美章网 精品范文 通信网络论文范文

通信网络论文范文

通信网络论文

通信网络论文范文第1篇

1.1主动声呐系统的结构主动声呐系统

由上位机PowerPC控制板、DSP处理板、ADC数据采集板、接收机板和水声换能器设备组成,结构框图如图1所示[2,3]。PowerPC控制板通过VME(VersaModuleEuropa)总线与DSP处理板连接,完成DSP芯片的复位和程序加载,查看信号检测结果以及发送控制命令的功能;DSP处理板通过低压差分信号技术接口(LVDS,LowVoltageDifferentialSignaling)读取ADC采集的数据,并对数据进行FFT、波束形成、检测等水声信号处理;ADC数据采集板将接收机输出的模拟信号转换成数字信号;接收机板对换能器输出的模拟电信号进行滤波和放大;水声换能器设备将水声环境中的声信号转换成模拟电信号。

1.2主动声呐系统的改进

上节所述的主动声呐系统凭借VxWorks高性能的实时微内核、可裁剪性以及高可靠性,能够出色地完成声呐系统的控制功能,使系统高效稳定地工作。然而,与Windows操作系统相比,VxWorks很难对系统工作时采集的原始水声数据、信号处理结果和当前工作状态进行比较直观的实时查看和分析处理。尤其在开发和调试阶段,开发人员难以对系统工作状态进行准确判断和实时控制。基于上述功能上的不足,本设计引入一台运行Windows操作系统的远程计算机。通过建立VxWorks与Windows间的TCP/IP网络连接,将系统工作时采集的水声数据、信号处理结果和工作状态经PowerPC控制板,由网络传输至远程计算机端。远程计算机利用图形用户界面和Matlab等数据处理软件将数据和状态实时、直观地展现出来。开发人员还可以随时通过网络向PowerPC控制板发送控制命令,方便查看和控制系统工作状态。主动声呐系统改进后的结构框图如图2所示。

2、VxWorks与Windows间TCP/IP网络通信协议

VxWorks的网络系统由标准网络协议部分组成,即物理层、数据链路层、IP层、TCP层、应用层[1]。Vx-Works在BSD4.4Unix的TCP/IP协议栈的基础上,仅对实时性做了修改。为增强系统的应用性和可移植性,新版的VxWorks增加了一个称为MUX层的接口层,其网络系统结构如图3所示。TCP(TransmissionControlProtocol)是一种面向连接的、可靠的、基于字节流的传输控制协议。VxWorks支持TCP协议,它提供了标准的BSDsocket调用,通过套接字建立网络连接。通信双方的主要工作模式为客户端/服务器模式,客户端与服务器的关系是不对称的[4]。服务器(Serv-er)首先启动,利用函数socket()创建一个套接字,并将套接字与一个本地网络地址(IP地址和端口号)通过函数bind()捆绑在一起。接着令套接字处于被动监听状态listen(),随后服务器进程调用accept()进入等待客户端连接的阻塞状态。客户端(Client)同样利用一个套接字socket()向服务器发送连接申请connect(),处于阻塞接收状态下的服务器收到连接申请后,提供网络服务,建立TCP/IP连接。连接建立后,客户端和服务器就可以利用接收函数recv()、发送函数send()以字节流进行数据通信。TCP客户端/服务器工作模式流程图如图4所示。通信过程中,需根据具体需求,设计客户端和服务器间的数据通信协议,以保证数据流传输的正确性和可靠性。本设计中的Windows端和VxWorks端的数据帧结构如图5所示,其中,Windows端到VxWorks端的帧结构中,帧起始标志、DSP工作任务码、DSP号、帧结束标志均为占1个字节的unsignedchar型,帧总字节长度、DSP采集数据大小、DSP文件数据长度为占4个字节的unsignedint型,DSP文件数据块为char型指针;VxWorks端到Windows端的帧结构中,帧起始标志、采集数据标志、工作状态标志、帧结束标志同样为1字节unsignedchar型,帧总字节长度和数据块字节长度为4字节unsignedint型,数据块为char型指针。软件设计时,应根据此通信协议的帧结构定义相关结构体及变量。

3、VxWorks与Windows间TCP/IP网络通信的软件设计

VxWorks与Windows间TCP连接的软件设计是基于套接字socket编程的,每个连接包括一个客户端和一个服务器。为使用方便,本设计以远程Windows作为客户端,主动声呐系统中的VxWorks作为服务器。反之,基本过程类似,本文不再做详细介绍。4.1服务器端(VxWorks)软件设计服务器端软件在集成开发环境WindRiverWorkbench3.0中用C语言进行开发,相比VxWorks6.0之前版本所用的集成开发环境Tornado,Workbench更为方便,功能也更加完善。在主机系统(Windows)中的Workbench开发环境下,将经过编译、调试的应用程序下载到目标机(VxWorks),在目标机上运行服务器程序。服务器端的软件设计过程如下[5]。(1)设置本地地址。VxWorks提供了socket通信的socket地址结构sockaddr_in,定义结构型变量serverAddr,初始化如下:serverAddr.sin_family=AF_INET;//指定TCP/IP协议簇serverAddr.sin_len=(u_char)sockAddrSize;//serverAddr的字节长度serverAddr.sin_port=htons(SERVER_PORT_NUM);//设置端口号serverAddr.sin_addr.s_addr=htonl(INADDR_ANY);//设置IP地址(2)创建基于TCP的套接字。利用函数socket完成套接字的创建。sFd=socket(AF_INET,SOCK_STREAM,0);参数AF_INET代表使用TCP/IP协议簇,SOCK_STREAM表示全双工字节流。函数调用成功后返回一个套接字描述符sFd,代表用于当前连接的套接字,下面绑定、监听、连接时都将用到此套接字描述符。(3)绑定套接字。通过bind函数将套接字和本地地址(IP地址和端口号)绑定在一起。bind(sFd,(structsockaddr*)&serverAddr,sockAddrSize)。(4)创建客户端连接请求。服务器程序在套接字sFd指定的端口上开始监听,创建客户端连接请求队列,等待客户端的连接请求。listen(sFd,SERVER_MAX_CONNECTIONS)。(5)接受新的连接并创建任务。服务器调用accept函数进入阻塞状态,当客户端发出连接申请时,服务器接受请求并建立一个连接:newFd=accept(sFd,(structsockaddr*)&clientAddr,&sockAddrSize);成功建立连接后,返回一个新的套接字描述符newFd,以供当前连接使用。服务器程序可以用taskSpawn创建一个新任务来处理刚建立的连接,并继续在当前任务下监听新的连接。(6)接收和发送数据。成功建立连接后,利用当前连接返回的新套接字描述符newFd接收和发送数据。既可以通过TCP操作函数send、recv进行数据交换,也可以调用I/O系统的操作函数read、write来实现。recv(newFd,pDatabuf,bDataLen,0);read(newFd,pDatabuf,bDataLen);表示从新建立连接的缓存区pDataBuf读取bDataLen字节长度的数据,其中recv中的参数0为标志位。send(newFd,pDatabuf,bDataLen,0);write(newFd,pDatabuf,bDataLen);表示向新建立连接的缓存区pDataBuf写入bDataLen字节长度的数据。4个函数的返回值均为实际读/写成功的数据字节长度。(7)关闭连接。数据交换结束时,通过函数close(newFd)关闭当前连接。程序的末尾调用close(sFd)关闭服务器套接字。4.2客户端(Windows)软件设计客户端软件是基于跨平台框架Qt开发实现的[6]。Qt为开发图形用户界面应用程序提供一个完整的C++应用程序开发框架,集成了丰富的类和API(应用程序编程接口)函数,编程方便。Qt支持TCP网络连接,通过QTcpSocket和QTcpServer类可以用来实现TCP客户端和服务器。(1)创建套接字。利用QTcpSocket类创建一个套接字对象m_tcpClient实现连接。(2)建立连接。套接字对象通过调用连接主机函数,向服务器发送连接申请。m_tcpClient.connect-ToHost(HOST_IP_ADDRESS,HOST_PORT_NUM);两个参数依次为服务器的IP地址和端口号。(3)接收和发送数据。QTcpSocket继承了QIODevice类,对象m_tcpClient可以直接调用QIODevice类中的read()、write()函数,从当前连接的缓存区读写指定字节长度的数据。(4)关闭当前连接。客户端通过m_tcpClient.disconnectFromHost()断开与服务器间m_tcpClient创建的连接,其他套接字对象创建的连接不受影响。

4、水池实验结果

通过水池实验验证主动声呐系统工作时TCP/IP网络通信的正确性、稳定性和可行性。实验中,信号发生器发射脉冲调制信号,脉冲宽度2ms、重复周期20ms、中心频率25kHz。经换能器转换为声信号发射到水池中。脉冲调制信号经水声环境传播到声呐系统,经过换能器、接收机、ADC板等变为数字信号送至DSP处理,再将采样数据和计算结果经上位机通过TCP网络上传到远程计算机。远程计算机通过网络控制声呐系统并实时将采集的数据和运算结果用Matlab进行绘图显示。图6为示波器检测的接收机输出信号,脉冲持续4格,每格时间500μs,故脉冲持续时间为2ms。示波器每格约有12.5个信号周期,即每个信号周期约为40μs,故信号的中心频率为25kHz,与发射信号能够很好地匹配,说明接收机成功地接收到发射信号。图7为接收机输出信号经ADC板以35.159kHz速率采样后,经过DSP和上位机通过TCP网络上传到远程计算机,在远程计算机端绘图的结果。图7中稳态脉冲信号的采样点数为134-60=74个,与理论采样点数:35.159kHz×2ms=70.318基本相同。脉冲幅度最大值均为2V左右。对比图6图7得出,主动声呐系统通过TCP网络通信,将数据完整、准确地上传到了远程计算机。此外,通过多次实验进一步验证了网络通信的正确性、可靠性。

5、结束语

通信网络论文范文第2篇

交通运输业在新的历史时期面临着新的机遇和挑战。必须以网络通信资源开发利用为主线,加快电子政务建设的步伐。

(一)通过全国联网,建立道路数据中心。建立公路、运输业户、运输车辆以及从业人员等大型基础信息资源库。推动各级交通管理部门的目录体系建设。采用数据交换技术,建立行业数据交换平台,形成完善的数据交换指标体系,推动道路运输服务系统的信息化建设。

(二)建立健全交通行业信息化标准体系。以电子政务应用系统数据元标准为核心,以推动标准应用为导向,加强交通运输业信息化建设的标准化工作,完善交通行业信息化标准体系,确保交通运输信息化建设“有标可依”。积极推动智能交通、现代物流、电子数据交换、交通通信与导航及电子地图等信息化推广应用工作。

(三)加大对物流信息化发展的组织和引导力度。积极引导RFID技术、集装箱多式联运等物流信息化研究成果的推广应用,开展公共服务模式的物流信息平台建设。建立和完善公路货运枢纽信息系统,推动农村物流系统、应急保障体系系统、大件运输和危险品运输系统等与人民群众关系密切或“市场失灵”的物流信息平台建设。

(四)建立完善的物流信息平台。以互联互通为目标,启动高速公路信息通信资源整合工程。倡导物流企业间的联合与协作,逐步形成若干具有较强的辐射功能和影响力的区域性物流信息平台。

二、威胁交通运输网络通信安全的因素分析

网络故障基本上都是硬件连接和软件设置问题,也可能是操作系统应用服务本身的问题。网络安全方面的问题有可能是因为电磁泄露、黑客非法入侵、线路干扰、传播病毒、搭线窃听、信息截获等,造成信息的泄露、假冒、篡改和非法信息渗透、非法享用网络信息资源等等。主要表现为计算机打开页面连接浏览器无法与互联网连接和局域网内机器互访信息共享受阻。来自网络安全的威胁因素,根据其攻击的目标和范围不同,对网络的危害程度也不同。网络安全可分为控制安全和信息安全两个层次。控制安全是指身份论证、授权和访问限制。信息安全是要保证有关信息的完整性、真实性、保密性、可用性、可控制性和可追溯等特性。造成对网络威胁的主要原因基本有三:人为的误操作;人为的恶意攻击;计算机网络软硬件的安全漏洞和缺陷。因为开放性、交互性、分散性、脆弱性和连接方式的多样性是计算机网络通讯的共有特征,计算机病毒和黑客入侵是威胁当今网络安全的最主要因素。针对屡屡出现一些技术故障和网络通讯安全方面的问题,探索和掌握一套行之有效的维护网络常见故障的技术和方法是确保网络管理安全运行的关键。

三、交通运输网络通信安全的保障内容

(一)链接网络的安全保障。其是指从技术上和管理上解决网络系统用户应用方面对网络基础设施漏洞、操作系统漏洞和通用基础应用程序漏洞的检测与修复;对网络系统安全性能的整体综合测试;防火墙等网络安全防病毒产品的部署,脆弱性扫描与安全优化;模拟入侵及入侵检测等。

(二)信息数据的安全保障。即是指从技术上和管理上解决信息数据方面和对载体与介质的安全保护和对数据访问的控制。

(三)通信应用的安全保障。指对通信线路的安全性测试与优化,设置通信加密软件、身份鉴别机制和安全通道。测试业务软件的程序安全性等系统自检通信安全的保障措施,对业务交往的防抵赖,业务资源的访问控制验证,业务实体的身份鉴别检测。测试各项网络协议运行漏洞等等。

(四)运行安全的保障。指以网络安全系统工程方法论为依据,提供应急处置机制和配套服务和系统升级补丁。网络系统及产品的安全性检测,跟踪最新漏洞,灾难恢复机制与预防,系统改造管理,网络安全专业技术咨询服务等。

(五)管理安全的保障。包括人员管理及培训,软件、数据、文档管理,应用系统及操作管理,机房、设备及运行管理等一系列安全管理的机制。

四、交通运输网络通信的安全防范措施

随着网络通信安全技术的日益产业化和网络通信安全的法律环境建设的日益完善,交通运输网络通信的安全防范技术也在日臻完善。

(一)保持高度警惕,保持主机和网络上结点计算机的安全。遵循多人负责、任期有限、职责分离三原则。切实提高网络通信安全的防范意识。

(二)控制访问权限,安全共享资源。使每个用户只能在自己的权限范围内使用网络资源。做到开机必查毒,发现必杀毒,经常对系统漏洞补丁升级更新。谨慎下载文档,对于来历不明的电子邮件及附件不轻易用Office软件打开。

(三)选用合格单位的防火墙和防火墙的规则设置、更新。将交通运输局域内网与因特网分隔开来。网络使用者要设置并经常变换口令。对所有进入内网的用户身份进行认证和对信息权限的控制,阻止非授权用户对信息的浏览、修改甚至破坏。对进出内网的数据进行鉴别,防止恶意或非法操作,严防有害信息的侵入。

(四)采用数据加密技术。以不易被人破解为目的,采用密码或计算法对数据进行转换。只有掌握密钥才能破解还原。实现对网络信息数据保密的目的。

五、结语

通信网络论文范文第3篇

随着网络的发展,粘度或粘性(stickiness)这一概念被提出并广泛应用。保罗(Paul)从网站角度出发,在对Yahoo“粘性”计划的分析中将粘性定义为维持现有用户并使其重复使用的能力;[1]而达文波特(Davenport)认为用户粘度是指一个网站能够吸引其用户持久使用和访问的能力;[2]布朗尼(Browne)从用户角度出发,直接从消费者行为角度来定义粘性,他认为用户粘性就是用户主动放弃转向其他替代网站的潜在可能,而坚持使用某网站的行为;[3]汉路威尔(Hallowell)则将用户粘性定义为高频率返回网站的行为。[4]国内对粘度的研究很少,通常将粘度看作是用户忠诚度的一个测量指标。赵青从广义和狭义两个角度对粘性进行了分析,认为粘性是用户持续使用某服务形成的一种伴随心理变化的过度使用行为。[5]这些研究主要倾向于将用户看作个体形式存在,通过提高网络服务的水平和质量来吸引用户,很大程度上与用户满意度、用户忠诚度的研究有交叉,而本文提出了用户间粘度的概念,将粘度的概念置于用户之间,即在使用某一类服务的过程中,存在于用户间的相互关系的紧密程度。本文将视角定在网络通信企业,它是基于网络技术、为用户提供通信服务的企业,其特殊性决定了网络通信企业承担的就是用户在真实世界的沟通,因此网络通信企业的用户间粘度具有以下性质:1.社会性。用户间粘度产生的根源在于用户的社会关系,因此用户间粘度也具有社会性。网络通信企业用户间粘度是用户现实社会关系在网络通信中的具体体现,而使用网络通信手段是帮助用户维系社会关系的一个重要手段,因此社会性是网络通信企业的重要特征之一。2.规模性。也是网络外部性的体现,即当用户通过购买特定产品或者服务加入某一网络时,所获得的效用依赖于同一网络中使用同样产品或服务的人数。因此只有某网络拥有了足够多的用户,才能够确保潜在效用得以实现;而当新用户不断加入,“协同价值”就会在老用户身上得到更为充分的体现。用户越多的网络通信服务平台,其对用户的吸引力越强。在同一服务平台下,用户的交流不仅更为便捷,同时也可能获得更加低廉的资费,以最小的成本来满足和维系用户社会关系的需要。因此,规模越大的服务平台,其吸引新用户的能力就越强,老用户对服务平台的忠诚度也越高。3.市场性。网络通信企业维系用户间粘度的目的,是为了保证服务平台的市场规模,进而保证和提高企业的盈利水平。网络通信企业所做出的维持或增强用户间粘度的手段,从市场出发,目的也是为了获得足够的市场占有率。

二、重大事件分析———以基础电信业为例

本文拟根据网络通信企业用户间粘度的特点,结合电信业重大的、具有标志性事件的梳理,根据中国移动(以下简称“移动”)、中国联通(以下简称“联通”)、中国电信(以下简称“电信”)三大电信企业的营运数据及财务报表中的数据进行整理,通过数据分析和整理,研究得出用户间粘度的影响因素。

(一)网内外区别定价

所谓网内往外区别定价,是指运营商对己方用户间和其他用户间通信收费采用不同定价的方式,移动和联通分别于2002年下半年与2012年采取了网内外差别定价(见表1),并对两个关键时间点的单月用户增长量进行了数据拟合分析。(见图1、图2)1.市场情况,包括市场占有率和市场饱和程度。2002年占有市场绝对优势的移动率先提出进行网内外差别定价,而联通属被动应战,移动正是利用了市场占有率大的优势,通过网内外差别定价,增加用户间的粘度,对占有率低的企业形成沉重的打击。而10年后,逐渐壮大的联通推出了“随意打”,可以看出联通的此次做法,使用户增长量得以提升。同时比较2002年和2012年两次区别定价事件的背景可知,用户间粘度同样与市场饱和度有关。在市场尚未饱和的情况下,区别定价会对用户选择产生明显的影响;而市场饱和度较高后,区别定价对规模较为稳定的平台产生的影响较小,而对规模较小的平台则产生明显的排挤效果。2.资费。网内外差别定价对于消费者而言,最大的表现就是资费的差异,即通信企业通过网内的低资费,将用户锁定在自己的平台内,而这其中,转换成本也是用户必须考虑的因素。在用户规模较大的平台上,区别定价会使用户综合资费水平大幅下降,同时也会吸引新的用户选择本平台以及吸引较小平台用户转向此平台。因此区别定价的形成,建立了一个相对封闭平台,通过价格来形成壁垒,使网内外沟通产生不便。

(二)电信行业的重组改革

我国电信业发展的几十年,政策下的重组改革仍是影响电信业的关键事件,每次改革都是对市场进行重新洗牌,对于用户间粘度有重大的影响。我国的电信行业经历了大致四次重组改革,具体事件和影响如表2所示。本文重点分析了2008年的合并重组,对于2008年8月-2010年2月的单月用户增长量进行了数据的拟合分析,结合关键事件的分析得出以下影响用户间粘度的因素。1.市场情况,包括市场占有率和市场定位。以2008年的重组为例,由于电信原先的用户规模要大于网通,而联通虽然吸收了网通,但由于CDMA的出售,在市场占有率上大幅下降,对其用户增量在重组后一段时期也呈现了下降的趋势。而电信在重组后因其准确的将市场定位在南方,并加速CDMA与原有南方小灵通用户的整合,这一准确的市场定位使得电信在整体市场占有率相对较低的情况下反而在南方市场取得了相对优势,用户增长量有非常明显的提升。2.服务情况。从2008年电信重组中可以明显看出,联通和电信在实现全业务覆盖后,其后续的市场表现明显优于没有获得固网经营资格的移动。其原因就是联通和电信在后续致力于移动网络和固定网络的融合,使得用户在同网通信、缴费和用户体验上面得到很大的提升,同时也带来了巨大的用户增长规模。

(三)飞信业务的兴起

2007年,移动上线飞信业务,原本旨在即时通讯领域与腾讯QQ一较短长,但其推出的飞信用户可以向移动用户免费发短信的服务,迅速成为飞信服务的杀手锏,使得飞信为移动拓展了大量的用户群。免费短信业务,实质上是一种变相的网内外区别定价,即移动用户之间可以通过飞信互发短信完全免费。飞信软件由原先设计的IM软件变成了移动的附属业务,因而从原先设计的自主发展变成了与移动相互依靠发展。虽然联通和电信紧随其后,也迅速推出自己的“飞信”,但联通沃友和电信天翼Live的宣传力度和投入都远远不及移动飞信,飞信业务的特点与影响如表3所示。本文通过分析飞信业务的特点及影响,以及对2007年5月移动推出飞信业务后的用户增长量与联通进行了对比,得出影响用户间粘度的两个因素:1.资费与服务。从飞信的特点可以得出,飞信业务的推出大幅降低了用户间的沟通成本,满足现代年轻人使用即时通讯的使用习惯。同时变相满足用户群发短信的需求,降低了群发短信的门槛。资费的降低和服务的提高促使飞信为移动带来大量的忠实用户,飞信诞生两年后移动便有接近两亿的用户规模,约占移动用户总量的70%以上,从图4的移动用户增长量可以明显的看出效果。2.平台的开放程度。飞信是具有很强排他性的服务,它是服务于移动用户,并且为移动用户提供的增值服务,属于移动的一部分。即使2013年飞信开放对联通、电信用户注册的限制,但并未完全开放其服务。飞信中打通客户端与手机间的免费短信业务并未对联通、电信开放,因此联通、电信用户若要使用飞信,除非保持客户端永远在线或用户愿意额外支付短信费用,否则仍然会有通信障碍,这在很大程度上也促使一部分联通、电信用户转而使用移动。

(四)3G与4G牌照的发放

2009年和2013年,国家向移动、联通、电信三大运营商发放了3G和4G牌照,具体情况如表4所示。通过对3G和4G牌照的发放情况的分析,结合3G牌照发放后移动、联通、电信用户增长规模情况,可分析出影响用户间粘度的以下两个因素:1.技术创新。电信和网络通信行业都有很强的技术创新性,并因此为用户带来更优质的使用体验和通信质量。从3G与4G牌照发放的影响分析,新技术的应用确实能够带来一部分敢于尝鲜的人群,并有机会将这部分人群转化为忠实用户。这部分人群急于利用新技术来提高通信质量和水平,并将这种体验转化为对企业的态度,用口碑和实际行动为企业带来新的用户。2.技术成熟程度。通过3G和4G的评价以及3G推广后各运营商用户增长规模分析可知技术成熟度是影响用户间粘度不可忽视的因素。对于技术不够成熟的TD-SCDMA,移动在3G运营之初的成绩单明显不如拥有成熟技术的联通和电信,当TD-SCDMA频繁遭遇信号覆盖不够、语音质量降低、支持终端太少的问题时,也使移动失去了很多新用户,尤其是高端用户,在用户抱怨新技术不能满足其基本使用时,移动在3G新用户间的粘度也没有做强。

三、结语

通信网络论文范文第4篇

就目前的网络发现趋势来看,网络的综合化、集成化、智能化和高可靠性已成为必然的发展趋势。但是,目前基于电的时分复用方式技术已经到达瓶颈,但是光纤的可用带宽只利用可利用的不到1%,其潜力是很大的。单就基于光路的波分复用(WDM)来讲,目前的商业水平可达到270左右,研究实现的水平1000左右,理论可同时传播360亿路的电话。波分复用的在目前的研究水平上,理论极限大约是15000个波长。国外已有相关人员在一根光纤中传输了65536个光波,这充分说明了密集波分复用的无限可能性。我们有充分的理由相信,以后在光路方面的发展,将会使光纤通信技术更上一个台阶。

2光纤通信网络技术业务趋势

可以说IP技术改变了我们的生活,其依赖的光纤通信技术更可以实现我们更多的梦想。IP技术的核心是IP寻址,是基于TCP/IP协议,其中最主要的两个协议是IP协议和TCP协议,这两个协议保证了信息在网络中的可靠传输。未来的IP业务将承载的不只有文字,更有图像视频,构成未来网络的基础,实现一种基于光纤的智能化网络平台,以满足人们对网络的不同程度的需求。以IP技术为主流的数据业务,将会是当今世界信息化的发展方向。现在几乎已经把能否有效支持IP业务作为一项技术能否长久的标志。目前IP技术已经相当成熟,要拓展更多的IP业务,无疑需要网络开发商创造出性价比更高的低廉传输成本。光纤通信技术能很好的满足这方面的要求。因此,光纤网络技术将会是现代IP业务发展的基础和方向。

3光纤网络通信技术发展方向

从30多年前光纤的问世开始,光纤的传输速率就在不断的提高。有统计表明,在过去的10年中,光纤的传输速率提高了100倍左右。预计在未来的十年,还将再提高100倍左右。IP技术使得三网融合,包括通信网、有线电视网和计算机网络,成为可能。这就需要更高速可靠的信息传播途径,因此,必须让传递信息的介质能够支持这些业务。就目前来看,互联网的通信基本上可以分为三类:人与人,如IP电话;计算机与人,如网页服务;计算机与计算机,如邮件。这些通信对网络的要求也不尽相同。因此,建立一个全新透明的全光路网络就会是此类技术发展的必由之路,我们称之为光联网。这不但会使传统的互联网业务更加可靠便捷,而且会促进一些无法预料到的新业务产生。不难想到,基于光路的波分复用(WDM)技术,将会是未来光联网道路上的先驱。光联网将会将会实现以下几个基本功能:1)超高速的传输速率;2)灵活的网络重组;3)网络层的透明性,对下层网络传输机制透明;3)更易的扩展性,允许网络节点和数据量的不断增长;4)更快速的网络恢复速度;5)同时实现光路和应用层的联网,使其有更健壮的物理层恢复能力。鉴于光联网的巨大优势和潜力,目前一些发达国家已经投入了巨大的人力、财力和物力对其进行研究和实施。光联网将会是电联网以后又一个互联网的革命。这不光对我们国民经济发展有重要意义,而且对国家的信息安全有着重要的战略意义。我们能够预测到,在不久的将来,随着光纤通信网络技术的迅速发展,人们的通信能够朝着传输速率更高、信号更加稳定的方向发展,人们在各种复杂情况之下的通讯要求也能够不断地得以满足。

4结语

通信网络论文范文第5篇

可以从不同角度对网络安全作出不同的解释。一般意义上,网络安全是指信息安全和控制安全两部分。国际标准化组织把信息安全定义为“信息的完整性、可用性、保密性和可靠性”;控制安全则指身份认证、不可否认性、授权和访问控制。

当今社会,通信网络的普及和演进让人们改变了信息沟通的方式,通信网络作为信息传递的一种主要载体,在推进信息化的过程中与多种社会经济生活有着十分紧密的关联。这种关联一方面带来了巨大的社会价值和经济价值,另一方面也意味着巨大的潜在危险--一旦通信网络出现安全事故,就有可能使成千上万人之间的沟通出现障碍,带来社会价值和经济价值的无法预料的损失。

2通信网络安全现状

互联网与生俱有的开放性、交互性和分散性特征使人类所憧憬的信息共享、开放、灵活和快速等需求得到满足。网络环境为信息共享、信息交流、信息服务创造了理想空间,网络技术的迅速发展和广泛应用,为人类社会的进步提供了巨大推动力。然而,正是由于互联网的上述特性,产生了许多安全问题。

计算机系统及网络固有的开放性、易损性等特点使其受攻击不可避免。

计算机病毒的层出不穷及其大范围的恶意传播,对当今日愈发展的社会网络通信安全产生威胁。

现在企业单位各部门信息传输的的物理媒介,大部分是依靠普通通信线路来完成的,虽然也有一定的防护措施和技术,但还是容易被窃取。

通信系统大量使用的是商用软件,由于商用软件的源代码,源程序完全或部分公开化,使得这些软件存在安全问题。

3通信网络安全分析

针对计算机系统及网络固有的开放性等特点,加强网络管理人员的安全观念和技术水平,将固有条件下存在的安全隐患降到最低。安全意识不强,操作技术不熟练,违反安全保密规定和操作规程,如果明密界限不清,密件明发,长期重复使用一种密钥,将导致密码被破译,如果下发口令及密码后没有及时收回,致使在口令和密码到期后仍能通过其进入网络系统,将造成系统管理的混乱和漏洞。为防止以上所列情况的发生,在网络管理和使用中,要大力加强管理人员的安全保密意识。

软硬件设施存在安全隐患。为了方便管理,部分软硬件系统在设计时留有远程终端的登录控制通道,同时在软件设计时不可避免的也存在着许多不完善的或是未发现的漏洞(bug),加上商用软件源程序完全或部分公开化,使得在使用通信网络的过程中,如果没有必要的安全等级鉴别和防护措施,攻击者可以利用上述软硬件的漏洞直接侵入网络系统,破坏或窃取通信信息。

传输信道上的安全隐患。如果传输信道没有相应的电磁屏蔽措施,那么在信息传输过程中将会向外产生电磁辐射,从而使得某些不法分子可以利用专门设备接收窃取机密信息。

另外,在通信网建设和管理上,目前还普遍存在着计划性差。审批不严格,标准不统一,建设质量低,维护管理差,网络效率不高,人为因素干扰等问题。因此,网络安全性应引起我们的高度重视。

4通信网络安全维护措施及技术

当前通信网络功能越来越强大,在日常生活中占据了越来越重要的地位,我们必须采用有效的措施,把网络风险降到最低限度。于是,保护通信网络中的硬件、软件及其数据不受偶然或恶意原因而遭到破坏、更改、泄露,保障系统连续可靠地运行,网络服务不中断,就成为通信网络安全的主要内容。

为了实现对非法入侵的监测、防伪、审查和追踪,从通信线路的建立到进行信息传输我们可以运用到以下防卫措施:“身份鉴别”可以通过用户口令和密码等鉴别方式达到网络系统权限分级,权限受限用户在连接过程中就会被终止或是部分访问地址被屏蔽,从而达到网络分级机制的效果;“网络授权”通过向终端发放访问许可证书防止非授权用户访问网络和网络资源;“数据保护”利用数据加密后的数据包发送与访问的指向性,即便被截获也会由于在不同协议层中加入了不同的加密机制,将密码变得几乎不可破解;“收发确认”用发送确认信息的方式表示对发送数据和收方接收数据的承认,以避免不承认发送过的数据和不承认接受过数据等而引起的争执;“保证数据的完整性”,一般是通过数据检查核对的方式达成的,数据检查核对方式通常有两种,一种是边发送接收边核对检查,一种是接收完后进行核对检查;“业务流分析保护”阻止垃圾信息大量出现造成的拥塞,同时也使得恶意的网络终端无法从网络业务流的分析中获得有关用户的信息。

为了实现实现上述的种种安全措施,必须有技术做保证,采用多种安全技术,构筑防御系统,主要有:

防火墙技术。在网络的对外接口采用防火墙技术,在网络层进行访问控制。通过鉴别,限制,更改跨越防火墙的数据流,来实现对网络的安全保护,最大限度地阻止网络中的黑客来访问自己的网络,防止他们随意更改、移动甚至删除网络上的重要信息。防火墙是一种行之有效且应用广泛的网络安全机制,防止Internet上的不安全因素蔓延到局域网内部,所以,防火墙是网络安全的重要一环。

入侵检测技术。防火墙保护内部网络不受外部网络的攻击,但它对内部网络的一些非法活动的监控不够完善,IDS(入侵检测系统)是防火墙的合理补充,它积极主动地提供了对内部攻击、外部攻击和误操作的实时保护,在网络系统受到危害之前拦截和响应入侵,提高了信息安全性。

网络加密技术。加密技术的作用就是防止公用或私有化信息在网络上被拦截和窃取,是网络安全的核心。采用网络加密技术,对公网中传输的IP包进行加密和封装实现数据传输的保密性、完整性,它可解决网络在公网上数据传输的安全性问题也可解决远程用户访问内网的安全问题。

身份认证技术。提供基于身份的认证,在各种认证机制中可选择使用。通过身份认证技术可以保障信息的机密性、完整性、不可否认性及可控性等功能特性。

虚拟专用网(VPN)技术。通过一个公用网(一般是因特网)建立一个临时的、安全的连接,是一条穿过混乱的公用网络的安全、稳定的隧道。它通过安全的数据通道将远程用户、公司分支机构、公司业务伙伴等跟公司的内网连接起来,构成一个扩展的公司企业网。在该网中的主机将不会觉察到公共网络的存在,仿佛所有的机器都处于一个网络之中。

漏洞扫描技术。面对网络的复杂性和不断变化的情况,仅依靠网络管理员的技术和经验寻找安全漏洞、做出风险评估,显然是不够的,我们必须通过网络安全扫描工具,利用优化系统配置和打补丁等各种方式最大可能地弥补最新的安全漏洞和消除安全隐患。在要求安全程度不高的情况下,可以利用各种黑客工具,对网络模拟攻击从而暴露出网络的漏洞。

结束语

目前解决网络安全问题的大部分技术是存在的,但是随着社会的发展,人们对网络功能的要求愈加苛刻,这就决定了通信网络安全维护是一个长远持久的课题。我们必须适应社会,不断提高技术水平,以保证网络安全维护的顺利进行。

参考文献

[1]张咏梅.计算机通信网络安全概述.中国科技信息,2006.

[2]杨华.网络安全技术的研究与应用.计算机与网络,2008

[3]冯苗苗.网络安全技术的探讨.科技信息,2008.

[4]姜滨,于湛.通信网络安全与防护.甘肃科技,2006.

[5]艾抗,李建华,唐华.网络安全技术及应用.济南职业学院学报,2005.

[6]罗绵辉,郭鑫.通信网络安全的分层及关键技术.信息技术,2007.

[7]姜春祥.通信网络安全技术是关键.网络安全技术与应用,2005.

通信网络论文范文第6篇

DSP芯片是专门为实现各种数字信号处理算法而设计的、具有特殊结构的微处理器,其卓越的性能、不断上升的性价比、日渐完善的开发方式使它的应用越来越广泛。将计算机网络技术引入以DSP为核心的嵌入式系统,使其成为数字化、网络化相结合,集通信、计算机和视听功能于一体的电子产品,必须大大提升DSP系统的应用价值和市场前景。将DSP技术与网络技术相结合,必须解决两个关键问题:一是实现DSP与网卡的硬件接口技术,二是基于DSP的网络通信程序设计。DSP与网卡的硬件接口技术参考文献[1]有比较详尽的论述,以下主要讨论基于DSP的网络通信程序设计。

1通信协议的制定

协议是用来管理通信的法规,是网络系统功能实现的基础。由于DSP可以实现对网卡的直接操作,对应于OSI网络模型,网卡包含了物理层和数据链路层的全部内容,因此,规定了数据链路层上数据帧封装格式,就可以为基于DSP的局域网络中任意站点之间的通信提供具体规范。因为以太网是当今最受欢迎的局域网之一,在以太网中,网卡用于实现802.3规程,其典型代表是Novell公司的NE2000和3COM公司的3C503等网卡,所以研究工作中的具体试验平台是以DSP为核心构成的以太局域网,主要用于语音的实时通信,所使用的网卡为Novell公司的NE2000网卡。NE2000网卡的基本组成请见参考文献[2],其核心器件是网络接口控制器(NIC)DP8390。该器件有三部分功能:第一是IEEE802.3MAC(媒体访问控制)子层协议逻辑,实现数据帧的封装和解封,CSMA/CA(带碰撞检测功能的载波侦听多址接入)协议以及CRC校验等功能;第二是寄存器堆,用户对NE2000网卡通信过程的控制主要通过对这些寄存器堆中各种命令寄存器编程实现;第三是对网卡上缓冲RAM的读写控制逻辑。DP8390发送和接收采用标准的IEEE802.3帧格式。IEEE802.3参考了以太网的协议和技术规范,但对数据包的基本结构进行了修改,主要是类型字段变成了长度字段。所以,以DSP为核心的局域网内通信数据包基本格式如图1所示。

DSP读出数据包和打包从目的地址开始。目的地址用来指明一个数据帧在网络中被传送的目的节点地址。NE2000支持3种目的地址:单地址、组地址及广播地址。单地址表示只有1个节点可以接收该帧信息;组地址表示最多可以有64个字节接收同一帧信息;而广播地址则表示它可以被同一网络中的所有节接收。源地址是发送帧节点的物理地址,它只能是单地址。目的地址和源地址指网卡的硬件地址,又称物理地址。

在源地址之后的2个字节表示该帧的数据长度,只表示数据部分的长度,由用户自己填入。数据字段由46~1500字节组成。大于1500字节的数据应分为多个帧来发送;小于46字节时,必须填充至46字节。原因有两个:一是保证从目的地址字段到帧校验字段长度为64字节的最短帧长,以便区分信道中的有效帧和无用信息;二是为了防止一个站发送短帧时,在第一个比特尚未到达总线的最远端时就完成帧发送,因而在可能发生碰撞时检测不到冲突信号。NE2000对接收到的从目的地址字段后小于64字节的帧均认为是“碎片”,并予以删除。在数据字段,根据系统的具体功能要求,用户可以预留出若干个字节以规定相应的协议,以便通信双方依据这些字节中包含的信息实现不同的功能。

2基于DSP的网络通信程序设计

如果基于网络操作系统,用户可以利用一些软件对网络操作系统的支持,很容易地编写出优秀的网络通信程序,但这些程序必须依附于网络操作系统。而在DSP环境下,必须深入了解网络接口控制器(NIC)的工作原理[2],通过对网络直接编程,实现局域网内任意站点之间的通信而完全抛开网络操作系统。

DSP对网卡的通信过程控制就是DSP对DP8390中各种寄存器进行编程控制,完成数据分组的正确发送和接收。DP8390的所有内部寄存器都是8位,映像到4个页面。每个页面有16个可供读写的寄存器地址(RA=00H~0fH)。页面的选择由命令寄存器CA控制。第0页寄存器用于收发过程,第1页寄存器主要用于DP8390的初始化,第2页寄存器则用于环路诊断。DSP对寄存器的操作是将寄存器作为DSP的端口设备,其实际物理端口地址(PPA)为网卡基本I/O端口地址(BIOA)与寄存器地址(RA)之和(即PPA=BIOA+RA)。应注意的是,PPA与寄存器间并不存在一一对应关系,对PPA的读操作与写操作并不一定是对同一寄存器进行的,这种情况在第0页尤其明显。用户数据分组在DSP和网卡交互是通过网卡的数据端口实现的,既可以用DMA方式也可以用PIO方式读入数据分组或将数据分组送至网卡RAM缓冲区。在本系统中,DSP采用DMA方式对网卡进行数据读写。网卡的数据端口地址(NDPA)为网卡基本I/O地址(BIOA)加偏移地址10H(即NDPA=BIOA+10H)。

网卡通信过程控制可分为网卡初始化、接收控制和发送控制。下面分别予以讨论。

2.1网卡初始化

网卡初始化的主要任务是设置所需的寄存器状态,确定发送和接收条件,并对网卡缓冲区RAM进行划分,建立接收和发送缓冲环。具体过程请参阅参考文献[2]。需要说明的是,每一块网卡被赋予一个物理地址,以便通信站点的标识。这个物理地址存在网卡的PROM(存储地址为0000~0005H)六个单元中,在网卡初始化时,通过远程DMA读入DSP内存中,并送入网卡物理地址寄存器。在一步的意义在于:一方面,如果能正确读出网卡的物理地址,则说明网卡硬件基本没有问题,网卡的上电复位和DSP对网卡的初始化顺利通过;另一方面,这个物理地址可以用于DSP网络系统中的点名、包的过滤丢弃等服务,也就是说,在链路层根据数据帧携带的源地址和目的地址确定数据报从哪里来,是否接收或丢弃。网卡初始化时另一个重要的工作就是接收缓冲环的设置,为了有效利用缓冲区,NIC将接收缓冲区RAM构成环形缓冲结构,如图2所示。

接收缓冲区RAM分成多个256字节的缓冲区,N个(N最大为256)这样的缓冲区通过指针控制链接成一条逻辑上的缓冲环。缓冲环的开始页面地址存入PSTART寄存器,环页面结束地址存入PSTOP寄存器。PSTART和PSTOP确定了接收缓冲环的大小和边界。为便于缓冲环读写操作,还需要2个指针:当前页面指针CURR和边界指针BNRY。CURR确定下一包放在何处,起着缓冲环写页面指针作用;BNRY指向未经DSP取走处理最早到达的数据包起始页面,新接收的数据包不可将其覆盖,起着缓冲环读页面指针的作用。也就是说,CURR可以告诉用户网卡接收的数据分组当前放到了什么位置,而BNRY则用于确定DSP读缓冲环到了什么地方。由于接收缓冲区为环形结构,BNRY和CURR相等时,环缓冲区可能满也可能空。为了使NIC能辨别这两种状态,规定当BNRY等于CURR时,才认为环缓冲区满;当缓冲区空时,CURR比BNRY指针值大1。因此,初始化时设置:BNRY=PSTART,CURR=PSTART+1。这时读写指针不一致,为了保证正确的读写操作,引入一软件指针NEXTPK指示下一包起始页面。显然,初始化时NEXTPK=CURR。这时,缓冲环的读指针对NEXTPK,而BNRY只是存储分组缓冲区的起始页面边界指示,其值为NEXTPK-1。

2.2接收控制过程

DSP完成对DP8390的初始化后,网卡就处于接收状态,一旦收到分组,就自动执行本地DMA,将NIC中FIFO数据送入接收缓冲环,然后向主机申请“数据分组接收到”中断请求。DSP如果响应中断,则启动网卡远程DMA读,将网卡缓冲区中的数据分组读入学生机存储区,然后对接收缓冲环CURR、NEXTPK、BNRY指针内容进行修改,以便网卡能从网上正确接收后续分组。DSP响应网卡接收中断后,接收控制过程如下:

①设置远程DMA的起始地址;RSAR0=00H,RSAR1=Nextpk。

②设置远程DMA操作的字节数,这个长度在46~1500字节范围内根据具体要求自己确定。

③0AH送命令寄存器CR,启动远程DMA读。

④从网卡数据端口依序读入数据分组,注意,最先读入的4字节非数据分组内容,第1字节为接收状态,第2字节为下一包页地址指针,3与4字节为接收字节数。第2字节内容应该送入Nextpk,其它字节根据用户要求处理。

⑤修改边界指针BNRY=Nextpk-1。

⑥清除远程DMA字节数寄存器RBCR0和RBCR1。

2.3发送控制过程

DSP先执行远程DMA写操作,将内存中的数据分组传至网卡发送缓冲区,然后启动发送命令进行数据分组发送。发送控制过程如下:

①设置远程DMA的起始地址为网卡发送缓冲区起始地址;

②设置远程DMA操作的字节数;

③12H送命令寄存器CR,启动远程DMA写;

④依序送出数据分组至网卡发送缓冲区;

⑤清除远程DMA字节数寄存器;

⑥设置发送字节数寄存器TBCR0和TBCR1;

⑦12H送命令寄存器CR,启动数据分组发送。

3发送方发送频率的控制

发送方发送频率的正确控制主要保护两点:一是有一个最小发送时间间隔,否则会因为接收方不能及时接收而导致系统瘫痪;二是发送频率能够足具体的功能实现要求。譬如在语音的实时通信中,发送频率就取决于声卡的采样频率。在8kHz采样频率时,声卡每秒钟采样8000字节,采用1024字节需用时128ms,如果通信协议规定发送1次传送1024字节有效数据,则必须每128ms发送一次才能保证缓冲区有新数据待发送,也才能保证接收方有新数据播放。128ms是一个理论计算数值,在实际的操作中采样速度和发送频率之间总是不能完全匹配,而存放数据的缓冲区大小是有限的,如果没有良好的控制技巧来实现正确发送,就会造成声音抖动和延时。解决的办法是双缓冲技术和双指针控制,并且根据采样速度和发送频率之间的匹配情况送入不同的发送通信进行处理后发送。正确发送的含义有两方面,一是每次发送的都是新数据,二是能满足接收方总在播放新数据的需求。

4接收方防止数据包的丢失

由于DSP通过中断请求判断是否有数据分组到来,如果中断繁忙而两个数据包到来时间相差非常短,DSP有可能只响应一次中断,从而导致丢包的发生。分析网卡接收数据过程,当网卡收到数据分组时,首先执行本地DMA,将NIC中FIFO数据送入接收缓冲环,并将本地DMA操作的起始地址存放在当前页寄存器(CURR)和当前本地DMA寄存器(CLDA0、CLDA1)中,DSP从网卡接收缓冲环读出数据到存储器则称远程DMA操作,用软件指针Nextpk来指示远程DMA的起始页面。因此通过比较网卡本地DMA和远程DMA的当前地址,即在中断服务子程序中比较CURR和Nextpk指针,或比较CLDA0、CLDA1和Nextpk指针,就可以保证当前数据分组放到了哪里就读出到哪里,从而防止丢包的发生。

通信网络论文范文第7篇

1.1内部原因

1.1.1计算机网络系统的稳定因素

计算机已经深入到人们日常生活的方方面面,很难有人可以不接触到计算机而进行工作和生活,因此计算机网络系统的设计的稳定性是很关键的因素,计算机网络通信实际上需要面对许多安全上的隐患,在日常生活和工作中出现的如突然停电、失火或是病毒侵袭等情况,人们尚且可以处理和解决,但是计算机本身的安全问题是由于系统设计得不合理或是不规范所引起的,这就很难进行有效地解决,从而不可避免地带来了计算机网络通信的安全问题。

1.1.2计算机硬件的设计不合理性

计算机的硬件设备是一台计算机是否优秀的重要标准,计算机在硬件设计上如果操作不当,计算机就会在运行的过程中出现安全隐患。例如驱动设计不符合规范,那么计算机在操作的过程中就很容易出现信息和数据在传输的过程中被半路截获,信息和数据的外泄所造成的经济损失难以估计。另一方面如果是显卡出现问题,那么计算机在运行过程中就很容易出现蓝屏或者白屏的现象,进而被迫停止计算机运行,不但影响了正常的工作,还容易泄露信息,给人们生活和工作造成极大地不便。

1.1.3系统安全防范功能不强

计算机网络系统在设计之时,对其自身的安全方面往往考虑得很少,这样就造成了计算机在运行时很容易被人恶意侵袭,或者在访问系统的设计上过于简单,这样计算机的使用者的个人信息(账号和密码)就很容易被盗,不仅个人隐私无法保证,也会有财产的损失。

1.2外部原因

1.2.1突然间的断电或者线路失火

人们在日常使用计算机的时候,突然间的断电或是线路短路都会使人们措手不及,常常是计算机系统内的数据和信息还没来得及保存,这方面的情况无法避免。人们在日常是计算机的时候应该养成良好的办公习惯,数据或者信息有一点存一点,这样可以有备无患,即使出现意外情况也不会产生损失。

1.2.2黑客的攻击或威胁

计算机极大地方便了人们的生活,人们的见识和知识都得到了提升,但是很多问题也随之而来。其中黑客攻击是比较危险的,它会使人们的生活和工作无法正常继续。黑客的攻击可以深入到很多细微之处,可能是一封电子邮件、木马程序或是强行攻击计算机等方式,从而侵袭到计算机,导致整个计算机瘫痪,无法正常工作,内部信息和数据的泄露,造成的损失也无法避免。

1.2.3计算机网络病毒

计算机网络病毒是令人们谈虎色变的网络攻击方式,它对攻击目标没有明确性,但却像传染病似的在计算机网络系统中蔓延开来,只要上网的电脑都会遭到侵袭,无一幸免。计算机病毒具有传播范围广,速度快的特点,整个计算机网络可能在很短的时间内就感染上病毒,比较轻的情况下会使整个计算机网络的网速便面。严重的情况下可能整个计算机网络都无法正常工作,系统的数据和信息都会丢失,从而使公司或者个人都蒙受经济损失和精神上的伤害。

2计算机网络通信的安全防护措施

2.1做好计算机系统技术的稳定性和安全防护工作

在设计计算机网络系统的过程中,要全面的分析和考虑计算机网络系统的每一个环节和容易忽略的方面,要在任何一个可能被黑客或者病毒入侵的地方做好防御和拦截工作.在计算机硬件或者软件上安装病毒拦截或病毒截获系统,在病毒还没有入侵电脑系统的时候。在电脑就把病毒截获或者消灭。还可以在计算机的网络系统中设计一个垃圾文件或者不知名文件的处理系统,使这些文件在进入网络系统之前就被消灭和分解掉。

2.2做好对计算机有关联的外部环境的影响

计算机在工作的过程中很容易遭受外在环境的不良影响,计算机网络通信系统无法正常的工作,如突然断电、线路失火、打雷闪电而造成电脑磁场破坏等等,所以,要经常检测链接电脑的线路问题,看看那些线路有问题,及时的发现或者处理掉。做好电脑防御和避雷的工作,在计算机工作的地方安装避雷针或其他强制干扰电脑磁场的防御措施,使得电脑不容易受外在自然条件的影响或侵害。

2.3做好访问加密措施

实际上无论是黑客的攻击还是病毒的侵袭有些时候都是因为人们对文件的保密和数据的加密设置的过于简单而造成的,所以很容易给黑客、计算机网络病毒或者一些不法犯罪份子提供便利条件,直接造成了信息和数据的外泄和丢失。所以,做好文件的保密工作和数据的加密措施非常有必要。密码作为计算机网络的个人资料保护的基础防线,是值得注意的问题。而很多人对密码的重要性认识还不够。有些人为了方便省事直接把密码设置为一组简单的数字,比如12345。随着人们对黑客等网络安全的认识逐渐深入,有的网站已经要求人们使用字母、数字和下划线重新组织密码,但还是有人设置密码的时候过于简单,abc123这样的密码是时而常见的密码,这样就直接造成了密码盗号的情况。因此在设置密码的时候应该尽量复杂化,还可以不断更换密码,这样不会让黑客有可趁之机———破译密码,人们在使用计算机时,应该特别注意。

3结束语

通信网络论文范文第8篇

量子信道的建立速率定义为两个量子通信节点之间建立量子纠缠对的速率.基于纠缠态的量子通信网络中节点具有以下三个功能:远程传态功能、产生并向周围节点分发纠缠粒子功能和纠缠连接功能.其中纠缠连接功能由纠缠交换功能和纠缠纯化功能组成[2324],采用纠缠连接,可以为不存在纠缠粒子对的节点提供纠缠中继.在该网络中,距离较近的节点可直接分发纠缠粒子,建立量子信道,而相距较远的节点不直接分发高保真度纠缠粒子,需要通过中间节点依次中继,建立两节点间高保真度的量子信道.量子通信网络模型如图1所示.图1中个节点以单位密度分布在正方形的二维平面中,分布区域的正方形面积。整个分布区域的节点总数为,各节点在空间中随机分布,假设在不相交区域中节点数目相互独立,则节点的分布满足空间泊松过程.该量子通信网络有以下特点:1)所有的节点功能相同,可与相邻节点直接通信,也可通过相邻节点为中继与远处节点通信;2)量子信息通过量子纠缠对传输,但节点之间不预先存储量子纠缠对;3)对于相邻节点,在通信开始阶段,节点中进行纠缠粒子生成,生成的纠缠粒子传输至相邻节点,得到高保真度的纠缠对以供量子信息传输。4)对于相距较远的节点,需要先找到一条可以连接待通信两节点的拓扑通路.通过通路上节点的纠缠连接操作,在远距离的节点间得到高保真度的纠缠对.本文分别对该模型下任意两节点间的量子信道建立速率进行分析,包括基础链路、中继长链路以及趋于无穷大时大规模网络中远距离两节点间的量子信道建立速率.

2量子通信网络基础链路的信道建立速率

在基于纠缠态的量子通信网络中,将可以直接通过纠缠粒子分发建立量子信道的节点称为相邻节点,相邻两节点间通过纠缠粒子形成的量子通路称为基础链路.不存在基础链路的节点之间可以通过中继节点之间的基础链路建立量子信道.文献[25]对基础链路上的信道建立速率进行了分析.基础链路上的一个节点由于内部纠缠粒子的存储空间有限,所以节点产生纠缠粒子对的频率也受到限制.假设节点光子产生纠缠粒子操作的频率为,节点按成功概率生一定保真度的纠缠粒子对,为两节点之间的距离,为光速,则相邻两节点之间成功得到一个纠缠光子对的平均时间。

3中继长链路的量子信道建立速率分析

非相邻两节点间如果可以通过中继节点建立量子信道,则两节点间的量子通路称为中继长链路.相邻节点之间可以直接生成量子纠缠对以传递量子信息,但中继长链路上需要各中继节点通过纠缠连接,消耗中继节点上的量子纠缠对,从而在源节点和目的节点之间得到高保真度的量子纠缠对,建立量子信道.图2为仅有一个中继节点的三节点中继长链路,假设节点Alice为源节点,节点Carol为目的节点,节点Bob为中继节点,节点Bob和相邻节点Alice,Carol分别共享量子纠缠对A1-B1和B2-C1.该过程中,节点Bob对位于本节点的量子比特B1和B2执行贝尔基测量,即可得知A1,C1的纠缠状态.在最大纠缠态情形下,纠缠连接即形成.在非最大纠缠态情形下,纠缠连接概率性形成,。由于各基础链路上纠缠粒子生成和纠缠连接操作的顺序不同,可以得到不同的量子信道建立方法,不同的量子信道建立方法对应不同的量子信道建立速率.我们对逐点和分段两种量子信道建立方法所对应的量子信道建立速率进行分析.如图3所示,假设一条中继长链路由个节点和1条基础链路所构成,设源节点编号为1,目的节点的编号为,链路上的节点和基础链路依次编号.假设节点1和之间已建立量子信道,节点和节点之间也已建立量子信道,对某节点进行纠缠连接操作,可得建立该量子信道的速率。如图4所示,逐点量子信道建立方法中各个中继节点上的纠缠生成和纠缠连接操作依次进行,其步骤如下:1)生成中继节点2与源节点1之间的纠缠粒子对;2)生成中继节点2和下一中继节点3之间的纠缠粒子对,中继节点2进行纠缠连接,使得源节点1与中继节点3建立量子信道;3)生成中继节点3和中继节点4之间纠缠粒子对,中继节点3进行纠缠连接,使得源节点1与中继节点4建立量子信道;4)逐点进行,最后生成中继节点(1)和中继节点间纠缠粒子对,中继节点(1)进行纠缠连接,建立源节点1和目的节点间建立量子信道.逐点量子信道建立方法需要在2个中继节点上进行不相互独立的纠缠连接操作.基础链路的信道建立速率由量子纠缠分发速率决定.纠缠光子经由光纤或自由空间信道传输,再经过本地操作实现量子纠缠分发,该过程所需时间设为常数。

4基于逾渗模型的二维量子通信网络量子信道建立速率

量子通信网络的模型与传统通信网络模型类似,都可建模为个节点利用传输信道进行信息传递,所不同之处在于传统无线通信网络使用的是传统无线或者有线信道,而基于纠缠态的量子通信网络使用的是纠缠粒子构成的量子信道.与经典无线通信网络的网格划分相似,可采用逾渗模型对整个网络特性进行分析.逾渗模型证明通过适当的网络网格划分可保证整个网络的连通性,使得网络中的任意源节点和任意目的节点总可找到一条中继链路相连,整个网络中将形成高速公路(highway),高速公路可为其他不在高速公路上的节点提供中继[16].将图1中节点数目为的量子通信网络平面划分为边长为的正方形网格,若某个网格中至少含有一个节点,该节点可为相邻网格中的节点提供中继,则这个网格视为连通的.由单位密度泊松点过程的概率分布规律,网格中至少含有一个节点的概率为(si1)=1e2,其中si代表单个网格中的节点数.网格边长足够大时,可保证网格中至少有一个节点的概率足够大.当网格连通概率大于二维正方形逾渗的逾渗阈值时,将会出现无限大连通集团,整个量子通信网络必然是连通的,即网络中任意两个节点间存在直接量子信道或者由多个中继节点组成的量子信道.当网格连通概率大于二维正方形逾渗的逾渗阈值时,将在水平方向和垂直方向由连通的网格依次相连形成大规模的连通链路,这种连通链路的拓扑结构称为高速公路.高速公路上分布着大量的中继节点,且这些相邻中继节点之间的最远距离由网格的边长决定,使得基础链路的长度最长不超过网格对角线长.高速公路存在于网络水平方向和垂直方向,源节点找到离自己最近的高速公路入口节点,然后在水平方向的高速公路找到与目的节点垂直距离最近的节点,接着通过该节点沿着垂直方向的高速公路找到与目的节点最近的出口节点.由于高速公路的存在,若源节点和目的节点都在高速公路上,则这两个节点可直接利用高速公路的中继作用建立量子信道,若源节点和目的节点至少有一个不在高速公路上,则应先找到最近的高速公路入口节点或出口节点,再通过高速公路中继,从而建立量子信道。由此可知,高速公路上的基础链路的量子信道建立速率仅与节点的量子存储空间、网格划分的对角线长度、给定的量子信息保真度有关,与总节点个数无关,故相对于为常数阶.不在高速公路上的节点要先找到离它最近的高速公路节点作为入口节点或者出口节点,源节点与入口节点之间以及目的节点与出口节点之间存在基础链路,该基础链路的量子信道建立速率与总节点个数有关,由于不在高速路的点与最近的高速公路节点的距离不大于log+22[21],故该基础链路的速率。因此对中继长链路而言,分段量子信道建立方法的量子信道建立速率更高.因此我们对长链路上使用分段量子信道建立方法进行分析.根据源节点和目的节点分布不同,可分为以下两种场景.场景1:若源节点和目的节点都在高速公路上,则对于有Ω()个节点的这条长中继链路,基础链路的最长距离由网格划分的边长决定,此时基础链路上的量子信道建立速率为常数阶,源节点和目的节点成功得到量子纠缠对的速率。所以当量子通信网络的节点都利用逾渗模型所指出的高速公路进行长链路的中继通信,且采用分段量子信道建立方法时,整个量子通信网络的量子信道建立速率为Ω(1/).由于场景2的量子信道建立速率小于场景1的量子信道建立速率,整个量子信息网络的量子信道建立速率上限值由两者的较小值所决定的,故量子通信网络的量子信道建立速率为Ω(1/).

5结论

通信网络论文范文第9篇

实现控制网络应用层鉴别有两种解决方案:完全采用软件的方法;采用时间服务器硬件加软件的方法。第一种方法虽然实现起来比较简单,系统也不需要增加硬件设备,但要实现发送方鉴别,需要4个数据包在网上传送,大大增加了网络信息交通和带宽消耗,及发送到接收的响应时间。采用时间服务器的方案,可使发送到接收响应时间减低40%左右,网络信息交通量和带宽消耗减少一半。采用时间服务器方案对于加强系统管理控制提供了很好的工具。时间服务器的主要功能是实现并保证整个系统内各节点间的时间同步。其主要工作是实现系统计时,并在一定的时间内向各节点分发时间信息。为了对付重放攻击,可以使用不重数(Nonce)。不重数就是一个不重复使用的大随机数,即“一次一数”。最简单并常见的实现方法是使用时间服务器。如下图所示。

2、基于时间服务器(TimeServer)的安全鉴别

时间服务器的主要功能是实现并保证整个系统内各节点间的时间同步。其主要工作是实现系统计时,并在一定的时间内(如一天)向各节点分发时间信息。时间服务器的软件功能主要有两个,一是定期向全网广播时间消息,实现全网内节点的时间同步;二是接受节点的时间同步请求,如节点重新启动、重新安装等,则需要向TimeServer发出时间同步请求。

2.1时间服务器的时间服务流程

(1)时间广播时间广播的间隔由系统参数而定,该参数可以通过软件编程或通过系统级鉴别的方式修改。广播报文的格式如下。时间广播报文格式报文序号的目的是使节点能够在一定程度上对接收到的时间进行验证,防止时间服务器被假冒。(2)接受节点时间同步请求时间服务器的另一个功能是接受节点的时间同步请求。在安装一个新节点、或节点复位重启等情况发生时,节点须向时间服务器发出节点时间同步请求,该请求的报文格式如下。时间服务器接收到该请求并通过鉴别后,将响应一时间报文给指定节点,使该节点的时钟可以与系统时钟同步。响应报文的格式如下。时间同步请求响应格式节点接收到该响应报文并经过报文鉴别后,从报文中取出时间信息,计时开始,这样就保证了系统中失步节点与系统时钟的同步。

2.2节点间通信认证流程

(1)发送方发送数据发送方按照一定的数据格式发送数据,数据格式如下。(2)接收方接收数据接收方根据收到的数据计算出一个摘要值,与收到的摘要值进行比较。接收方根据己方的时间与发送方的时间进行对比,找出数据包的源地址,然后用它自己的算法功能来消化数据,并对摘要值进行比较。为防止重放攻击,接收节点应设置一时间窗口。若接收到的时间与本节点时间的差超过时间窗口,则丢弃该报文。时间窗口是由节点的时钟误差、时间服务器的时间广播间隔、报文传输时延等因素决定的。该窗口应是可设置的。例如,时间窗口的缺省值可设为10秒。

3、LonWorks安全鉴别系统实现

3.1系统组成

LonWorks安全鉴别系统主要由三部分组成:时间服务器硬件和软件、控制DDC安全鉴别模块(或固件)、共享密钥分发及系统级鉴别软件。(1)时间服务器主要包括时钟发生器、单片机及其接口、LonWorks智能收发器及PC接口。时间服务器主要实现时间广播、接受时间同步请求、实现鉴别算法。(2)控制器安全鉴别模块主要包括神经元芯片与通信收发器(或智能收发器)、存储器(存放控制程序及鉴别算法)、与DDC的通信接口。该模块主要实现现场可编译的鉴别算法模块、可现场配置的插件程序。(3)共享密钥发放及系统级鉴别软件这部分实现基于LNS的SystemPlug-in插件程序、向网络各节点分发共享密钥、向各节点发送时间窗口信息、向TimeServer发送时间广播的间隔信息、可以用打包的方式给用户。

3.2LonWorks时间服务器设计

基于NeuronChip/FT3150单个处理器芯片的节点日益不能适应如今对电子设备的功能要求。首先,CPU工作频率不高(通常在10MHz),数据处理能力不够强大。其次,存储容量也显不足。导致在某些场合达不到实时性要求,而且存储空间只有58K,并且其中低16K还要预留给LonWorksSystemImage系统固件使用,真正可以供给用户自主使用的应用空间只有42K。如果用户的应用中需要使用大量数据,则要在这42K空间中再划出一部分分配给RAM使用,这样导致用户能够使用的程序空间就更加小了。再次,FT3150提供的外部接口资源也非常有限:只有11个IO口,且不提供诸如LAN、USB等当今的主流通信接口功能。为了提高LonWorks产品的响应速度,增强实时性,满足复杂、高级应用场合的需要,并附加上诸如LAN、USB等更多通信接口能力,增强灵活性,本文提出一种基于Host主CPU(32位ARM单片机)+NeuronChipFT3150从CPU的架构方式。这种架构模式下,NeuronChip仅实现了物理层、数据链路层底层协议,而ISO/OSI中其他层,包括网络层、传输层、会话层、表示层、应用层,全部由HostCPU完成。HostCPU通过8Bit数据线,辅助以握手信号方式与NeuronChip进行数据传输。HostCPU采用ST意法半导体公司的32位ARMSTM32F103增强型系列芯片。HostCPU通过8位线宽数据线、片选~CS、读写使能R/~W、握手信号HS的并行(Parallel)传输方式与NeuronChip进行通信。为提高HostCPU和NeuronChip之间的通信效率,使用中断请求机制,让HostCPU总是具有写总线令牌;仅当底层NeuronChip有数据要上传的时候,通过UpLinkIRQ中断请求告知HostCPU,HostCPU将写令牌传给NeuronChip,然后进行DataUpLink传输,一旦UpLink完成,则写Token从新返回给HostCPU。由于Parallel的通信方式已经占用了FT3150的所有11个IO口。中断请求信号输出只能另辟巧径,通过软件上访问映射到内存空间的某一地址,硬件上对该地址输出进行解码产生。如下图所示。当A15、A14同为1,而A13为0的时候M74HC74的CLK脚才出现低电平,低电平过后在CLK的上升沿Q端输出D的状态0,在~Q端产生高电平中断请求IRQ输出给Host,在Host响应该IRQ进入服务程序后,通过CLR_IRQ端输出一个低电平给M74HC74的PR脚让~Q输出低电平清除IRQ中断请求。通过以下函数来实现在HostCPU软件的最底层访问Parallel口。

4、结论

通信网络论文范文第10篇

【关键词】网络分层WinDis32技术网络信息截获数据帧NDIS网络适配器

1.前言

随着计算机网络技术的发展,各类网络规模的扩大,远程访问的增加,虚拟专用网(VPN)的出现和Internet的普及,网络安全性已成为计算机网络领域一门重要的研究学科。

网络监控是保障网络安全性的基本措施之一。网络监控,用于监测网上流动信息,并对网络信息给予适当控制。网络监控,可用于调试网络应用程序,判断应用程序是否正确地发送或接收了数据包。网络监控,还可用于监视网络信息,杜绝不健康站点的不健康内容,维护网络环境。应用于安全防范,可监视我方信息内容、保障网络安全,截获情报、分析怀有敌意方的网站。在计算机网络上实施有效的攻击与保护,是网络监控技术在军事上的重要发展方向之一。

本文论述的网络通信实时监测的实现,是用于特殊目的的数据通信程序设计的突破口,是网络监控技术的基础部分,其实现基于网络体系结构与WinDis32技术。

2.网络体系结构

现代计算机网络设计是按高度的结构化方式进行的,国际标准化组织(ISO)为更广泛的计算机互联制定了标准化的开放系统互联(OSI)网络体系结构,如图1所示。

OSI参考模型用结构描述方法,即分层描述的方法,将整个网络的通信功能划分为七个部分(也叫七个层次),每层各自完成一定的功能。由低层至高层分别称为物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。两台网络主机之间进行通信时,发送方将数据从应用层向下传递到物理层,每一层协议模块为下一层进行数据封装,数据流经网络,到达接收方,接着再由下而上通过协议栈传递,并与接收方应用程序进行通信。

在通用网络中,数据链路层由网络适配器实现,本文中网络通信监测的立足点在于数据链路层,基于电缆是固有的广播性介质,通过对网络适配器的控制,实时截获与分析经过网络适配器的所有网上流动信息。

3.WinDis32技术

WinDis32全称为Win32NDIS(NetworkDriverInterfaceSpecification)网络驱动接口规范,用于开发Windows产品,可在Windows9X和WindowsNT上直接访问NDIS媒体访问控制(MAC)驱动接口。图2显示了Windows网络驱动组件与Win32NDIS结构组件:

图2.Windows网络驱动组件与Win32NDIS结构组件

WinDis32网络组件由四部分组成:NDIS适配器、PCANDIS5NDIS协议驱动、W32N50WinDis32APIDLL、WinDis32应用程序。WinDis32应用程序调用W32N50.DLL动态链接库提供的API应用程序接口,通过NDIS协议驱动模块,实现对NDIS适配器进行的存取操作。网络驱动接口规范NDIS的主要特征是所有适配器相关驱动均由NDIS接口打包,例如,最底层NDISNIC驱动不能对网卡直接执行I/O,它通过NDIS打包服务来访问硬件;高层WindowsNDIS网络组件使用NDIS打包界面与适配器相关驱动通信。只有NDIS协议驱动可以调用NDIS打包,访问NDIS适配器。

WinDis32应用程序接口函数包括:W32N_OpenAdapter(),打开一个已被命名的NDIS适配驱动器,若操作成功,则生成一个面向适配器对象的WinDis32适配器句柄,这一句柄被随后多个在该适配器上操作的W32N_XXX函数所用;W32N_CloseAdapter(),关闭已打开的适配器句柄;W32N_PacketRead(),数据帧读操作;W32N_PacketReadEx(),数据帧异步读操作;W32N_PacketSend(),发送数据帧操作;W32N_PacketSendEx()、W32N_MakeNdisRequest()等等。

WinDis32技术使得从Win32应用层进行NDIS请求如同在一个内核模式的驱动器内部进行请求一样简单,并支持多个网络适配器同时打开,完成各自的信息发送与接收。

4.网络信息监测的实现

网络信息监测程序分为信息截获与信息分析两大部分,其中信息截获程序流程如图3所示,采用多进程与多线程技术,完成数据的实时截获。

其中网络适配器列表通过读取系统注册表生成;网络适配器详细信息包括适配器型号、网络适配器物理地址、传输最大帧、传输速率以及机内标识符,通过函数W32N_MakeNdisRequest()获得。

协议过滤部分是包括PCAUSA端口的PCANDIS5协议驱动,BPF过滤器是由UNIX环境到Windows的模拟机制,为Win32应用程序提供了一种普通而又便利的机制,可过滤指定协议,由协议驱动执行,拒绝不想要的数据帧。支持协议包括:传输控制协议TCP、互连网协议IP、地址解析协议ARP、反向地址解析协议RARP、互连网控制报文协议ICMP、互连网组管理协议IGMP、NovellSPX/IPX协议IPX、用户数据报协议UDP、NetBEUI协议、AppleTalk协议。

信息分析部分利用已获知的媒体访问控制协议,提取出数据帧中的有效域值,如源主机物理地址、目的主机物理地址、帧长度等。并同时为每一被截获的数据包打上时标,注上序列号,为下一步数据重组提供可靠依据。

接收数据帧显示与信息统计结果范例如下:

包序列号:0000000032时间:0005860470msec长度:54/54

Ethernet目的:00.40.05.39.A2.B0源:00.00.B4.86.74.FA类型:0x0800

000000:00400539A2B00000:B48674FA08004500.@.9......t...E.

000010:0028260340002006:A3256464647A6464.(&.@...%dddzdd

000020:64650406008B0040:BF14006C24B95010de.....@...l$.P.

000030:223812EA0000:"8..............

包序列号:0000000033时间:0005860764msec长度:109/109

Ethernet目的:00.40.05.39.A2.B0源:00.00.B4.86.74.FA类型:0x0800

000000:00400539A2B00000:B48674FA08004500.@.9......t...E.

000010:005F270340002006:A1EE6464647A6464._''''.@....dddzdd

000020:64650406008B0040:BF14006C24B95018de.....@...l$.P.

000030:2238DEC600000000:0033FF534D421A00"8.......3.SMB..

000040:0000000000800000:0000000000000000................

000050:00000308252D0308:014C080108008010....%-...L......

000060:0000100000000000:0000000000................

包序列号:0000000034时间:0005860766msec长度:1514/1514

Ethernet目的:00.00.B4.86.74.FA源:00.40.05.39.A2.B0类型0x0800

000000:0000B48674FA0040:0539A2B008004500....t..@.9....E.

000010:05DC640B40008006:FF68646464656464..d.@....hdddedd

000020:647A008B0406006C:24B90040BF4B5010dz.....l$..@.KP.

000030:20B786DA00000000:10007E8B77DAD2D0.........~.w...

000040:D727599A8F18D377:15D56C860F2C623E

...

停止数据帧接收

应用统计:

已接收数据帧数目:34

已发送数据帧数目:0

5.进一步研究与发展

本文所研究的网络信息监测属于计算机网络系统安全对策研究的一部分,属于网络信息监测的基础性研究。以此研究成果为基础,可进行进一步的软件开发,从而实现网络通信状况实时监测、情报获取、网上各站点地址分析、站点类型分析,为计算机网络的安全维护提供监测手段,因此,具有特别的意义。

参考文献

1.PCAUSAWinDis32V5.0文档1998.3

2.刘锦德等计算机网络大全电子工业出版社1997.7

3.KrisJamsa等INTERNET编程电子工业出版社1996.5

4.DavidJ.KruglinskiVisualC++技术内幕清华大学出版社1996.5

5.廖湖声面向对象的Windows程序设计基础人民邮电出版社1996.2

6.张国峰C++语言及其程序设计教程电子工业出版社1992.12

7.汤子瀛等计算机操作系统西安电子科技大学出版社1998.4

8.刘彦明等实用网络编程技术西安电子科技大学出版社1998.4

通信网络论文范文第11篇

对无线通信网络进行建模,很难将其宏观和微观特性同时表现出来。传统的数学模型能够宏观地展示网络结构,但由于其特有的抽象性,很难直观感受到网络节点之间的连接关系。而采用复杂网络的观点,将通信网络中节点的信道由网络边权来表示,能够更好地从微观上理解节点之间的耦合关系,构建复杂网络的基础就是图论模型[16]。图论是一门很有实用价值的学科,它在自然科学、社会科学等各领域都有很多的应用,为物理模型和数学描述之间搭建了一座连接的桥梁。假设任何一个网络都可以由点集V和边集E组成的图G=(VE)来表示。V中的元素称为图G的顶点,E中的元素称为图G的边。如果E中的元素没有指明方向,则图G为无向图,否则为有向图。

1.1节点度

度是在网络模型中刻画某个节点属性最基本同时又是最重要的概念。将无向网络中的节点i的度ki定义为与节点i直接相连的边的数目,而称网络中所有节点的度的平均值为网络的平均度,记为k。

1.2聚类系数

由图论原理,聚类系数表示了一个图形中节点聚集的紧密程度。如果一个节点有k个邻居节点,那么这k个邻居节点之间最多有k(k-1)/2条边。则聚类系数定义为:

2网络故障参数

本文所研究的无线通信网络中,如果节点出现故障信息,则节点会将故障沿着网络拓扑渗透到每个节点,网络中节点的连接关系由邻接矩阵A给出。节点是否会感染故障,与故障大小、节点容错能力、节点感染概率和故障触发方式等参数有关。

2.1故障大小

无线通信网络中影响网络运行的故障大小定义为故障强度FI,故障强度越大,其传播能力越强,本文中定义FI{12345678}。

2.2容错分配方式

故障强度大小意味着外来因素对节点的干扰影响,而节点本身对这些影响的处理应对能力称为容错能力,容错能力的大小从另一个层面决定着故障是否会通过节点并继续传播。容错能力越强,对故障的处理能力越强,故障越不容易继续传播;容错能力越弱,节点处理故障能力越弱,就越容易被感染。对于无标度网络,少数节点具有非常大的度,因此各节点被感染的概率不同。以下研究两种不同的容错分配方式:均匀分配,各节点的容错能力符合均匀分布,即FtiU(08);重点分配,定义各节点的容错能力与其连接关系的紧密有关,即其中,si表示节点i的度,save表示无线网络的平均度,ci表示节点i的聚类系数,cave表示无线网络的平均聚类系数,FI表示此时无线网络的故障等级。

2.3感染概率

在故障信息传递过程中,与故障节点有直接连接关系的节点是否会受到故障的干扰,与它们之间的调用频度有着很大的关系。例如,当节点i发生故障时,故障信息传递到节点j后进而可能引起j的故障。3.4故障触发方式网络故障的触发通常有两种方式,一种是随机触发,即随机选取一些网络节点作为故障初始节点,通过与其他节点的相互调用将故障传递至整个网络;另一种是恶意触发,选取度相对较大的节点作为初始故障节点,那么在很短的时间内,故障信息就会由故障节点传递给直接相连的网络节点,进而造成级联故障。

3网络故障传播算法

当网络中的故障沿着网络拓扑传递给其他节点时,每一次传递称为1步或1跳。在本文的仿真中,规定故障按照以下算法进行传播:Step1:获得网络初始结构和网络参数。给出网络的初始节点数m0,每次引入新节点时连接到已经存在的m个节点上,且有mm0,网络邻接矩阵为A。新节点与已经存在的节点v的连接算法伪代码为:FORk=m0+1:N初始化网络规模M、第k个节点位置坐标;统计每个节点的连接数占整个网络连接的比重p(i);FORi=1:m生成随机数random_data;IFp(i)大于random_data则将节点i与新节点相连ELSE节点i不与新节点相连ENDENDENDStep2:获得网络故障参数。根据不同的容错分配方式和故障等级计算得到N个节点的容错能力和感染概率。其伪代码描述为:IF容错能力重点分配计算每个节点度的容错能力ELSE容错能力平均分配计算每个节点度的容错能力上述算法的时间复杂度为Ο(N2),根据以上算法,构建了无标度网络为无线通信网络的基本模型,并根据不同的故障参数组合对网络中的节点进行了故障感染。构建由点线组成的线图模型,结合不同的网络故障参数,能够更直观地获取故障在网络节点中的传播情况。

4数值仿真及结果分析

4.1网络模型特性分析

在本仿真分析中,选定网络初始节点数m0=300,通过改变网络增长规模和由新节点引入网络的边数,研究网络模型的特性。对于构建的无线通信网络拓扑结构,图1(a)显示了当网络增长规模为500时,改变每个节点连入网络时引入的连接边数,节点的度与连接边数有着良好的线性关系,呈现稳步递增的趋势。图1(b)显示了对于相同数目,由新节点引入网络的连接边,在连接边数较低的时候,网络节点的平均度随网络规模的增加反而呈现出递减的趋势。但是随着连接边数的增多,各种情况的网络连接度都有所增加,且网络规模越大,梯度越陡,增速越快。平均度越大说明节点间联系越紧密,然而在实际应用中,通信节点之间过于频繁的连接势必会增加无线网络的成本和通信信道开销,造成网络拥堵、信号延迟等一系列问题。由邻接矩阵,可以得到一个节点与其他节点的连接关系,从而得到一个节点的“重要程度”。度大的节点在网络中扮演着信号基站的角色,表示网络中会有更多的节点与之相连,一旦这些节点发生故障,则会导致网络的部分瘫痪甚至全部瘫痪。由图1(c)可以发现,初始节点数m0一定时,随着网络规模的增加,节点度大于平均节点度的节点个数由递减逐渐转变为递增。这说明在网络增长规模不大的情况下(N=400),随着连接边数的增加,较少的信号基站就能完成传递信号的任务。如果网络增长规模较大(N=900),就需要较多的信号基站来完成中转任务。这说明无线通信组网要综合考虑基站建设的成本和网络规模的大小。

4.2网络故障传播

故障参数对于故障在网络中的传播具有很大的影响。选择初始故障节点个数n=30,故障等级为4,分别选择两种不同的容错分配方式和故障触发方式进行比较分析。从图2(a)中可以看出,如果初始故障节点选择为度较大的节点,节点的容错能力符合均匀分布,则故障会根据调用次数的大小依概率传递给相邻节点,进而导致故障很快遍历整个网络;如果选择度较小的节点,容错能力根据故障等级、节点度大小、节点聚类系数大小而确定,则每个节点对故障都有很强的适应性。对于随机触发的网络故障,图2(b)给出了改变故障等级对网络级联故障的影响。图中初始故障节点个数n=50,容错方式Ft是重点分配,对故障在FI=2、FI=4、FI=6、FI=8下进行比较分析。从图中可以看出,随着网络故障等级的增加,每步故障节点的个数也在增加,在更短的时间内达到整个网络的全局故障。图2(c)表明节点的容错能力对网络故障扩散的影响。图中初始故障节点个数n=50,故障等级FI=4,对容错能力分别在Ft=2、Ft=4、Ft=6、Ft=8下进行比较分析。随着整个无线网络的容错能力提升,延长了整个网络陷入故障的跳数,说明提高网络节点整体的容错能力,对于抑制故障在拓扑网络中的扩散,有着积极的作用。图2(d)表明初始故障节点数目对故障传播的影响。图中FI=4,Ft重点分配,网络增长规模为N=500,分别对初始故障节点数n=30,n=50,n=70,n=90下进行故障扩散比较分析。从图中可以看出,如果网络中初始故障节点数越少,故障在整个拓扑网络中的扩散就越慢。因此,对于无线通信网络中的各个节点,必须要提高信号基站对干扰信号的抑制和容错能力。一旦发现故障信息在节点之间开始传播,应该立即对无线通信网络进行故障诊断,及时找出故障节点并将其修复,维持整个无线网络控制系统的稳定性。

5结束语

通信网络论文范文第12篇

智能建筑的核心是系统集成[1],而系统集成的基础则是智能建筑中的通信网络.随着计算机技术和通信技术的发展和信息社会的到来,迫使现代建筑观念不得不更新.在信息化社会中,一个现代化大楼内,除了具有电话、传真、空调、消防与安全监控系统外,各种计算机网络、综合服务数字网等都是不可缺少的.只有具备了这些基础通信设施,新的信息技术,如电子数据交换、电子邮政、会议电视、视频点播、多媒体通信等才有可能进入大楼.使它成为一个名符其实的智能建筑.目前,在多数涉及与智能建

筑有关的事物中,不论是物业主还是参加竞争的设计者,都把重点放在楼宇管理自动化系统和结构化布线系统上,许多所谓的智能建筑,其实就是楼宇自动化系统加上结构化布线和程控交换机,根本就忽略了通信网络的建设.我们认为,在建筑智能化工程中,应该高度重视信息这个要素,而通信网络正是为建筑的各个部分传递信息的道路.随着分布式智能建筑控制系统技术的日益成熟和应用普及,在BAS中控制将进一步分散,在网络中传递的将更多的是管理信息,系统的集成则越显得重要[2],另一方面,目前由于人们信息需求的激增,以及计算机技术带来的多媒体终端等先进的终端技术,一个智能建筑的智能化瓶颈往往在于它的通信网络.可以说,通信网络技术水平的高低制约着智能建筑的智能程度.为此,智能建筑中的通信网络的设计是完成建筑智能化工程的重点所在.本文讨论基于最新网络技术的智能建筑通信网络的设计.

二、智能建筑的通信网络功能

总体上说,智能建筑的通信网络有两个功能,第一是支持各种形式的通信业务;第二是能够集成不同类型的办公自动化系统和楼宇管理自动化系统,形成统一的网络并进行统一的管理.智能建筑中的通信业务主要有下列一些形式:

1、电话:包括内部直拨,通过PBX与楼外公共交换网连接后通话.发展成为以PBX为中心组网形成2B+D话音和信令通道,使电话用户线具有综合功能.

2、传真:包括利用电话线进行楼内传真以及与楼外的传真,还可以通过发展而成的楼内综合业务数字网(ISDN)的用户线进行楼内之间或楼内外的传真.

3、电子邮件、语音邮件、电子信箱、语音信箱:这是通过计算机网络及其交换系统实现点对点(计算机)的文字或语音通信的一种方式.即通过对计算机屏幕的"书写"或直接通过计算机的音响系统实现双方的通信或对话.与之相应的电子信箱、语音信箱则是通过计算机的存贮系统实现"留信"或"留言".

4、可视电话:可视电话是一种小型图像通信终端,利用电话线路同时传递图像与语音信息.这种系统使用简单,无需特殊线路,每秒可传送10帧彩色图像,并且价格相对低廉,同时,还可通过大楼PBX,进入公用电话网.同外部进行通信.

5、可视电话数据系统:可视电话数据系统是利用公用电话线路的会话型图像通信.利用这种通信系统,键入所需信息代码,传送至数据库计算机,主机收到该代码后,即在数据库中查找所需的信息,并将信息回送屏幕显示出来,

6.会议电视:会议电视系统可支持大楼中各单位,各部门之间通信的要求,通过通信手段把相隔两地或几个地点的会议室连接在一起,传递图象和伴音信号,使与会者产生身临其境的感觉.

7、桌面会议系统:将计算机引入图象通信,使得通信各方不仅可以面对面进行交谈,还可以根据要求随时交换资料和文档,真正实现通信的交互性.桌面会议系统设有电子黑板,使会议各方可在同一块电子黑板上完成信息交互,并可对电子黑板随时打印,还可以重播会议片断和收录会议过程.

8,多媒体通信:多媒体通信是通过计算机网络系统实现同时获取,处理,编辑,存储和展示两个以上不同类型信息媒体(包括文字,语音,图形,图象〕的传送,其最重要的基础必需要具备宽带的网络系统.

9、公用数据库系统:与大楼业务有关的资料可通过大楼的数据库查询,也可通过WAN查询,数据类型可以是数据、文字、静、动态图象.

10、资料查询与文档管理系统:楼内各种办公文件的编辑、制作、发送、存贮与检索,并规定不同用户对各类文档的查询权限.

11、学习培训系统:与网络联机的多媒体终端及各种声、象设备,提供各类业务学习与培训.

12、触摸屏咨询及大屏幕显示系统:安装在大厅,多个触摸屏咨询系统安放在大厅不同位置,以声,象,图表等多种方式向用户介绍大厦业务及其它信息.

13、人事,财务,情报,设备,资产等事务管理:将工作人员的素质,特长,单位,财务收支情况,文件,合同,通知,新技术,新业务,设备资源及其使用情况统统存入数据库中,以便随时查询,实现事务管理科学化.

14、访问INTERNET网络:INTERNET正在发展成为把全球联系在一起的信息网络,所以对于用户来说,具有访问INTERNET的手段就显得十分重要.大楼的智能局域网的主干网具有访问INTERNET的信息通道,这就为大楼内的用户访问INTERNET提供了条件.

这些业务的实现对通信网络的需求往往不同,已发展成熟的各种网络几乎都是针对特定的网络业务,而目前基于ATM的宽带综合局域网技术日益成熟,使得在局域网内实现相当多的业务的综合传输交换成为可能.

智能建筑中的通信网络通常分为主干网和部门子网.主干网是连接部门子网、数据传输速率较高的网络.部门子网是为完成各个部门特定目的而组建的局域网,它一般多种多样.此外,通信网络还包括以电话通信为主的PBX网络.智能建筑的通信网络应能支持上述的通信业务和大楼管理自动化及办公自动化的要求,并且还要能够适应今后15年通信业务发展的需要.

通常情况下在智能建筑中作主干网的有以下一些网络技术:FDDI、100Base-T、100VG-AnyLAN、ATM等.我们认为,从技术及产品日益成熟和通信网络发展方向来看,使用ATM技术作为主干网是一种优选方案.

作为智能建筑中的部门子网,往往根据部门需求选择多种多样的网络.这可分为普通局域网、高速局域网和PBX网三种.在智能建筑中这三种子网往往共存.

三、一种智能建筑通信网络系统

图1是一种智能建筑通信网络系统.主干网络是以ATM交换机为中心的ATM网络,有以下特点:(1)这是一种高速率网络,每个端口速率高达25~155Mbps,这种带宽使各个子网之间的通信畅通无阻,而且各个端口专用带宽,使用户的带宽竞争局限在子网范围内,因此,子网数目的增加不会影响已存用户的业务质量.这对智能建筑内通信网络的扩展来说是其它大多数网络技术所不具备的.(20)采用局域网仿真技术使已有的局域网技术可以平滑无缝地接入主干网构成互连网.基于原有局域网的应用可以不加修改地在ATM互连网上运行.(3)ATM网络与传统局域网的无缝连接,进一步减少了网络之间的桥、路由器、网关及HUB等协议转换设备,使网络延伸、网络配置、网络监视变得相当容易,网络得到平整.这一点是其它主干网技术不可比拟的.(4)采用虚拟局域网技术,可以方便地构成虚拟局域网,不同虚拟局域网之间就像通过网桥连接的局域网.而且,网络管理员可以将地域不集中、连接在不同集线器上的同一部门之间的设备构成一个局域网,这样,网段的物理位置不再影响其逻辑子网,它带来的好处是:每个部门可以拥有自己的虚拟局域网,它不受其它部门的网络通信影响;通信网络上任何位置的主机、服务器等从一个虚拟局域网移动到另外一个虚拟局域网不需要任何物理上的变动;同时,物理上变动的网络设备也可以维持在相同的虚拟局域网上不变.这对智能建筑租用用户来说是相当优越的.(5)ATM网络采用永久

虚通路和交换虚通路来管理网络连接,这样网络延伸变得简单,而且永久虚通路的配置可以保证不同业务的带宽要求.交换虚通路的采用可以简化网络管理员的网络设置工作.交换虚通路的标准化使不同厂家的ATM产品的互连变得简单.(6)ATM是B-ISDN的标准转移模式,因此主干网与广域网的连接也可以归结为ATM与ATM的连接,这样智能建筑通信网可以与广域网无缝连接.(7)ATM网络采用分布式网络结构使它作为主干网有很高的稳定性.

图1一种智能建筑通信网络系统

它采用完全连接网状拓扑来避免网络单点失效,它的网络控制分布存在于各个网络节点,端到端多路由连接,网络可以实现自重构,这些使网络能应付各种灾难情况,在智能建筑出现意外时能确保通信网络畅通.(8)ATM是一种开放式网络结构,ITU-T、ATM论坛分别制定了一系列网络技术标准,这些使ATM网络能够兼容连接过去、现在和将来的各种网络.因此,采用ATM作为主干网可以适应将来网络技术的发展,使网络生存周期增长,网络等效性价比增加.

若干个大容量服务器(多媒体服务器)直接接入ATM网络,可满足多客户机与服务器的多媒体通信对网络带宽的要求.部门子网一般设计为交换模块式局域网,最常用的是10Base-T,它不但是物理上的星型连接,而且使用非屏蔽双绞线作为传输媒质,这非常适合智能建筑综合布线的情况.对于多用户部门,可使用多交换模块组成多网段的部门子网.而对于有高速要求的部门来说,则可组建高速局域网,高速局域网有100Base-T和FDDI和ATM工作组网等,根据我们的经验,采用100Base-T和ATM工作组网更好.通过局域网交换机可将所有局域网部门子网接入主干网.如果部门子网的高速用户数量不多,最好将高速宽带终端用户直接接入主干网,通过ATM网络的虚拟局域网功能,将一些高速宽带终端用户与一些部门子网组建成虚拟局域网.PBX网是以电路交换方式交换话音为主的网络.目前配备有N-ISDN功能的PBX交换机综合了电路交换和分组交换方式,可以综合交换话音和数据.在智能建筑中,使用N-ISDNPBX作电话网的交换节点具有明显的优点:可以方便地将远端和孤立的数据终端通过N-ISDN与主干网的网关接入通信网络;可以方便地与公用N-ISDN的连接,实现对广域网的低速访问;2B+D和30B+D的速率接口可以充分满足用户对外部数据资源的访问,实现用户电报、高质传真、高质电话、可视电话等业务;专用线路业务可以满足特殊用户保密要求,以及实现紧急报警等.PBX网络自成一体,又可通过网关与主干网相连.多功能电视会议中心主要包括数字化投影电视和音响系统及同声传译系统,在智能建筑的设计中,通过网络互连技术,将相应的语音和图像信息传送给相关的子网或公共网,实现信息共享,这样可使智能建筑具有更高的品质.楼宇管理自动化系统网络在逻辑上是独立的,中央监控系统监控和管理整个BAS,通过以太网接口,中央监控系统接入主干网络,可向有关终端传送监视和报警信息.通过主干网和PBX网络接入楼外通信系统.

通信网络论文范文第13篇

(一)WLAN的安全保障

虽然目前广泛使用的跳频扩频技术可以让人难于截取,但也只是对普通人难而已,随着通信技术的飞速发展,相信很快就会普及起来。

IEEE802.11标准制定了如下3种方法来为WLAN的数据通信提供安全保障:

1.使用802.11的服务群标识符SSID。但是,在一个中等规模的WLAN上,即使每年只进行两次基本群标识符的人工修改,也足以证明这是一个低效的不可靠的安全措施。

2.使用设备的MAC地址来提供安全防范,显然这也是一个低水平的防护手段。

3.安全机制相比前两种效果要好得多,即WEP(WiredEquivalentPrivacy)。它是采用RC4算法来加密传输的网络分组,通过WEP协议来保护进入无线网的身份验证过程。但从有线网连接到无线网是通过使用某些网络设备进行连接(即网络适配器验证,而不是利用网络资源进行加密的),还有其他的一些不可靠问题,人们在重要点的加密场合,都不使用WEP安全协议。

(二)VPN与IPSec的作用

VPN首先是用于在Internet上扩展一个公司的网络当然公司的部门或子公司在地理上位于不同的地域,甚至在不同的国家。VPN是一个加密了的隧道,在隧道中它对IP中的所有数据进行封装。在VPN中最常用的两种隧道协议是,点对点隧道协议PPTP和第二层隧道化协议LTP,它们分别是由微软和Cisco公司开发的。还有一种现在也在VPN中广泛使用的有隧道功能的协议即IPSec,它还是一个IETF建议IP层安全标准。IPSec首先是作为IPv4的附加系统实现的,而IPv6则将该协议功能作为强制配置了。

(三)IPSec协议及其实施

IPSec协议包括如下:验证头AH(Authentication),封装安全载荷ESP(EncapsulationSecurityPayload),Internet密钥交换IKE(InternetKeyExchange),Internet安全关联和密钥管理协议ISAKMP(InternetSecurityAssociationandKeyManagementProtocol)及转码。IPSec体系定义了主机和网关应该提供的各科能力,讨论了协议的语义,以及牵涉到IPSec协议同TCP/IP协议套件剩余部分如何进行沟通的问题。封装安全载荷和验证头文档定义了协议、载荷头的格式以及它们提供的服务,还定义了包的处理规则。转码方式定义了如何对数据进行转换,以保证其安全。这些内容包括:算法、密钥大小、转码程序和算法专用信息。IKE可以为IPSec协议生成密钥。还有一个安全策略的问题,它决定了两个实体间是否能够通信,采取哪一种转码方式等。

IPSec的工作模式有如下2种:

1.通道模式:这种模式特点是数据包的最终目的地不是安全终点。路由器为自己转发的数据包提供安全服务时,也要选用通道模式。在通道模式中,IPSec模块在一个正常的普通IP数据包内封装了IPSec头,并增加了一个外部IP头。

2.传送模式:在传送模式中,AH和ESP保护的是传送头,在这种模式中,AH和ESP会拦截从传送层到网络层的数据包,并根据具体情况提供保护。例如:A、B是两个已配置好的主机,它们之间流通的数据包均应予以加密。在这种情况采用的是封装安全载荷(ESP)的传送模式。若只是为了对传送层数据包进行验证,则应采用“验证头(AH)”传送模式。IPSec可以在终端主机、网关/路由器或两者之间进行实施和配置。

(四)一个实现无线通信加密的方法

在给出下面加密方案之前,首先确定加密的位置:综前所述,选择在TCP/IP协议的IP层进行加密(当然也含了解密功能,下同)处理,可以达到既便利又满足尽可能与上下游平台无关性。

为了叙述方便,笔者定义一个抽象实体:加密模块,当它是一台PC或工控机时,它就是具备基本网络协议解析与转换功能的安全(加密)网关;当它是一个DSP或FPGA芯片时,它就是一个具备网络协议功能的加密芯片;当它是一个与操作系统内核集成的软件模块时,它就是一个加密模块。至此,就形成如下加密方案的雏形:

1.在无线网络的桥路器或是无线Hub与有线LAN间置一加密模块,这时可用一台功能强劲的PC或是工控机(方便户外携带使用),最好是双CPU的,具备强大的数学运算能力,实现网络层到链路层之间的功能和IP数据包的加解密功能。

2.BlackBox:对FPGA(FieldProgrammableGateArray)进行集群,初定为由3块FPGA芯片构成,1块加密,1块解密,1块进行协议处理。之所以要求集群,是基于这样一个事实:由独立的一块100-1000MIPS的FPGA芯片完成协议处理和加解密这样超强度的运算处理,缺乏可行性。

3.在购买第三方厂商的无线HUB及桥路器时,与厂商进行技术合作,要求他们在设备上提供FPGA的接口,逻辑上FPGA只完成IP包数据的加解密功能,不涉及协议处理(由厂商的软硬件平成)。但这涉及知识产权归属的问题,对厂商来说,由他们来实现这一点是非常容易的。

二、小结

网络协议是数据传输安全的基础,加密技术是数据传输完全的核心技术,通讯传输机制是数据传输安全的实现方式,网络管理是数据传输安全的保障,网络数据的安全传输是在多方面机制的共同作用下实现的。因此,研究网络安全机制也应从网络协议、网络管理、网络传输、数据加密及安全认证机制等多方面进行探讨,网络的安全性应当在网络运行机制中的各个环节中得到保障。

参考文献:

[1]赵冬梅、徐宁、马建峰,无线网络安全的风险评估[J].网络安全技术与应用,2006.(03).

[2]张东黎,无线网络安全与认证[J].网络安全技术与应用,2005.(04).

[3]黄晶,确保无线网络安全实现文件安全共享[J].微电脑世界,2002.(23).

[4]张昕楠,消除无线网络安全风险[J].软件世界,2006,(01).

通信网络论文范文第14篇

GSM-R(GlobleSystemofMobilefoRRailway)专门针对铁路移动通信的需求而推出的专用通信系统,由国际铁路联盟(UIC)和欧洲电信标准化组织制定技术标准,并被许多欧洲国家采纳。它基于GSM并在其功能上有所超越,是成熟的通过无线通信方式实现移动话音和数据传输的一种技术体制。

(一)铁路GSM-R相对公网GSM有着特殊的需求

用户级别不同(语音呼叫,包括:组呼、群呼、增强多优先级与强拆)。功能寻址(调度)。基于位置的寻址(机车呼叫前方车站、后方车站)。高速列车运行情况下的移动通信。大量特殊的数据业务需求(列控、车次号等)。

(二)武广高速铁路GSM-R无线网络采用单层交织冗余覆盖

在列控系统中,无线闭塞中心(RBC)与车载设备无线连接中断,主要是由于GSM-R的无线网络连接失效,即车载ATP(列控车载系统)与BTS(基站)的连接中断,可能是ATP或BTS发生了故障,其中BTS故障的影响可能性大,因为它的故障会造成整个BTS无线网络覆盖区域内的无线连接中断,导致ATP无线连接超时由CTCS-3级转入CTCS-2级控车,影响该区段内的所有列车运行。武广高铁对无线连接失效采取的技术方案是采用单层交织冗余覆盖,铁路沿线由一层无线网络进行覆盖,但在系统设计时加密基站,使得两相邻基站的场强相互覆盖到对方站址,这样可保证在非连续基站故障的情况下,GSM-R网络仍能够正常工作。而且采用不同路由的奇偶数基站保护“环型”结构,在这种无线网络结构下,基站单点故障时不会出现无线网络覆盖盲区,只有连续基站故障或BSC(基站控制器)故障时才会影响无线覆盖,因而系统可靠性很高;同时由于基站加密,覆盖电平较高,抗干扰能力也较强。保证了动车350km/h运行速度车-地之间双向数据传输安全。

(三)CTCS-3级高速运行情况下的移动通信

使CRH3(中国铁路高速)型动车组在武广高速铁路上以350km/h的速度安全运行。基于承载CTCS-3业务的GSM-R系统确保行车安全。今天武广高铁采用GSM-R通信网络创造了CRH3型动车运行时速394公里的世界记录。

二、在武广高铁GSM-R通信网络的功能及其应用

我国GSM-R铁路数字移动通信系统由:网络交换子系统(NSS)、基站子系统(BSS)、运行和维护操作支持子系统(OSS)三个子系统构成。GPRS(通用分组无线业务)高效、低成本、资源配置灵活,特别适用于间断、突发性、频繁、数据量小的数据传输,也适用于偶尔的大数据量传输。将GPRS分组交换模式引入到GSM-R网络中,GSM-R在数据传输上产生了由电路交换到分组交换的质的飞跃,数据传输速率从原来的9.6kb/s提高到最大传输速率171.2kb/s(理论上)。GPRS方式的数据传输链路,可以为铁路运输行车指挥提供数据通信业务,包括列车控制系统信息传输、机车同步控制信息传输、调度命令传输、调车无线机车信号和监控信息传输、无线车次号传输、进站停稳信息及接车进路信息的传输等数据通信业务。在高铁CTCS-3级模式下,车载设备通过GSM-R无线通信GPRS子系统向RBC发送司机选择输入和确认的数据(如车次号),列车固有性质数据(列车类型、列车最大允许速度、牵引类型等),车载设备在RBC的注册、注销信息,定期向RBC报告列车位置、列车速度、列车状态(正常时)和车载设备故障类型(非正常时)信息,列车限制性信息以及文本信息等。

三、中国铁路GSM-R网络的规划

通信网络论文范文第15篇

关键词:DSP网络通信程序通信协议网卡

DSP芯片是专门为实现各种数字信号处理算法而设计的、具有特殊结构的微处理器,其卓越的性能、不断上升的性价比、日渐完善的开发方式使它的应用越来越广泛。将计算机网络技术引入以DSP为核心的嵌入式系统,使其成为数字化、网络化相结合,集通信、计算机和视听功能于一体的电子产品,必须大大提升DSP系统的应用价值和市场前景。将DSP技术与网络技术相结合,必须解决两个关键问题:一是实现DSP与网卡的硬件接口技术,二是基于DSP的网络通信程序设计。DSP与网卡的硬件接口技术参考文献[1]有比较详尽的论述,以下主要讨论基于DSP的网络通信程序设计。

1通信协议的制定

协议是用来管理通信的法规,是网络系统功能实现的基础。由于DSP可以实现对网卡的直接操作,对应于OSI网络模型,网卡包含了物理层和数据链路层的全部内容,因此,规定了数据链路层上数据帧封装格式,就可以为基于DSP的局域网络中任意站点之间的通信提供具体规范。因为以太网是当今最受欢迎的局域网之一,在以太网中,网卡用于实现802.3规程,其典型代表是Novell公司的NE2000和3COM公司的3C503等网卡,所以研究工作中的具体试验平台是以DSP为核心构成的以太局域网,主要用于语音的实时通信,所使用的网卡为Novell公司的NE2000网卡。NE2000网卡的基本组成请见参考文献[2],其核心器件是网络接口控制器(NIC)DP8390。该器件有三部分功能:第一是IEEE802.3MAC(媒体访问控制)子层协议逻辑,实现数据帧的封装和解封,CSMA/CA(带碰撞检测功能的载波侦听多址接入)协议以及CRC校验等功能;第二是寄存器堆,用户对NE2000网卡通信过程的控制主要通过对这些寄存器堆中各种命令寄存器编程实现;第三是对网卡上缓冲RAM的读写控制逻辑。DP8390发送和接收采用标准的IEEE802.3帧格式。IEEE802.3参考了以太网的协议和技术规范,但对数据包的基本结构进行了修改,主要是类型字段变成了长度字段。所以,以DSP为核心的局域网内通信数据包基本格式如图1所示。

DSP读出数据包和打包从目的地址开始。目的地址用来指明一个数据帧在网络中被传送的目的节点地址。NE2000支持3种目的地址:单地址、组地址及广播地址。单地址表示只有1个节点可以接收该帧信息;组地址表示最多可以有64个字节接收同一帧信息;而广播地址则表示它可以被同一网络中的所有节接收。源地址是发送帧节点的物理地址,它只能是单地址。目的地址和源地址指网卡的硬件地址,又称物理地址。

在源地址之后的2个字节表示该帧的数据长度,只表示数据部分的长度,由用户自己填入。数据字段由46~1500字节组成。大于1500字节的数据应分为多个帧来发送;小于46字节时,必须填充至46字节。原因有两个:一是保证从目的地址字段到帧校验字段长度为64字节的最短帧长,以便区分信道中的有效帧和无用信息;二是为了防止一个站发送短帧时,在第一个比特尚未到达总线的最远端时就完成帧发送,因而在可能发生碰撞时检测不到冲突信号。NE2000对接收到的从目的地址字段后小于64字节的帧均认为是“碎片”,并予以删除。在数据字段,根据系统的具体功能要求,用户可以预留出若干个字节以规定相应的协议,以便通信双方依据这些字节中包含的信息实现不同的功能。

2基于DSP的网络通信程序设计

如果基于网络操作系统,用户可以利用一些软件对网络操作系统的支持,很容易地编写出优秀的网络通信程序,但这些程序必须依附于网络操作系统。而在DSP环境下,必须深入了解网络接口控制器(NIC)的工作原理[2],通过对网络直接编程,实现局域网内任意站点之间的通信而完全抛开网络操作系统。

DSP对网卡的通信过程控制就是DSP对DP8390中各种寄存器进行编程控制,完成数据分组的正确发送和接收。DP8390的所有内部寄存器都是8位,映像到4个页面。每个页面有16个可供读写的寄存器地址(RA=00H~0fH)。页面的选择由命令寄存器CA控制。第0页寄存器用于收发过程,第1页寄存器主要用于DP8390的初始化,第2页寄存器则用于环路诊断。DSP对寄存器的操作是将寄存器作为DSP的端口设备,其实际物理端口地址(PPA)为网卡基本I/O端口地址(BIOA)与寄存器地址(RA)之和(即PPA=BIOA+RA)。应注意的是,PPA与寄存器间并不存在一一对应关系,对PPA的读操作与写操作并不一定是对同一寄存器进行的,这种情况在第0页尤其明显。用户数据分组在DSP和网卡交互是通过网卡的数据端口实现的,既可以用DMA方式也可以用PIO方式读入数据分组或将数据分组送至网卡RAM缓冲区。在本系统中,DSP采用DMA方式对网卡进行数据读写。网卡的数据端口地址(NDPA)为网卡基本I/O地址(BIOA)加偏移地址10H(即NDPA=BIOA+10H)。

网卡通信过程控制可分为网卡初始化、接收控制和发送控制。下面分别予以讨论。

2.1网卡初始化

网卡初始化的主要任务是设置所需的寄存器状态,确定发送和接收条件,并对网卡缓冲区RAM进行划分,建立接收和发送缓冲环。具体过程请参阅参考文献[2]。需要说明的是,每一块网卡被赋予一个物理地址,以便通信站点的标识。这个物理地址存在网卡的PROM(存储地址为0000~0005H)六个单元中,在网卡初始化时,通过远程DMA读入DSP内存中,并送入网卡物理地址寄存器。在一步的意义在于:一方面,如果能正确读出网卡的物理地址,则说明网卡硬件基本没有问题,网卡的上电复位和DSP对网卡的初始化顺利通过;另一方面,这个物理地址可以用于DSP网络系统中的点名、包的过滤丢弃等服务,也就是说,在链路层根据数据帧携带的源地址和目的地址确定数据报从哪里来,是否接收或丢弃。网卡初始化时另一个重要的工作就是接收缓冲环的设置,为了有效利用缓冲区,NIC将接收缓冲区RAM构成环形缓冲结构,如图2所示。

接收缓冲区RAM分成多个256字节的缓冲区,N个(N最大为256)这样的缓冲区通过指针控制链接成一条逻辑上的缓冲环。缓冲环的开始页面地址存入PSTART寄存器,环页面结束地址存入PSTOP寄存器。PSTART和PSTOP确定了接收缓冲环的大小和边界。为便于缓冲环读写操作,还需要2个指针:当前页面指针CURR和边界指针BNRY。CURR确定下一包放在何处,起着缓冲环写页面指针作用;BNRY指向未经DSP取走处理最早到达的数据包起始页面,新接收的数据包不可将其覆盖,起着缓冲环读页面指针的作用。也就是说,CURR可以告诉用户网卡接收的数据分组当前放到了什么位置,而BNRY则用于确定DSP读缓冲环到了什么地方。由于接收缓冲区为环形结构,BNRY和CURR相等时,环缓冲区可能满也可能空。为了使NIC能辨别这两种状态,规定当BNRY等于CURR时,才认为环缓冲区满;当缓冲区空时,CURR比BNRY指针值大1。因此,初始化时设置:BNRY=PSTART,CURR=PSTART+1。这时读写指针不一致,为了保证正确的读写操作,引入一软件指针NEXTPK指示下一包起始页面。显然,初始化时NEXTPK=CURR。这时,缓冲环的读指针对NEXTPK,而BNRY只是存储分组缓冲区的起始页面边界指示,其值为NEXTPK-1。

2.2接收控制过程

DSP完成对DP8390的初始化后,网卡就处于接收状态,一旦收到分组,就自动执行本地DMA,将NIC中FIFO数据送入接收缓冲环,然后向主机申请“数据分组接收到”中断请求。DSP如果响应中断,则启动网卡远程DMA读,将网卡缓冲区中的数据分组读入学生机存储区,然后对接收缓冲环CURR、NEXTPK、BNRY指针内容进行修改,以便网卡能从网上正确接收后续分组。DSP响应网卡接收中断后,接收控制过程如下:

①设置远程DMA的起始地址;RSAR0=00H,RSAR1=Nextpk。

②设置远程DMA操作的字节数,这个长度在46~1500字节范围内根据具体要求自己确定。

③0AH送命令寄存器CR,启动远程DMA读。

④从网卡数据端口依序读入数据分组,注意,最先读入的4字节非数据分组内容,第1字节为接收状态,第2字节为下一包页地址指针,3与4字节为接收字节数。第2字节内容应该送入Nextpk,其它字节根据用户要求处理。

⑤修改边界指针BNRY=Nextpk-1。

⑥清除远程DMA字节数寄存器RBCR0和RBCR1。

2.3发送控制过程

DSP先执行远程DMA写操作,将内存中的数据分组传至网卡发送缓冲区,然后启动发送命令进行数据分组发送。发送控制过程如下:

①设置远程DMA的起始地址为网卡发送缓冲区起始地址;

②设置远程DMA操作的字节数;

③12H送命令寄存器CR,启动远程DMA写;

④依序送出数据分组至网卡发送缓冲区;

⑤清除远程DMA字节数寄存器;

⑥设置发送字节数寄存器TBCR0和TBCR1;

⑦12H送命令寄存器CR,启动数据分组发送。

3发送方发送频率的控制

发送方发送频率的正确控制主要保护两点:一是有一个最小发送时间间隔,否则会因为接收方不能及时接收而导致系统瘫痪;二是发送频率能够足具体的功能实现要求。譬如在语音的实时通信中,发送频率就取决于声卡的采样频率。在8kHz采样频率时,声卡每秒钟采样8000字节,采用1024字节需用时128ms,如果通信协议规定发送1次传送1024字节有效数据,则必须每128ms发送一次才能保证缓冲区有新数据待发送,也才能保证接收方有新数据播放。128ms是一个理论计算数值,在实际的操作中采样速度和发送频率之间总是不能完全匹配,而存放数据的缓冲区大小是有限的,如果没有良好的控制技巧来实现正确发送,就会造成声音抖动和延时。解决的办法是双缓冲技术和双指针控制,并且根据采样速度和发送频率之间的匹配情况送入不同的发送通信进行处理后发送。正确发送的含义有两方面,一是每次发送的都是新数据,二是能满足接收方总在播放新数据的需求。

4接收方防止数据包的丢失

由于DSP通过中断请求判断是否有数据分组到来,如果中断繁忙而两个数据包到来时间相差非常短,DSP有可能只响应一次中断,从而导致丢包的发生。分析网卡接收数据过程,当网卡收到数据分组时,首先执行本地DMA,将NIC中FIFO数据送入接收缓冲环,并将本地DMA操作的起始地址存放在当前页寄存器(CURR)和当前本地DMA寄存器(CLDA0、CLDA1)中,DSP从网卡接收缓冲环读出数据到存储器则称远程DMA操作,用软件指针Nextpk来指示远程DMA的起始页面。因此通过比较网卡本地DMA和远程DMA的当前地址,即在中断服务子程序中比较CURR和Nextpk指针,或比较CLDA0、CLDA1和Nextpk指针,就可以保证当前数据分组放到了哪里就读出到哪里,从而防止丢包的发生。