国的钢产业政策由长久采取的“节约钢材”变为“合理用钢”、“鼓励用钢”,所以钢结构的用量有良好的前景。我国为地震区的城市有很多,因此应该按照规范进行抗震分析和设计。

1钢结构抗震分析

1.1钢结构跃层加层动力分析概述古今中外,地震灾害造成的损失是难以估量的,在地震灾害中,我们付出的代价是惨重的,与此同时也取得了大量而宝贵的经验和知识。通过对震后的调查和研究表明,造成震害的主要原因之一是建筑立面与平面不规则。竖向抗侧力构件不连续是跃层加层房屋加固和改造形式的特点,从竖向看,抗侧力较小,在加层标高处,刚度易形成突变,因此从建筑立面规则性方面思考,此结构根本对抗震设计无用。所以为了避免抗震造成的不利影响,应采用有良好抗震性能的钢结构,能在一定程度上弥补跃层加层技术布置的不合理。钢材是匀质材料且各项同性,有延性好、质量轻、强度高的特点,为达到建筑抗震的要求,钢结构是使用的材料之一。当地震作用时,钢结构框架由于钢材强度高和均匀的材质,因而结构的稳定性和可靠性较大;钢结构房屋的自重轻,因为钢材的强度大和质量轻,从而地震波动作用对结构的作用会减小;因为钢结构延性性能较好,所以钢结构具的变形能力很大,房屋在很大的变形下也不会倒塌,从而结构的抗震安全性得以保证。

1.2抗震性能的特点良好的抗震性能是钢结构的特点,概括起来主要包括以下方面:(1)钢材材质均匀,受力性能各项同性,有韧性好、强度高、质量轻等优点,在震波的受力作用下,由于钢材的材质均匀,整体受力,质量轻,强度可靠,因而钢结构的房屋可靠性和稳定性大;(2)由于刚架结构自重轻和整体性好,较能承受地震的波动,使地震作用变小;(3)因为采用压型钢板,使墙面和屋面具有很好的蒙皮作用,使地震作用减少;(4)钢结构形式建筑的房屋,较低矮,亦使房屋能够承受地震波动;(5)采用端板半刚性连接梁一梁和梁一柱的刚架,当地震作用,外力很大,超过设计荷载时,弹塑性变形增大,弯矩增大,降低了受弯承载力,变形增大,具有良好的延性。

1.3结构地震反应理论分析方法从古至今,地震很难预测,预防措施是减少地震灾害最主要的方法,临时性的地震预报可减少经济的损失和人员的伤亡,但这是不可能的。结构抗震最好的预防措施是采取可行有效的设计方法,使结构抗震能力提高,避免结构的大裂缝和倒塌,避免经济损失和人员伤亡。随着科技进步、经济的发展、人们抗震理念的深入,建筑的抗震设计随着抗震理论的加深而成熟,抗震设计的科学领域已经形成且庞大。目前正在发展中的概率弹塑性理论和静力理论、反应谱理论、直接动力分析理论是结构抗震设计理论发展经历的4个阶段。结构地震反应分析方法的理论基础是根据结构抗震设计理论而定的,时程分析法、振型分解反应谱法和底部剪力法是地震作用分析方法的三个基本方法。

2钢结构抗震设计

2.1梁柱刚性连接抗震设计钢结构梁柱刚性连接脆性断裂是造成日本阪神地震和美国北岭地震人员伤亡和经济损失的直接原因。此后许多专家做了大量的实验,根据实验结论,提出了防止断裂的方法和预防措施,可以降低构件脆性,提高构件延性,防止节点处脆性破坏的发生,现行规范没有纳入这些成果。目前我国常用钢结构连接形式是栓焊混合连接梁柱刚性连接,它具有节省钢材、构造简单、节约工期等优点。但这种形式的节点不用于美国北岭,严重的脆性断裂是这次地震中房屋倒塌的主要原因,为此经专家分析发现,有效地提高节点塑性转动能力的方式就是在抗剪板和梁腹板之间补焊,为了避免现场焊接的梁柱连接缺陷也可以采用梁一梁拼接型式。

2.2门式刚架抗震设计门式刚架与传统的单层房屋有差距,因为自重相对较轻,采用轻型墙面和屋面。因此《抗规》规定,普通钢厂房的抗震规定对单层轻型的钢厂房不适用。《门规》对此做了如下规定:(1)从设计方面出发,单层轻型门式房屋钢结构的质量较轻,对7度以下抗震烈度设防地区,抗震验算不用进行,当抗震设防烈度大于s度时,结构的纵向和横向框架应该进行相关的抗震验算和分析以便于居住。(2)当由地震控制设计由效应组合作用时,在构造上,采取相应的抗震措施来针对轻型钢结构的特点。比如,按屈服强度的1.2倍来设计支撑连接处的承载力;宜加腋来提高斜梁下翼缘和刚架柱连接点处的承载力,应减小该处翼缘受压区域内的宽厚比;适当的用强度高的螺栓对构件进行加固和连接;把抗剪键设置造柱脚底板,要增强高锚栓的抗剪力和抗拔力应采取必要措施;适当的提高抗拔承载力和抗剪承载力和抗扭矩承载力。(3)低矮是单层轻型门式刚架钢结构房屋的特点(一般不超过18m,高度小于40m),且质量集中在上部,主要的受力形式是剪切受力,近似于单质点体系的结构,符合《抗规》第5.1.2条规定,进行抗震计算分析的方法可用底部剪力法;根据《抗规》第9.2.5条,结构阻尼比取0.045-0.050。应按照附录H.2和《抗规》9.2节来进行抗震设计单层及多层钢结构工业厂房(单层轻型钢结构厂房除外)。

3结语

在对美国UBC规范的地震作用、“建筑工程抗震性态设计通则”和现行抗震规范比较分析的基础上,从抗震设计原则出发,针对刚性连接的梁柱,对于结构,我国采用“小震不坏,中震可修,大震不倒”的设计理念,按大震验算和小震设计的方法来落实到设计规范上。线弹性和塑性是结构的特点,振型耦合的叠加原理可以来反应地震波动。结构的基础与土层之间无直接相互作用,所以全部支座处的地震波动相同,最大的地震反应是结构的最不利地震反应。

参考文献

[1]渡边邦夫.钢结构设计与施工.北京:中国建筑工业出版社,2006.

[2]王国周,瞿履谦.钢结构—原理与设计—.北京:清华大学出版社,2005.

防震设计论文范文第14篇

关键词:高层建筑抗震设计结构设计方法

中图分类号:TU97文献标识码: A 文章编号:

我国是一个地震灾害比较频繁的国家,对于高层建筑来说,一旦遭遇地震,往往会遭受巨大的损失。因此在进行高层建筑结构抗震设计的过程当中应该充分考虑当地的地质情况,有针对性的进行相应的设计,尽可能的降低地震造成的损坏。

一、建筑抗震的理论分析

1、建筑结构抗震规范建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2、抗震设计的理论拟静力理论。拟静力理论是20 世纪10~40 年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。反应谱理论。反应谱理论是在20世纪40~60 年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20 世纪70-80 年广为应用的地震动力理论。它的发展除了基于60 年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

二、高层建筑抗震设计结构设计的方法

对高层建筑结构的抗震设计时,要从减小地震作用力的输入和增强地震抵抗力两个方面进行考虑。下面将从五个方面进行分析:尽可能减小地震作用能量的输入,运用高延性设计、推广消震和隔震措施的运用,注重抗震结构的设计,重视建筑材料的选择,增多抗震防线的建设。将减小地震作用力和增强建筑的地震抵抗力二者结合起来,从两方面入手,进行建筑抗震的设计施工。

1、减少地震发生时能量的输入

在具体的设计中,积极采用基于位移的结构抗震方法,对具体的方案进行定量分析,使结构的变形弹性满足预期地震作用力下的变形需求。对建筑构件的承载力进行验收的同时,还要控制建筑结构在地震作用下的层间位移限值;并且更具建筑构件的变形和建筑结构的位移之间的关系,确定构件的变形值;根据建筑界面的应变分布以及大小,来确定建筑构件的构造需求。对于高层建筑来讲,在坚固的场地上进行建筑施工,可以有效减少地震发生作用时能量的输入,从而减弱地震对高层建筑的破坏程度。

2、运用高延性设计、推广消震和隔震措施的运用

现在在我国,许多高层建筑进行抗震设计时,多采用延性结构,也就是适当的控制建筑结构的刚度,允许地震时结构的构件进入到具有很大延性的塑性状态,从而消耗地震作用时的能量,使地震反应减小,减弱地震给高层建筑带来的破坏和重大损失。如果某高层建筑的承载能力较小,但是具有较高的延性,那么在地震中它也不容易倒塌,因为延性构件可以吸收较多的能量,经受住很大的结构变形。延性结构的运用,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒。

进入20 世纪以来,人们对建筑物抗振动能力的提高做出了巨大的努力,取得了显著的成果,其中阻尼器的使用在高层建筑的抗震方面有很大的作用。通过对阻尼器的利用,进行减震和能量的吸收,可以巧妙的避免或减弱地震对高层建筑的破坏作用。

3、注重抗震结构的设计

高层建筑抗震设计的结构应该得到人们的重视。我国150m 以上的建筑,采用的3 种主要结构体系(框.筒、筒中筒和框架- 支撑体系),都是其他国家高层建筑采用的主要体系。我国钢材生产数量已较大,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。

我国传统文化中“以柔克刚”具有价高的思想价值,可以指导很多实际问题。在高层建筑结构的抗震设计中,可以从传统的硬性为主的抗震模式向以柔性为主的抗震模式转变,实现以柔克刚、刚柔相济,有效地减弱地震作用过程中释放的冲击力。比如,在高层建筑的拱形结构中有这样一个例子:迪拜帆船酒店,外观如同一张鼓满了风的帆,一共有56 层、321m高,就是运用拱结构抗震减灾的很好的例子。

4、重视建筑材料的选择

在高层建筑的抗震方案设计中,建筑结构的材料选择也非常重要。首先,我们可以对建筑材料的参数进行抗震性能的分析,从整体上对材料的参数变异性进行研究,而不能仅考虑建筑材料的承载力忽略其他因素。从抵抗地震的角度来讲,就是要控制建筑结构的延性需求,这就要求我们从高层建筑建设施工的各方面,来选择符合抗震需求而且经济适用的建筑结构材料。

5、增多抗震防线的建设

高层建筑结构防震可以设置多道抗震防线,增强对地震的抵抗力。高层建筑物设置多层的地震抵抗防线,第一道防线遭到破坏之后,有后备的第二道、第三道甚至更多的防线对地震的作用力进行阻挡,避免高层建筑物的倒塌。高层建筑结构进行抵抗地震设计时,可以采用具有多个肢节和壁式框架的“框架剪力墙”等防震结构。

框架剪力墙具有性能较好的多道防线抗震结构,其中的剪力墙是第一道抗震防线也的主要的抗侧力构件。所以,剪力墙要足够多,保证它的承受能力较高,不小于高层建筑底部地震倾覆力矩的一半。同时,为承受剪力墙开裂后重分配的地震作用,任一层框架部分按框架和墙协同工作分配的地震剪力,不应小于结构底部总地震剪力的20%和框架各层地震剪力最大值的1.5倍两者的较小值。剪力墙结构中剪力墙可以通过合理设置连梁(包括非建筑功能需要的开洞组成多肢联肢墙,使其具有优良的多道抗震防线性能。

总之,在建筑结构抗震设计方法的研究与进展,尤其是各国历次大地震对人类造成的严重灾害的经验教训,使世界各国地震工程学者及抗震设计人员逐步取得了较为一致的认识,经济与安全的关系,是建筑结构抗震设计的重要技术政策。

参考文献:

[1]杨磊. 论高层建筑结构抗震的优化设计[J]. 建筑设计管理, 2010,(03) .

防震设计论文范文第15篇

本文探讨了目前钢结构抗震设计中存在的两个主要问题:其一是钢结构地震作用,由于多层和高层钢结构房屋被列入“建筑抗震设计规范”(GB9001-2001)中。没有考虑钢结构塑性好和弹性阶段阻尼比较小的特性,使得钢结构地震作用较大,偏高用钢量;其二是钢结构承载力抗震调整系数对梁和焊缝的规定与母材强度低于焊缝强度的实际而不符,本文对现在抗震规范作用的相关要求、“抗震动态与建筑工程理论设计原则”和UBC关于美国规范的地震波动作用进行了比较和分析,按照钢结构的承受能力将体系化分为四大类,在上述理论将体系调整系数引入,对结构的抗震作用,提出恰当意见,对梁柱刚性连接体系,从抗震设计角度分析,对设防烈度区分别建议了适合采用的连接形式,并给出了小震和大震下的设计验算公式。

关键词:

钢结构;地震作用;梁柱刚性连接;门式刚架抗震设计

我国每年有超万亿吨之多的钢产量,加快我国的钢产业政策由长久采取的“节约钢材”变为“合理用钢”、“鼓励用钢”,所以钢结构的用量有良好的前景。我国为地震区的城市有很多,因此应该按照规范进行抗震分析和设计。

1钢结构抗震分析

1.1钢结构跃层加层动力分析概述古今中外,地震灾害造成的损失是难以估量的,在地震灾害中,我们付出的代价是惨重的,与此同时也取得了大量而宝贵的经验和知识。通过对震后的调查和研究表明,造成震害的主要原因之一是建筑立面与平面不规则。竖向抗侧力构件不连续是跃层加层房屋加固和改造形式的特点,从竖向看,抗侧力较小,在加层标高处,刚度易形成突变,因此从建筑立面规则性方面思考,此结构根本对抗震设计无用。所以为了避免抗震造成的不利影响,应采用有良好抗震性能的钢结构,能在一定程度上弥补跃层加层技术布置的不合理。钢材是匀质材料且各项同性,有延性好、质量轻、强度高的特点,为达到建筑抗震的要求,钢结构是使用的材料之一。当地震作用时,钢结构框架由于钢材强度高和均匀的材质,因而结构的稳定性和可靠性较大;钢结构房屋的自重轻,因为钢材的强度大和质量轻,从而地震波动作用对结构的作用会减小;因为钢结构延性性能较好,所以钢结构具的变形能力很大,房屋在很大的变形下也不会倒塌,从而结构的抗震安全性得以保证。

1.2抗震性能的特点良好的抗震性能是钢结构的特点,概括起来主要包括以下方面:(1)钢材材质均匀,受力性能各项同性,有韧性好、强度高、质量轻等优点,在震波的受力作用下,由于钢材的材质均匀,整体受力,质量轻,强度可靠,因而钢结构的房屋可靠性和稳定性大;(2)由于刚架结构自重轻和整体性好,较能承受地震的波动,使地震作用变小;(3)因为采用压型钢板,使墙面和屋面具有很好的蒙皮作用,使地震作用减少;(4)钢结构形式建筑的房屋,较低矮,亦使房屋能够承受地震波动;(5)采用端板半刚性连接梁一梁和梁一柱的刚架,当地震作用,外力很大,超过设计荷载时,弹塑性变形增大,弯矩增大,降低了受弯承载力,变形增大,具有良好的延性。

1.3结构地震反应理论分析方法从古至今,地震很难预测,预防措施是减少地震灾害最主要的方法,临时性的地震预报可减少经济的损失和人员的伤亡,但这是不可能的。结构抗震最好的预防措施是采取可行有效的设计方法,使结构抗震能力提高,避免结构的大裂缝和倒塌,避免经济损失和人员伤亡。随着科技进步、经济的发展、人们抗震理念的深入,建筑的抗震设计随着抗震理论的加深而成熟,抗震设计的科学领域已经形成且庞大。目前正在发展中的概率弹塑性理论和静力理论、反应谱理论、直接动力分析理论是结构抗震设计理论发展经历的4个阶段。结构地震反应分析方法的理论基础是根据结构抗震设计理论而定的,时程分析法、振型分解反应谱法和底部剪力法是地震作用分析方法的三个基本方法。

2钢结构抗震设计

2.1梁柱刚性连接抗震设计钢结构梁柱刚性连接脆性断裂是造成日本阪神地震和美国北岭地震人员伤亡和经济损失的直接原因。此后许多专家做了大量的实验,根据实验结论,提出了防止断裂的方法和预防措施,可以降低构件脆性,提高构件延性,防止节点处脆性破坏的发生,现行规范没有纳入这些成果。目前我国常用钢结构连接形式是栓焊混合连接梁柱刚性连接,它具有节省钢材、构造简单、节约工期等优点。但这种形式的节点不用于美国北岭,严重的脆性断裂是这次地震中房屋倒塌的主要原因,为此经专家分析发现,有效地提高节点塑性转动能力的方式就是在抗剪板和梁腹板之间补焊,为了避免现场焊接的梁柱连接缺陷也可以采用梁一梁拼接型式。

2.2门式刚架抗震设计门式刚架与传统的单层房屋有差距,因为自重相对较轻,采用轻型墙面和屋面。因此《抗规》规定,普通钢厂房的抗震规定对单层轻型的钢厂房不适用。《门规》对此做了如下规定:(1)从设计方面出发,单层轻型门式房屋钢结构的质量较轻,对7度以下抗震烈度设防地区,抗震验算不用进行,当抗震设防烈度大于s度时,结构的纵向和横向框架应该进行相关的抗震验算和分析以便于居住。(2)当由地震控制设计由效应组合作用时,在构造上,采取相应的抗震措施来针对轻型钢结构的特点。比如,按屈服强度的1.2倍来设计支撑连接处的承载力;宜加腋来提高斜梁下翼缘和刚架柱连接点处的承载力,应减小该处翼缘受压区域内的宽厚比;适当的用强度高的螺栓对构件进行加固和连接;把抗剪键设置造柱脚底板,要增强高锚栓的抗剪力和抗拔力应采取必要措施;适当的提高抗拔承载力和抗剪承载力和抗扭矩承载力。(3)低矮是单层轻型门式刚架钢结构房屋的特点(一般不超过18m,高度小于40m),且质量集中在上部,主要的受力形式是剪切受力,近似于单质点体系的结构,符合《抗规》第5.1.2条规定,进行抗震计算分析的方法可用底部剪力法;根据《抗规》第9.2.5条,结构阻尼比取0.045-0.050。应按照附录H.2和《抗规》9.2节来进行抗震设计单层及多层钢结构工业厂房(单层轻型钢结构厂房除外)。

3结语

在对美国UBC规范的地震作用、“建筑工程抗震性态设计通则”和现行抗震规范比较分析的基础上,从抗震设计原则出发,针对刚性连接的梁柱,对于结构,我国采用“小震不坏,中震可修,大震不倒”的设计理念,按大震验算和小震设计的方法来落实到设计规范上。线弹性和塑性是结构的特点,振型耦合的叠加原理可以来反应地震波动。结构的基础与土层之间无直接相互作用,所以全部支座处的地震波动相同,最大的地震反应是结构的最不利地震反应。

参考文献

[1]渡边邦夫.钢结构设计与施工.北京:中国建筑工业出版社,2006.

[2]王国周,瞿履谦.钢结构—原理与设计—.北京:清华大学出版社,2005.