美章网 精品范文 故障检测与诊断范文

故障检测与诊断范文

故障检测与诊断

故障检测与诊断范文第1篇

[关键词]电机电器 电气设备 状态检测 故障诊断

中图分类号:TM725 文献标识码:A 文章编号:1009-914X(2016)01-0020-01

引言

设备诊断技术对保证设备的正常运行来说具有及其重要的现实意义,可以在设备带负荷运行时或者基本不拆卸的情况下通过检测和分析设备的状态参数,对其工作状态进行评判,判断其是否存在故障、异常,并发现异常和故障的具置和趋势,进而安排合适的修整方案。设备诊断技术包含三大部分的内容,即检查和发现异常――诊断故障类型和部位――分析故障类型,在此过程中需要用到的最基本的技术为检测、信号处理、识别、预测技术。

一、电机电器故障诊断技术的特点

首先,电机电器故障诊断技术涉及的领域较多,需要用到较多领域的技术知识,如电机学、高电压技术、材料工程学、信息工程学、计算机技术等。从电机电器的工作原理出发,其内部系统十分复杂,包括电路系统、磁路系统以及绝缘系统和通风散热系统、机械系统等等多个独立而又相互联系的系统。当电机电器运行过程中出行故障时,都会涉及到这些独立系统的故障。因而检修人员必须具备较高的综合素质,对电机电器涉及的领域都要有所涉猎。其次,检修人员必须熟悉诊断的对象。电机电器内部各个独立系统相互交错相互联系,出现故障的表现和原因往往十分多元化,涉及的不同系统较多,这无疑增加了电机电器整修的难度,因而检修人员必须对电机电器的运营过程、内部结构。工作方式和负荷具有详细的了解,并对常见的故障及其可能的产生原因具有一定的熟悉度和系统化的了解。最后,必须将其与继电保护系统严格区分开来。继电保护系统仅在故障发生时才产生相应的动作,没有预防和预测的功能,而点击诊断技术不仅可以根据早期出现的现象对故障进行预测,还可以对已发现的故障进行一定程度的诊断和发展趋势分析,并据此给出科学合理的检修方案。所以不能用单纯的继电保护来完全替代电机诊断技术,否则可能会给设备带来无法估量的损失和伤害。

二、电机电器故障诊断常用的技术

电机电器设备的故障诊断手段较为丰富,而且涉及领域广泛,属于新技术领域,目前常用的电机电器诊断技术有以下几种:

(1)铁谱技术(或称铁相学):在70年代,出现了一种主要通过对机械内部磨损颗粒的大小、形态和成分进行分析,来得到机械在工作摩擦时的磨损状况及机理等信息的技术,在早期机械设备的节能和剂方面的研究应用较为广泛。由该技术衍生而来的便是铁谱技术,它是将从油样中的磨损颗粒检测并分离出来的技术,其中需要用到的仪器就是铁谱仪,其原理就是借助磁场将油中的磨损颗粒分离出来,并用分析式铁谱仪进行进一步的分析。

(2)红外测温和热成像技术:在检测设备温度是否异常时常用的一种手段便是红外测温,可以不用接触到物体就获取其温度,使用的方法是测量物体辐射的红外光的方法。

(3)声发射技术:当机械构件的材料在力的作用下发生形变或者损坏时,就会以弹性波的形式向外释放出变性能,此种现象为人称为声发射。但是这只是形象的说法,人耳的听觉范围并不能捕捉到这种声发射,只能通过灵敏的仪器将其检测出来,并进行相应的分析,再根据检测到的声发射信号判断出发射源(即变形部位)的具置。

(4)力和扭矩的检测:在测量力和扭矩的过程中最常用也是最基本的方法是使用应变片。机械设备处于工作状态时,当被测量部位承受应力或扭矩,就会使应变片发生形变,此时应变片的电阻丝的长度和截面尺寸也会随之改变,此时用应变仪进行测量就可根据电阻值的变化得出该部位的应变量,进而经过计算得到该部位此时承受的应力和扭矩。

(5)电磁检测:电机电器的内部以及周围磁场的测量也可以用于诊断和检测设备的故障,也是一种较常用的检测手段,而且测量的内容可以是磁场的分布情况、谐波磁场以及漏磁场,一般而言测量的都是磁场分布中各点的磁通密度。

三、电机电器故障诊断的方法和流程

电机故障诊断中常用的方法有六种:(1)电流分析法:对机械负载电流的幅值和波形的监测以及频谱的分析确定机械故障的原因和受损程度;(2)振动诊断:检测电动机的振动频率和幅度,对得到的信息进行对应的处理和分析,进而诊断出受损部位和原因,再提出解决方案;(3)绝缘诊断:以电气试验和特殊的诊断技术为基础,主要针对机械内部绝缘部位的故障预测和诊断,并对其寿命进行预判;(4)温度诊断:监测各部分温度,对温度不达标的部分进行故障判断和预测;(5)换向诊断:针对直流电机的换向进行实时监测,使用机械和电气检测的方式找出阻碍或者影响换向的因素,并制定应对措施;(6)使用VA诊断技术(振声制定技术),采集诊断对象的驱动信号和噪声信号,分别进行处理后综合诊断,可以在很大程度上提升诊断的准确率。设备的诊断过程主要包含了六个环节:传感器、数据采集与预处理、数据处理、诊断决策(需要借助诊断软件)、运行设备、采取技术措施。

某公司所属的一台风机振动较大,对其正常运行产生了较大影响,受到委托我们对其进行了振动检测,检测的部位为电机两端轴承和风机两段轴承。根据得到的水平方向和垂直方向的振动图谱、波形图和频谱图,判断出此风机存在不平衡故障,建议立即关闭机器,进行转子动平衡实验,之后获得良好效果,机组故障清除成功。

四、结语

具体而言状态检测与故障诊断的作用可以归纳为监测与保护、分析与诊断和处理与预防三方面,可以极大地防止或减少机械突然出现故障而无法正常运行给企业带来损失。不同的设备故障诊断技术和方法所需的成本不同,最佳的使用条件也不同,在情况复杂的条件下需要组合使用,因而在实际使用过程中,需要检修人员必须对使用哪种技术最为便捷进行综合分析,得到最佳的应对方案。

参考文献

[1]赵晓东.电机转子检测方法及故障诊断技术研究[D].河北工业大学,2010-11-01.

故障检测与诊断范文第2篇

关键词:数字电路 故障检测与诊断 原因 现状 对策

中图分类号:TN79 文献标识码:A 文章编号:1007-9416(2013)11-0214-02

21世纪的今天,随着全球经济一体化格局的形成,经济技术迅速发展,以数字技术为主导的高科技产品层出不穷,并且已渗透到我们生活的各个方面,遍布于每一个角落。然而,在我们的生活如此数字技术的当下,电子工程技术人员在设计、安装、维修、调试数字电路的过程中或多或少都会遇到各种事故。因此,掌握正确的数字电路故障检测与诊断方法对于保障数字电路的有效开发与生产是极为重要的。

1 数字电路故障产生的原因

1.1 电路元器件的老化

无论什么东西在使用的过程中因为摩擦等一些原因,在一定程度上都说到了损坏,对于电路元器件来说尤其如此。因为电路元器件大都是金属材质,在长期不断使用的过程中,就会导致部分元器件老化和参数性能下降,除此之外,有的电路元器件也会在遇到高温或极冷的天气状况下改变参数值。

1.2 电路元器件接触不良

由电路元器件接触不良导致的数字电路故障是最常见的原因。在日常生活中,可能会因为使用不当或者保管不善,破坏电器外壳使得电路元件暴露在空气中或者一不下心使电器进水等情况发生,那么电器内部的焊点就会被氧化,以至于导致电路板故障的发生。

1.3 电路设备工作环境不健全

每一样设备的顺利使用都是有一定的条件的,但是并不是所有设备都能够在健全的工作环境中,所以,一旦工作环境达不到电路设备的要求时,例如,温度、适度、电子磁场等改变,数字电路就会发生故障,那么设备也就无法实现正常工作了。

1.4 电路元件过了使用期

电路元器件都是有保质期的,只有在规定的年限内使用才能发挥它功效。如果过了使用期限,电路元器件就会负荷不了,就会出现元器件老化、性能指标降低等现象。所以说电器元件使用过程超出期限,设备的故障发生率就会增加。

2 数字电路及其故障的特点

所谓的数字信号是在时间上和数值上都离散的信号,而数字电路就是用来处理和变化这些离散信号的电路。它的工作原理主要就是利用两个状态的元器件来表示离散信号,看似很复杂,其实它的基本电路单元十分的简单。在数字电路中的每一个元器件的参数值都有较大的差异性,所以绝对不会出现电压不高不低的电平,除了三态门之外,输出的要么是高电平要么就是低电平。所有对高电平和对低电平的区分了解能够我们更好的了解数字电路的特征。

如果把数字电路按照逻辑功能来划分,可以分为时序逻辑电路和组合逻辑电路两种。从功能上来说,时序逻辑电路它是由具有储存功能的触发器所组成的电路来进行记忆和表达功能,但是关键得是储存电路的输出状态必须反映到输出端上,并且要与输出端共同作用才能决定时序电路的输出。另一个组合逻辑电路顾名思义就是由各种电路组合而成。不过组合逻辑电路在输出时,都是有那个时刻输入的信号来决定的,它与原电路的输出状态并没有直接的关系。

在数字电路的检测和诊断过程中一定要按照它所规定的顺序来想电路施加测试,并挨个观察数字电路的反应状态,看其是否正常。之所以要这样一步步仔细的检测那是因为数字电路的测试对象实在是多了,电路的输入、输出变量甚者有时候可以达到上百个,而且每一个都有可能出现偏差,如不逐一检测很难找到问题所在。此外,数字电路它还存在一定得物理缺陷,构成集成电路的门和记忆元件是封存在芯片里面的,以至于无法直接观察电路输入、输出的波形以及很难检测它们的逻辑电平,所以也就没办法快速查出数字电路的故障之所在。因此,研究出简单可行的测试电路故障的方法迫在眉睫,需要大家的共同努力。当然,也只有当数字电路故障检测方法解决之后,数字电路才能得到更好的应用。

3 数字电路故障检测与诊断方法的现状

3.1 直接观察检测诊断法

直接检查法就是通过直接的观察来推断电路大致在那个部分出现了问题。这种方法相对于比较适合有一定经验的电路维修员,他们通过询问顾客电路故障发生时出现了哪些现象来判断发生电路故障的大致原因,这样既方便有简洁,省去了中间的很多过程,为客户和自己都节省了时间,是一举两得的好事。例如,电视机突然不亮了,我们在检测之前应该首先观察一下外观是否破损,用手感觉一下外壳温度是否过高,其次看插头是否断开或与插班接触不良,然后用鼻子问一下电视机有没有异味等等,通过用这些直观的方法来判断电视机大概是哪一个部位出了问题啊,最后着手检测。虽然这种方法比较快速,但对于经验不足的电路维修员来说,还是不要贸然使用,否则可能是既浪费了时间也还是没有找到电路故障发生的原因,得不偿失。

3.2 顺序检测诊断法

现在应用于数字电路故障检测的数字检测法一般分为两种。一种是在输入端加上信号,从输入级开始向输出级检测,当信号中断或者是出现异常时也就找到了数字电路的故障所在地。第二种方法是在输入级到输出级的过程中加上信号,一旦出现信号不对的情况,就立马停下,然后以此为据点想下一级进行电路故障检测。虽然这种数字电路检测方法准确性比较高,但是需要花很长时间。在现在全球经济高速运转的是时刻,这种低效率的工作方法已经逐渐不适应时代的发展要求了,在某种程度上是可以被淘汰的,但是,前提条件就是我们必须尽快找到一种更好的电路故障检测方法来代替它。否则,还是得用顺序检测法。

3.3 比较检测诊断法

在检查数字电路故障时,比较法其实也是一种比较常用的检测方法。一般要想快速的检测出数字电路哪里出现问题,经常就会对电路的各个关键点进行测试,得出具体的参数值,然后找来同样的完好无损、能够正常运转的电器,也测出每一个关键点的参数值,最后将两组数值进行比较,参数值不一样的那个地方就是数字电路出现故障的地方。不过,能够这样很快就检查出问题所在的情况并不多,大多数电路故障地方都在比较细小的地方。因为,在数字电路器材生产过程中,厂商一般都会针对电路板比较薄弱的地方多做几道加工程序,确保质量安全,而那些人们认为不会发生故障的地方就没有多注意,所以往往电路发生的故障并不在电路板的关键点上。因此,比较检查法还算不上市完美的检测方法,依然有它的缺陷存在。

3.4 替代检测诊断法

有时候电路比较复杂,可能当我们试了各种方法还没有找到故障时,我们就应该想到用替代法来检查数字电路故障。所谓的替代检测法就是将数字电路中的电子元件用同等型号的电路元件来替换掉,不过质量一定要比元件好一些,否则质量太差的话还是无法检测出电路故障在哪里。当高质量的电路元件安装到元电路板中,合上电源,看电路板是否能够正常运转。若能正常运转则证明是元电路元件有问题,若不能,则证明原电路元件没有问题。若是前者,数字电路故障检测就能很快完成,但若是后者的话,就还需要再次进行检查与诊断。总之,替代检测在某种程度上也是比较麻烦和费时的。

4 提高数字电路故障检测与诊断效率的对策

4.1 分块测试诊断法

当我们无法通过直接观察检测法检测出数字电路故障时,用分块检测法是最好的检测办法之一。当我们对某种电路板进行检查时 ,对其电路结构、功能等要有一个事先的了解,根据实际情况,看怎样组合比较简单,然后就将电路分成若干个独立的电路,分别进行通电进行测试,观察测试结果找出有故障的那一部分电路,最后采取相应的措施准确找到数字电路故障点,诊断其原因,“对症下药”,解决问题。像这种分块测试方法过程比较简单,针对性也强,它能够有效的提高数字电路故障检测与诊断效率,更适合于比较复杂的数字电路故障检测与诊断中。

4.2 电阻检测诊断法

在日常生活中,当我们看到某种电器冒烟儿或者散发异味时,首先要做的就是切断电源,避免事故范围扩大。然后就是要检查电路是否有短路现象,那么这个时候就需要用到电阻检测诊断法。电阻检测诊断法它的作用就是能够检测诊断出数字电路底板内部和电路连接线之间是否是接触不良或短路等情况,操作过程简单,就算不是专业电路维修员也能够很好的掌握与应用。在碰到类似的事情时不至于惊慌失措,即使不花钱找专业维修人员自己就能够轻松搞定。所以电阻检测诊断法实用性比较强,适用人群比较广,在数字电路故障检测与诊断上效果比较明显与突出,是提高数字电路故障检测与诊断效率的好方法。

4.3 波形检测诊断法

波形检测诊断法对电路故障检测与诊断人员的专业素质要求比较高,要具备较高的电路维修理论知识,同时还要会使用示波器,这两个条件缺一不可。其实,我们所说的波形检测诊断法就是通过使用示波器对电路板的各级输出波形进行检查,观察它所输出的波形是否是正常的,以此来检测诊断出电路故障。目前,这种波形检测诊断法被广泛的应用于脉冲电路中,准确性高、安全系数高、效率也很高,是提高数字电路检测与诊断效率的完美对策。

5 结语

在当今科学技术腾飞的年代,数字电路已经取得了飞速发展,为了能够更好的将数字电路应用到现代电路中,提高数字电路检测与诊断技能、效率尤为重要。对于可能出现或者是已经出现的电路故障要能够及时预防与解决。因此,我们要不断完善数字电路检测与诊断技术,使之能够更好的适应时代的发展要求,为我们的生活提供更加便捷的服务。总之,本文主要是希望通过论述数字电路故障产生的原因、分析数字电路及其故障的特点、介绍目前我国对数字电路检测与诊断所采取的方法以及建议来给现在正身处数字电路的工作者一些帮助。

参考文献

[1]张兰,徐红兵.一种新的数字电路故障定位算法研究[J].电子科技大学学报,2009.

[2]郭希维,苏群星,谷宏强.数字电视测试中的关键技术研究[J].科学技术与工程,2008.

[3]朱大奇,电子设备故障诊断原理与实践[M].电子工业出版社,2008年9月.

[4]孙春辉,浅谈数字电路故障检测方法与技巧[M].技术开发,2010年5月第3期.

故障检测与诊断范文第3篇

设备检测与故障诊断技术现状

罗洪辉

(陕西法士特齿轮有限责任公司  陕西 西安  710077)

摘要:随着科学技术的发展,设备越来越复杂,自动化水平越来越高,设备在现代工业生产中的作用和影响越来越大,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至可能导致人员伤亡。通过对设备工况进行检测,对故障发展趋势进行早期诊断,在现代工业生产中起着重要的作用。开展设备故障检测与诊断技术的研究具有重要的现实意义。

关键词:设备,故障,检测,预防,维修方法

本文从设备检测诊断的基本方法、内容和技术手段等多方面对我国机械设备检测和诊断技术的现状进行综述,并在此基础上提出了该技术今后的发展趋势。企业要实现设备管理现代化,应当积极推行先进的设备管理方法和采取以设备状态监测为基础的设备维修技术。

一、设备检测的一般常用方法概述

设备检测一般是指采用各类检测仪器对设备各项指标进行检测,以达到保障安全使用的目的。根据相关技术人员的经验,设备检测尤其是特种设备的检测需要符合国家、地方及行业协会的相关规定。设备检测常用的方法是无损检测,无损检测就是利用声、光、磁和电等,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称。与破坏性检测相比,无损检测不会损害被检对象的使用性能,因此,无损检测又称为非破坏性检测。无损检测分为常规检测技术和非常规检测技术。常规检测技术有:超声检测、射线检测、磁粉检测、渗透检验、涡流检测。非常规无损检测技术有:声发射、 红外检测、激光全息检测等。二、下面对以上所说的检测技术做一下简要的介绍。 1、超声检测 超声检测的基本原理是:利用超声波在界面(声阻抗不同的两种介质的结合面)处的反射和折射以及超声波在介质中传播过程中的衰减,由发射探头向被检件发射超声波,由接收探头接收从界面(缺陷或本底)处反射回来超声波(反射法)或透过被检件后的透射波(透射法),以此检测备件部件是否存在缺陷,并对缺陷进行定位、定性与定量。2、射线检测射线检测的基本原理是:利用射线(X 射线、γ射线和中子射线)在介质中传播时的衰减特性,当将强度均匀的射线从被检件的一面注入其中时,由于缺陷与被检件基体材料对射线的衰减特性不同,透过被检件后的射线强度将会不均匀,用胶片照相、荧光屏直接观测等方法在其对面检测透过被检件后的射线强度,即可判断被检件表面或内部是否存在缺陷(异质点)。3、磁粉检测 磁粉检测的基本原理是:由于缺陷与基体材料的磁特性(磁阻)不同,穿过基体的磁力线在缺陷处将产生弯曲并可能逸出基体表面,形成漏磁场。若缺陷漏磁场的强度足以吸附磁性颗粒,则将在缺陷对应处形成尺寸比缺陷本身更大、对比 度也更高的磁痕,从而指示缺陷的存在。4、红外检测红外检测的基本原理是:用红外点温仪、红外热像仪等设备,测取目标物体表面的红外辐射能,并将其转变为直观形象的温度场,通过观察该温度场的均匀 与否,来推断目标物体表面或内部是否有缺陷。三、设备故障诊断技术的概述设备故障诊断是指设备在运行中或在基本不拆卸的情况下,通过各种手段,掌握设备运行状态,判定产生故障的部位和原因,并预测设备未来的状态,从而找出对策的一门技术。 设备故障诊断的任务是监视设备的状态,判断其是否正常;预测和诊断设备的故障并消除故障;指导设备的管理和维修。

1、设备故障诊断的内容包括状态监测、分析诊断和故障预测三个方面。其具体实施过程为信息采集、信号处理、状态识别、诊断决策。

2、设备故障信息的获取方法包括直接观测法、参数测定法、磨损残渣测定法及设备性能指标的测定。

3、设备故障的检测方法包括振动和噪声的故障检测、材料裂纹及缺陷损伤的故障检测、设备零部件材料的磨损及腐蚀故障检测及工艺参数变化引起的故障检测。

4、设备故障的评定标准常用的有三种判断标准,即绝对判断标准、相对判断标准以及类比判断标准。可用平均法制定相对判断标准。

5、从某种意义上讲,设备振动诊断的过程,就是从信号中提取周期成分的过程。组成周期成分的简谐振动可用位移、速度和加速度三个参量来表征,每个参量有三个基本要素:即频率、振幅和初相位。

6、试验数据处理的目的就是去伪存真、去粗取精、由表及里、由此及彼的加工过程,提高信噪比,找出客观事物本身的内在规律和客观事物之间的相互关系。

7、振动信号频率分析的数学基础是傅里叶变换;在工程实践中,运用快速傅里叶变换的原理制成频谱仪,这是故障诊断的有力工具

四、设备故障诊断技术的分类,有三种分类方法:

(一)按照诊断的目的、要求和条件分类,分为功能诊断和运行诊断、定期诊断和连续监测、直接诊断和间接诊断、在线诊断和离线诊断、常规诊断和特殊诊断、简易诊断和精密诊断等等。

1、功能诊断和运行诊断。功能诊断主要是针对新安装的设备或刚刚维修过的设备,而运行诊断更多是起到状态监测的功能。

2、直接诊断是直接根据关键零部件的状态信息来确定其所处的状态,例如轴承间隙、齿面磨损.直接诊断迅速可靠,但往往受到机械结构和工作条件的限制而无法实现。

3、间接诊断是通过设备运行中的二次效应参数来间接判断关键零部件的状态变化。由于多数二次效应参数属于综合信息,因此在间接诊断中出现伪警或漏检的可能性会增加。

  4、在线诊断和离线诊断。

在线是指对现场正在运行设备的自动实时监测;而离线监测是利用磁带记录仪等将现场的状态信号记录后,带回实验室后再结合诊断对象的历史档案进行进一步的分析诊断或通过网络进行的诊断。

5、常规诊断和特殊诊断。

常规诊断是在设备正常服役条件下进行的诊断,大多数诊断属于这一类型诊断。但在个别情况下,需要创造特殊的服役条件来采集信号,例如,动力机组的起动和停机过程要通过转子的扭振和弯曲振动的几个临界转速采集起动和停机过程中的振动信号,停车对诊断其故障是必须的,所要求的振动信号在常规诊断中是采集不到的,因而需要采用特殊诊断。

6、简易诊断和精密诊断。

简易诊断一般由现场作业人员进行。凭着听、摸、看、闻来检查。也可通过便携式简单诊断仪器,如测振仪、声级计、工业内窥镜、红外测温仪等对设备进行人工监测,根据设定的标准或凭人的经验确定设备是否处于正常状态。

精密诊断一般要由专业人员来实施。采用先进的传感器采集现场信号,然后采用精密诊断仪器和各种先进分析手段(包括计算机辅助方法、人工智能技术等)进行综合分析,确定故障类型、程度、部位和产生故障的原因,了解故障的发展趋势。

(二)按诊断的物理参数分类

振动、声学、温度、污染、无损诊断、压力诊断等等,都是按物理参数分类。

   (三)按照按诊断的直接对象分类

各种不同的对象,诊断方法、诊断的技术、诊断的设备都有很大区别,按照机械零件、液压系统、旋转机械、往复机械、工程结构等等来进行区分。

综上所述,设备的检测和故障诊断技术,可以迅速、连续地反映设备的运行状态,预示运行设备存在的潜伏性故障并提出处理措施,是保障设备安全经济运行的有力措施,应大力推广。然而,设备的检测与故障诊断技术毕竟为新兴的多学科高新技术,其发展和实施还存在许多困难,距离替代预防性定期检修还有较长历程。所以,既要积极开发、推广这一技术,也要客观对待,避免盲从,不断总结经验并完善系统。

参考文献

[1]李国华,吴淼. 《现代无损检测与评价》. 化学工业出版社.

故障检测与诊断范文第4篇

【关键词】汽车,发动机,电控系统,诊断

一、故障征兆的模拟检测与诊断

(1)振动法。当振动可能是引起故障的原因时,即可用振动法进行试验。基本方法如下。①连接器。在垂直和水平方向上轻轻摇动连接器。②配线。在垂直和水平方向上轻轻摆动配线。连接器的接头、支架和穿过开口的连接器体等部位的配线都应仔细检查。 ③零部件和传感器。用手轻拍装有传感器的零部件,检查是否失灵。

(2)加热法。如有些故障只在热车时出现,可能是由有关零部件或传感器受热而引起的。可用电吹风机或类似加热工具加热可能引起故障的零部件或传感器,加热后再检查是否出现故障。

(3)水淋法。当有些故障是在雨天或高湿度的环境下产生时,可以用水喷淋在车辆上,检查是否发生故障。

(4)电器全接通法。当怀疑故障可能是因用电负荷过大而引起时,可接通车上全部电气设备,检查是否发生故障。

二、利用简单仪表检测诊断

(1)用万用表检测诊断的一般原则。①除在测试过程中有特殊指明者外,不能用指针式万用表测试ECU和传感器,应使用高阻抗数字式万用表(内阻应不小于10kΩ)或汽车专用万用表。②首先检测熔丝、易熔线和接线端子(连接器)的状况,在排除这些部位的故障后再用万用表检测。③在测量电压时,点火开关应处于“ON”位置,蓄电池电压应不小于11V。④在用万用表检查防水型连接器时,取下防水套。表笔插入连接器检查时,不可对端子用力过大。⑤测量电阻时要在垂直和水平方向上轻轻摇动导线,以提高准确性。 ⑥检查线路断路故障时,应先脱开ECU和相应传感器的连接器,然后、测量连接器相应端子间的电阻,以确定是否有断路或接触不良故障。⑦检查线路搭铁短路故障时,应拆开线路两端的连接器,然后测量连接器被测端子与车身(搭铁)之间的电阻。电阻值大于1M时表明无故障。⑧在拆卸发动机电控系统线路之前,应首先切断电源,即将点火开关断开( OFF),拆下蓄电池负极搭铁线。⑨测量两个端子或两条线路间的电压时,应将万用表的两个表笔与被测的两个端子或两根导线接触;测量某个端子或某条线路的电压时,应将万用表的正表笔与被测的端子或线路接触,而将万用表的负表笔与地线接触。⑩检查端子、触点或导线等的导通性,是指检查端子、触点或导线是否通路。

(2)用万用表检测的基本操作方法。①电阻测量方法。将万用表置于电阻挡的适当位置并校零后,即可以测量电阻值。电控系统的元器件的技术状况,都可以用检测其电阻值的方法来判断。②直流电压测量的方法。将万用表选择在直流电压挡,将表笔接至被测两端。用测量电压的方法可以检查ECU所发出的各种控制信号电压、电路上各点的电压以及元器件的电压降。③断路(开路)检测方法。如果如图1所示的配线有断路故障,可用检查导通性或检查电压的方法来确定断路的部位。

a.检查导通性方法。首先脱开连接器A和C,测量它们之间的电阻值,如图2所示。若连接器A 端子1与连接器C端子1之间的电阻值为无穷大,则它们之间不导通(断路);若连接器A端子2与连接器C端子2之间电阻值为0,则它们之间导通(无断路)。

然后脱开连接器B,测量连接器A与B、B与C之间的电阻值。若连接器A端子l与连接器B端子1之间的电阻值为O,而连接器B端子l与连接器C端子1之间的电阻值为无穷大,则表明连接器A端子1与连接器B端子1之间导通,而连接器B端子l与连接器C端子1之间有断路故障存在。

b.检查电压方法。在ECU连接器端子加有电压的电路中,可以用检查电压的方法来检查断路故障,如图3所示。在各连接器接通的情况下,ECU输出端子电压为5V 的电路中,依次测量连接器A端子1、连接器B端子1、连接器C端子1与车身(搭铁)之间的电压,如果测得的电压值分别为5V、5V 和OV,则可判定在连接器B端子1与连接器C端子l之间的配线有断路故障存在。

④短路检查方法。如果配线短路搭铁,可通过检查配线与车身(搭铁)是否导通来判断短路部位,如图4所示。

三、利用故障自诊断系统检测诊断

发动机电控系统的ECU内部一般都有一个故障自诊断电路。它能在发动机运行过程中不断监测电控系统各部分的工作情况,并能检测出电控系统中大部分的故障,将故障以代码的形式存储在ECU的存储器内。维修人员可按照特定的方法将故障代码读出,为检测与诊断发动机电控系统提供依据。读取ECU内存储的故障代码的方法有两种:一种是利用微机故障检测仪(亦称解码器),另一种是用人工的方法(随车故障自诊断)。下面分别介绍这两种方法。

故障检测与诊断范文第5篇

【关键词】故障检测;故障诊断;小波分析

一、概述

现代化工业技术发展突飞猛进,现代工业自动化程度越来越高,系统规模也越来越大,简单控制系统已经不能达到工业生成的需求,大规模、综合性、复杂的自动化系统运用越来越广[1]。自动化设备和系统结构的日益复杂和集成化,使得系统发生故障的机率也增加,故障的产生会毁坏设备,影响系统正常运转,甚至造成人员伤亡。国内外由于设备故障所引起的设备损坏、锅炉爆炸、道路塌陷,不仅造成经济损失也造成人员伤亡,社会影响及其恶劣。为了达到以人为本同时维护经济的目的,可以加强系统的稳定性、可靠性、鲁棒性和安全性,但任何设备都不可能无限期使用,这就需要防患于未然,因此故障检测技术应运而生。

二、故障检测重要性

故障检测技术是是一门多学科融合交叉性学科[1],如:信号提取则依赖于传感器及检测技术;信号降噪离不开信号处理技术;状态估计和参数估计方法以系统辨识理论为基础;鲁棒故障诊断涉及到鲁棒控制理论知识;此外数值分析、概率与数理统计等基础学科也是故障检查和诊断不可缺少的方法。多门学科知识的支撑确保了故障诊断技术的迅速发展,在工业领域也应用广泛,如化工生产、冶金工业、电力系统、航空航天、机器人等生产的各个领域。

三、故障检测技术经济效益

数据显示[2],故障检测技术与经济发展息息相关,对故障检测技术的研究与发展越来越多,在工业生产中也得到了应用和推广。通过故障诊断技术的推广,大大降低了设备维修费用,各国在故障诊断技术上的投入也逐渐增加。日本对故障检测与诊断技术的投入占其生产成本的5.6%,德国和美国所占比例分别为 9.4%和7.2%。在冶金工业生产中,我国每年承担的设备维修的费用就高达 250 亿元,金额庞大,然而如果应用故障检测与诊断技术,每年可以减少事故发生率同时也能节约 10%~30%的维修费用。因此故障检测能带来经济效益,不容小觑。

四、故障检测的分析方法

(一)状态估计法

状态估计法一般分为两步:首先求取残差,再从残差数据中提取故障特征从而实现故障诊断。目前状态估计法的故障检测诊断方法方兴未艾,如H2估计[3]、鲁棒故障检测与反馈控制的最优集成设计方法[4]等。

(二)等价空间法

低阶的等价向量在实现过程中较易实现但性能不佳,而高阶的等价向量能够得到较理想的性能参数,但以较大的计算量和计算时间为代价。为了解决上述问题,文献[5]采用窄带IIR滤波器运用于等价空间法中,在几乎不改变计算量的前提下,提高系统检测性能,但此方法会产生较高的漏报率。

(三)参数估计法

参数估计法是因为模型参数和相应的物理参数的特点不同,分别统计这两类参数的变化特性来分析和确定故障。物理参数携带重要的信息,具有物理含义,因此,可以分析物理参数的特点,如果异常可以确定故障位置。与状态估计法比较,参数估计法能更有效的故障确定。参数估计法研究越来越丰富,故障诊断方法新成果倍出[6]。

(四)热门的分析方法

(1)小波分析技术

小波分析由于具有时频域局部化特性[7],可任意调节时间窗和频率窗,因此突变信号能够检测出来。但是,小波基选取一直是在小波信号分析没能解决的问题,也是研究的一个难点,针对同一信号采用不同的小波基进行分析其分析结果往往不同。通过小波分析可以检测信号的奇异点,在信号降噪和信号分析中应用广泛。小波变换是结合时域和频域的分析方法,特征提取方便,在故障检测中应用较广。小波分析对单一的故障源检测效果明显,但较复杂情况,如多故障源效果不佳。

(2)神经网络技术

神经网络技术是根据模式识别理论,采用分类器理论,用神经网络进行故障分析和诊断。采用人工神经元网络进行故障诊断一般有四种方式[8]:神经元网络计算残差;神经元网络分析残差;神经元网络进一步分析确定故障点;神经元网络自学习过程进行自适应误差补偿。

(3)小波包分析和神经网络结合技术

用有限元法建立系统动力学模型[9],再根据系统采集信号进行小波包分解,建立基于小波包能量谱指标。把信号指标作为改进BP神经网络的输入特征参数,用分步识别方法进行识别。

(五)展望

故障检测技术运用广泛,用单一方法进行处理存在准确度和精确度的问题,因此可以考虑多学科技术结合的方法,进一步提高准确度和精确度。

参考文献:

[1] 周东华, 胡艳艳. 动态系统的故障诊断技术. 自动化学报. 2009, 35(6).

[2] 周福娜. 基于统计特征提取的多故障诊断方法及应用.[博士学位论文].上海:上海海事大学, 2009.

[3] Fadali M S, Colaneri P, Nel M. H2robust fault estimation for periodic systems[C]MProc. American Control Conference,Denver, Colorado,2003: 2973-2978.

[4]钟麦英,张承慧, Ding S X.一种鲁棒故障检测与反馈控制的最优集成设计方法[J].自动化学报, 2004, 30(2): 294-299.

[5] Ye H, Wang G Z, Ding S X. An IIR filter based parity space approach for fault detection[C] Proc. the15th IFAC World Congress, Barcelona,2002.

[6] Abidin M S Z, Yusof R, Kahlid M, et al. Application of a model based fault detection and diagnosis using parameter estimation and fuzzy inference to a DC-servomotor[C] Proc.2002 IEEE International Symposium on Intelligent Control, Vancouver, Canada,2002:783-788.

[7]李青锋,缪协兴,徐余海.连续复小波在工程检测数据处理中的应用[J].中国矿业大学学报,2007,36(1):22-26.

故障检测与诊断范文第6篇

【关键词】动车组 检测 故障诊断 过程考核

【基金项目】上海应用技术学院《动车组检测与故障诊断技术》课程建设项目。

【中图分类号】G642 【文献标识码】B 【文章编号】2095-3089(2015)09-0227-02

一、引言

近些年,伴随着我国高速铁路和城市轨道交通建设的极速发展,动车组得到了广泛的运用。目前,仅铁路方面,动车组就达到了1300多对,占旅客列车总数的半数以上。动车组的复杂性、高速性对其安全保障措施提出了更高、更苛刻的要求。实施有效的检测与诊断则成为铁路总公司、中车集团以及相关科研院所的关注焦点和研究热点。与此同时,相关院校,如西南交通大学、大连交通大学、上海应用技术学院等,相继也开设了《动车组检测与故障诊断》的本科课程,以满足对相关技术人才的急剧需求。

然而,动车组作为一种新型车辆系统,其复杂、高速等特性都对相关的检测与诊断技术手段提出了全新的要求和挑战。目前,各种理论、技术手段也在不断的快速更新、发展,新的技术方法也在不断的得到尝试和应用。在这样的特殊情况下,对其本科教学也提出了诸多挑战。为此,本文从一线教师在几年的教学过程中遇到的相关问题及思考的角度,结合本校的培养目标,对《动车组检测与故障诊断》这门课程的教学内容和课程考核方式进行了初步探讨。

二、教学内容

《动车组检测与故障诊断》是一门面向机辆工程专业高年级学生开设的、综合性极强的本科课程。其先修专业(基础)课程包括《机车总体及走行部》、《传感器与检测技术》、《机车制动技术》、《机车动力学基础》、《机车结构强度分析》以及《机车电力传动技术》等。其任务是使学生掌握动车组检测与故障诊断的体系结构、关键部件的检测装置、手段及分析、诊断方法等知识,目的是使学生具备动车组安全保障一线技术、管理工作人员的理论基础和专业技能,为今后从事相关技能、管理工作打下坚实的基础。

动车组检测与故障诊断系统从大的范畴上可分为两大模块,即车载诊断系统和地面诊断系统,车载诊断系统内部以及车、地系统间都涉及到数据通信技术。从检测与诊断的对象模块上可分为:供电系统、牵引传动系统、制动系统、走行系统、防滑系统、空调系统等,每个对象模块又有很多零部件、故障模式的检测与诊断内容。从技术手段上可分为:振动诊断技术、声诊断技术、红外诊断技术、油分析诊断技术等,而每种技术在实际应用中又可细分不同的应用技术手段。《动车组检测与故障诊断》这门课程内容涉及的理论与技术面之广之深,由此可见一斑。在文献[1]中,笔者从实际出发,对地方本科院校新办机辆工程专业的多方面进行了探讨,其中很重要的一方面就是师资力量问题。而从真正实现本课程的教学目的与任务的角度来看,需要的是一个理论扎实、技术经验丰富、全面的教学团队――而这对师资力量提出了极高的要求,对于地方院校新办专业来讲,在短时间内还是难以完全满足的。

另外,从教材方面讲,可选择性非常局限,唯一一本相关性较强的是,由西南交通大学的郭世明教授编著的《动车组检测与故障诊断技术》。

笔者自2013年9月份起开始承担本校该课程的教学工作,历经两届,马上进入第三届的授课。作为一名新进、青年、跨专业的教师,该课程没有任何资料可以参考,从教学大纲的制定、教材的选定、教学内容的安排、课件的制作、考核内容等等,都是一路摸着石头过河,经历了不断的修正。

郭世明教授的这本教材共分为九章,内容包括:第一章讲述动车组概述和动车组检测与故障诊断系统概述;第二章在讲述动车组技术概述的基础上,对动车组的列车监控与故障诊断系统进行了技术概述;第三章从一般学科的角度讲述了检测技术的基本知识;第四章从一般学科的角度讲述了常见的传感器;第五章从机械的角度讲述了故障诊断技术中的信号分析与智能诊断方法;第六章对几种常用列车通信网络技术进行了分别论述;第七章对走行部关键部件的检测及诊断技术进行了论述;第八章讲述了动车组牵引传动系统的检测与故障诊断;第九章对动车组的检修制度和检修基地进行了论述。

从内容上看,本教材内容的第三、四、六章与其它课程重合,为了保证48学时的教学工作量的充实,与课程目的与任务要求相结合,在参考了多本相关教材、文献[2-6]的基础上,目前的教学内容按模块分为:故障诊断技术、车辆检测技术、车辆诊断系统、动车组检修四个模块,其中:故障诊断技术模块主要从机械振动角度讲述测试、分析与智能诊断等;车辆检测技术则主要是讲述列车中常用的检测技术装置,包括超声检测、磁粉检测、声发射检测、5T系统及收集的一些案例等;车辆诊断系统则是在讲述动车组检测与故障诊断系统概述的基础上,以“KAX-1型行车安全监测诊断系统”为实例进行讲述;动车组检修主要讲述国内外的检修制度以及动车组检修基地的设置等。以上教学内容的安排,离本课程最终的教学目的、目标与任务要求还相差甚远,有自身经验不足的问题、有教学团队欠缺的问题、有对外合作不足的问题,也有教学设备缺失的问题。所以,不管是从自身还是专业团队来讲,我们都在不断的努力!

三、课程考核

从上述可以看出,《动车组检测与故障诊断》这门的教学内容涉及范围极广、极散,这与传统的课程教与学都有很大的不同,尤其是对课程考核所具有的意义提出了更高的要求。考试内容多以对相关技术的简单理解为主,辅以一定的分析应用题。这样,若以传统的考核方式,即最终闭卷考试成绩占绝对比重来进行的话,就会带来诸多问题:1.学生容易产生“平时不用太认真,临考前集中背背就可以”的完全应试心理,而造成背是背会了,而某某技术到底是什么而全然不知的情况。这种情况也确实较大面积存在。2.每届学生考试前的状态,对成绩影响非常大,这是因为,该课程设置在大四的上学期――正是学生集中找工作的时间,比如第一届学生,由于外部环境好,大部分同学早早就在行业内签订了就业协议,临考前比较能集中时间应对考试,考试成绩普遍很好,而第二届学生,由于外部环境等多重原因,行业内就业不太景气,临考前也是人心惶惶,结果考试成绩极差。实际上,两届的考试难度完全相当!3.教学内容决定了考试内容,而采用传统的考核方式,必然导致存在上述两个问题,这实际上是“成绩无法反映学生掌握相关要求的真实程度”的问题。

为此,在学校试行“过程考核”的改革中,笔者以此为契机,对本课程进行了积极申报并获得了批复。其主要目的是,加大平时考核成绩的比重,弱化最终卷面成绩的比重,使得学生在学习过程中对相关问题能够积极思考,并在大量查阅文献资料的情况下,进行外延拓展。过程考核除了常规课堂出勤纪律外,主要包括以下几点:1.课堂互动、随机提问;2.针对课堂内容知识点的随堂作业;3.课堂内容的总结报告;4.专题报告;其中,前三点都是基于课前预习、检索、收集相关资料的前提下进行的。第四点则是针对课程中某几个方向,进行大量的文献资料阅读的基础上,撰写综述类报告的。开展过程考核,对老师和学生都提出了非常高的要求,但我想,这也是教学本应进行的内容。过程考核的内容确定之后,其实还有如何杜绝互相抄袭的问题,对此,笔者也在不断借鉴多方经验、不断的思考。

四、结语

《动车组检测与故障诊断》作为一门涉及面极广的新课程,其教学内容的安排、课件的制作、考核内容及形式等教学环节的多个方面,都对任课教师的提出了极高的要求。本文仅是从一个刚刚任课两年的一线青年教师的角度,对相关内容进行了思考和初步探讨。为了保证更好的教学质量、建立更公平的考核方式,都有大量的工作要做,不断的修正。

参考文献:

[1]潘玉娜, 浅谈地方本科院校新办机车车辆专业, 课程教育研究, 2013年第11期

[2]黄采伦,《列车故障在线诊断技术及应用》,国防工业出版社,2006

[3]董锡明,《机车车辆维修基本理论》,中国铁道出版社,2005

[4]董锡明,《轨道列车可靠性、可用性、维修性和安全性》,中国铁道出版社,2009

故障检测与诊断范文第7篇

【关键词】失效;故障频率;振动分析;包络法

中图分类号:TK22文献标识码:A文章编号:1006-0278(2012)06-124-01

滚动轴承是旋转机械中的重要零件,统计表明,在使用滚动轴承的旋转机械中,大约有30%的机械故障都是滚动轴承引起的。采用状态检测与故障诊断技术后,事故发生率可降低75%,维修费用可减少25%~50%。

一、 滚动轴承的失效形式

(一)疲劳剥落

滚动轴承的内外滚道和滚动体交替进入和退出承载区域,这些部件因长时间承受交变载荷的作用,首先从接触表面以下最大交变切应力处产生疲劳裂纹,继而扩展到接触表面在表层产生点状剥落,逐步发展到大片剥落,称之为疲劳剥落。

(二)磨损

由于滚道和滚动体的相对运动和尘埃异物引起表面磨损,不良会加剧磨损,结果使轴承游隙增大,表面粗糙度增加,降低了轴承运转精度,因而也降低了机器的运动精度,表现为振动水平及噪声的增大。

(三)擦伤

由于轴承内外滚道和滚动体接触表面上的微观凸起或硬质颗粒使接触面受力不均,在不良、高速重载工况下,因局部摩擦产生的热量造成接触面局部变形和摩擦焊合,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂。

(四)断裂

当轴承所受载荷、振动过大时,内外圈的缺陷位置在滚动体的反复冲击下,缺陷逐步扩展而断裂。

(五)锈蚀

水分或酸、碱性物质直接侵入会引起轴承锈蚀。当轴承内部有轴电流通过时,在滚道和滚动体的接触点处引起电火花而产生电蚀,在表面上形成搓板状的凹凸不平。

二、滚动轴承的失效过程

轴承失效通常划分为四个阶段:

(一)第一阶段:轴承的超声频率振动阶段

轴承最早期的故障是表现在250kHz~350kHz范围的超声频率的振动异常,随着故障的发展,异常频率逐渐下降移到20kHz~60kHz,此时的轴承微小故障可被冲击包络和声发射的方法检测到,冲击包络值最大可达0.5gE(加速度包络,振动分析中表示振幅的一个加速度指标)。

(二)第二阶段:轴承的固有频率振动阶段

随着轴承的运转,轴承滚动表面会产生轻微的缺陷,这些轻微缺陷引起的振动会激起轴承部件的固有频率(fn)振动或轴承支承结构共振,一般振动频率在500Hz~2kHz。同时该频率还作为载波频率调制轴承的故障频率。起初只能观察到这个频率本身,后期表现为在固有频率附近出现边频。如果用加速度包络法检测会发现其包络值会上升至0.5~1.OgE左右。此时,轴承仍可安全运转。

(三)第三阶段:轴承缺陷频率及其倍频振动阶段

随着轴承微小缺陷的进一步扩展,轴承缺陷频率及其倍频开始出现,随着轴承磨损的进一步发展,更多缺陷频率的倍频开始出现,围绕这些倍频以及轴承部件固有频率的边频带数量也逐步上升。此时轴承的振动已经比较明显,应考虑尽早更换轴承。

(四)第四阶段:轴承随机宽带振动阶段

轴承已经接近完全失效,轴承的寿命已经接近尾声,甚至工频也受其影响而上升并产生许多工频的倍频,而原先离散的轴承缺陷频率和固有频率开始"消失",取而代之是随机的宽带高频"噪声振动",高频噪声振动和包络值有所下降,但就在轴承最终失效前,包络冲击值会大幅上升。

三 、滚动轴承的振动特征分析方法

(一) 特征参数法

特征参数法的优点在于仅有少数指标用于解释轴承的状态, 结果分析简单和方便。在滚动轴承诊断中常用的特征参数包括有效值、峰值等各种时域特征参数和重心频率等各种频域参数。

(三) 频谱分析法

滚动轴承的振动其频率成分十分丰富, 既含有低频成分,又含有高频成分。每一种特定的故障都对应特定的频率成分, 需要通过适当的信号处理方法将特定的频率成分分离出来, 从而指出特定故障的存在。

(三)包络法

包络法的优点包括它能区分同时发生在同一个轴承中的数种故障特征的特征,将与故障有关的信号从高频调制信号中取出, 从而避免了与其它低频干扰的混淆, 具有极高的诊断可靠性和灵敏度。

当轴承某一元件表面出现局部损伤时,在受载运行过程中要撞击与它接触的表面而产生冲击脉冲力。由于冲击脉冲力的频带很宽,包含轴承组件、轴承座、 机器结构及传感器的固有频率, 所以必然激起测振系统的共振。因此,测得的振动加速度信号包含着多个载波共振频率, 以及调制于其上的故障特征频率和其谐波成分。从而可以根据实际情况选取某一共振频率为中心,使微弱的轴承故障信号搭载在高幅值的谐振频段传递出来,再对所测信号进行绝对值处理,之后采用低通滤波,即可获得调制信号的包络线,然后进行快速傅立叶变换FFT,即可得到包含故障特征频率及其倍频成分的低频包络信号, 对包络信号进行频谱分析就可以很容易地诊断出轴承的故障来,这个过程也称为共振解调。

四、结语

了解轴承故障的形式和轴承故障的发展阶段,对于诊断轴承故障是十分必要的。掌握轴承故障诊断的分析原理和方法是准确诊断轴承故障的前提。

参考文献:

[1]赵晓玲.滚动轴承故障振动检测方法[J].重庆科技学院学报,2007.

故障检测与诊断范文第8篇

【关键词】电力设备;高压开关柜;故障检测;诊断

高压开关柜是配网的重要设施,对电网安全可靠的运行起着重要作用,随着经济的发展,电网也在飞速的发展,加之变电站无人值班管理模式和综合自动化的普及,高压开关柜的安全运行越来越重要,因此迫切需要高压开关柜具有高可靠性,并能在线检测故障,避免局部放电事故发生。局部放电分为内部、表面和电晕放电,并主要以电磁、声波和气体形式释放能量,这些是绝缘性能检测的主要信号。

1.检测方法

1.1 超声波检测

局部放电是一种快速的电荷释放或迁移过程,当发生局部放电时,放电点周围的电场应力、机械应力与粒子力失去平衡状态而产生振变化,机械应力与粒子力的快速振荡,导致放电点周围介质的振动,从而产生声波信号。放电产生的声波频谱很宽,可以从几十赫到几兆赫,放电强度的大小决定了电场应力、机械应力和粒子力的振荡幅度,直接决定了振动的程度和声波的相度。

声能与放电释放的能量成比例,虽然在实际中各种因素的影响会使这个比例不确定,但从统计角度看,二者之间的比例关系是确定的。从局部放电的机理可知,局部放电初期是微弱的辉光放电,释放的能量很小,后期出现强烈的电弧放电,此时释放的能量很大,局部放电的发展过程中释放的能量是从小到大变化的,所以声能也从小到大变化。

根据球面波的声能量式可知,在不考虑空气密度和声速的变化时,声能量与声压的平方成正比。根据放电释放的能量与声能之间的关系,用超声波信号声压的变化代表局部放电所释放能量的变化,通过测量超声波信号的声压,就可以推测出放电的强弱。

1.2 TEV检测

当高压电气设备发生局部放电时,放电电量先聚集在与放电点相邻的接地金属部分,形成电流脉冲并向各个方向传播。

脉冲电流的透入深度与频率的平方根成反比。高频局放电流只在导体表面传输。对于内部放电,放电电量聚集在接地屏蔽内表面,因此如果屏蔽层是连续的,则无法在外部检测到放电信号。但实际上,屏蔽层通常在绝缘部位、垫圈连接处、电缆绝缘终端等部位因破损而导致不连续,高频信号因此传输到设备外层而被检测出来。

因放电产生的电磁波通过金属箱体的接缝处或气体绝缘开关的衬垫传播出去,同时产生一个暂态电压,这个电压脉冲称为暂态对地电压(TransientEarthVoltage,TEV)。

TEV的检测原理见图1,高压电气设备的对地绝缘部分发生局部放电时,导电系统对接地金属壳之间有少量电容性放电电量,通常只有几兆分之一库仑,放电持续时间一般只有几纳秒。因为电量等于电流乘以时间,一次放电1000pC,持续10ns,就产生100mA的电流。对于持续时间那么短的放电脉冲,被测设备就不能看作是个整体,而应看作是传输线,其电气特性由分布电容和电感决定。此时,可以将地看成一个金属板,缝隙所处的位置看成另一个金属板,缝隙与地之间的距离为传输线。

当发生局部放电时,电磁波从放电点向外传播,电流大小与这些电磁波产生的电压有关。电压等于电流与路径阻抗的乘积。在不考虑损耗的传输线上,阻抗满足下式:

式中的L和C是传输线单位长度的自感和电容,ZO的数值变化很大。通过研究可知,单芯10kV电缆约为10Ω,35kV金属外壳的母线室大约70Ω。因此,1000pC的放电可产生对地1-7V持续10ns的电压。电压脉冲在金属壳的内表面传播,最终从开口、接头、盖板等的缝隙处传出,然后沿着金属壳外表传到大地。这样,使用电容耦合式传感器就可检测到放电信号。

研究发现,局部放电产生的TEV信号的大小与局部放电的激烈程度及放电点的远近有直接关系,可以利用专门的探测器进行检测。通过检测局部放电产生的TEV信号,不仅可以对运行中开关柜内设备局部放电状况进行定量测试,而且可以通过同一放电源到不同探测器的时间差,对局部放电点进行定位。

2.开关柜绝缘性能故障检测诊断系统

这一系统的检测技术在原理上是一种比较性的检测技术。某个开关柜上的检测结果应与其以前的检测数据或其它同类型的开关柜所检测的数据进行比较,如果检测数据大于其它同型号开关柜或以前的结果,说明该开关柜存在放电活动,进而推断故障的可能性。因此,需要有相当的设备运行经验,才能根据技术检测结果分析设备绝缘材料还能维持运行的时间。

记录每次设备故障的详细情况有助于分析判断放电活动对设备的影响。整个系统可分成3个子系统:

(1)被检测设备和传感器,处于开关室现场。

(2)信号预处理和数据采集子系统,一般集成在主机中,也处于现场。

(3)数据处理和诊断系统,实际为1台PC和数据存储分析软件,处于主控室。

3.检测数值的动态判据

3.1统计分析与趋势分析

统计分析法是在同一开关室内开关柜局部放电检测时,对相关条件下的TEV检测数值和超声波检测数值进行分类统计,从而得出初步判断依据。现场影响局部放电测量结果的因素有很多,如工作电压、放电种类、绝缘材料、负载、机械运动、环境条件、干扰、开关柜制造厂家及类型等,所有因素都可能造成检测结果的误判,在现场测试时必须加以考虑。

趋势分析是对同一开关柜不同时间的测试结果进行分析,按月、季、年从统计分析中得出开关柜局部放电的趋势。在分析过程中,还应分析影响局部放电的细微波动对TEV检测数值和超声波检测数值的变化,主要分析内容有负载的变化、环境因素波动、干扰波动、时间变化等。

3.2 动态判断依据

结合统计分析、趋势分析和初步判断依据,可以对开关柜局部放电进行动态的判断分析,具体步骤如下:

(1)初始判据的判断。对当地所有N面开关柜的故障情况进行统计,按照统计结果计算出故障率为a%。

(2)统计分析。对当地所有N面开关柜局部放电情况进行普测,取其中检测数值最大的N×a%面开关柜,然后再取这N×a%面开关柜中数值最小的作为比较值A。

(3)趋势分析。在一段时间间隔(一个月、一个季度或一年),再次对所有N面开关柜进行普测,取其中检测数值最大的N×a%面开关柜,然后再取这N×a%面开关柜中数值最小的作为比较值B,将B与A进行比较。

(4)比较分析。对于B与A的比较,可分为以下几种情况:

若B

若B>A,有以下几种因素可以考虑:开关柜负荷可能有所增加;背景干扰严重程度进一步加重;温度、湿度状况进一步恶化;开关柜的污秽情况进一步恶化。

若B=A,主要是开关柜负荷、背景干扰、温度、湿度状况、开关柜的污秽情况大体相同,开关柜运行状况比较平稳。

(5)确定判据值。最终根据开关柜常年运行的情况确定A或B值为判断依据,由于开关柜周围环境等因素对局部放电都有影响,因此,在确定判断值时要考虑±2dB的误差。继续按照步骤一到步骤五的顺序进行判断数据的确定,最后经过长时间的比较,建立起本地区开关柜检测的数据库,最终确定一个作为指导性的判断数值。

综上所述,动态判据诊断是一个长期的过程,需要根据实际情况进行纵向和横向的对比分析,以做出正确的判断。

4.结论

基于超声波和TEV技术的高压开关柜局部放电检测定位技术,改变了电气设备传统的局部放电测试方式,为电力系统的电力设备状态检修提供了可靠的技术数据,是一种实用、有效的检测技术。检测装置具有以下优点:

(1)装置的投入使用不改变和影响电力设备的正常运行。

(2)能自动连续进行检测、数据处理。

(3)具有自检和报警功能。

(4)具有较好的抗干扰能力和合理的灵敏度。

故障检测与诊断范文第9篇

关键词: 空气流量计;测试;故障检查

一、空气流量传感器的作用及组成

空气流量传感器也称空气流量计,是电控发动机的重要传感器之一。它发展大体上经历了以下四代: 第一代简称L型 ,在节气门轴上设置一个联动的滑变电阻来测量节气门开度,进而通过转速信号及进气温度信号换算成进气量。第二代简称D型 ,在进气歧管中引出真空,该真空作用到电压感应片上,感应出电压值,在ECU中计算出相应的进气压力,再参照进气截面积计算出进气量。第三代简称热线式, 其原理是ECU通过给热线不同的电流来保持热线恒温。不同流量的空气流经热线时将带走不同的热量,这时的电流变化就成为进气量的度量。第四代简称热膜式工作原理与热线式基本相同,是热线式的改进型,目前应用最广。

热膜式空气流量计结构如下图。

为了能获得最佳浓度的混合气,必须正确地测定每一时刻吸入发动机的空气量,以此作为ECU计算喷油量的主要依据。如果空气流量传感器或线路出现故障,ECU得不到正确的进气量信号,就不能正常地进行喷油量的控制,将造成混合气过浓或过稀,使发动机不能正常工作。

二、热线(热膜)式空气流量计的常见故障及检查

1.常见的故障

热线(热膜)式空气流量计较为常见的故障是:热线(热膜)沾污、热线断路(热膜损坏)和热敏电阻不良等。

2.故障检查方法

电路如下图。

1脚空;2脚为12V;3脚为ECU内搭铁;4脚为5V参考电压;5脚为传感器信号。在怠速时5脚电压为1.4V;急加速时为2.8V。

电阻测试

(1)线束导通性测试:将数字万用表设置在电阻200Ω档,找到空气流量计下面的针脚号与ECU 信号测试端口针脚号,分别测试空气流量计3、4、5 号针脚对应至电控单元 12、11、13 号针脚的电阻,所有电阻都应低于1Ω。

(2)线束短路性测试:将数字万用表设置在电阻200KΩ档,测量空气流量计针脚 2 与电控单元针脚 11、12、13 之间电阻应为∞。测量空气流量计针脚与电控单元针脚:3―11、13;4―12、13;5―11、12之间电阻均应为∞。

测试各条线束的导通性,应关闭点火开关,拔下传感器插头与电控单元插接器,用数字万用表分别测量各线束间的电阻,相连导线电阻应当小于1Ω,不相连导线电阻应∞为正常。

电压测试

(1)电源电压测试:打开点火开关,将数字万用表调至直流20V档,红色表针置于空气流量计针脚2,黑色表针置于发动机进气歧管壳体,起动发动机时应显示 12V;红色表针置于空气流量计针脚 4,黑色表针置于发动机进气歧管壳体,应显示5V。

在实际检测中,拔下传感器插头,打开点火开关,测量2号端子与接地间电压,起动发动机时应显示12V。

(2)信号电压测试:分单件测试和就车测试两部分。单件测试:取一个空气流量计组成部件,将12V 电压或蓄电池电压施加在空气流量计电器插座针脚 2 上,将 5V 电压施加在空气流量计电器插座针脚4上,将数字万用表调至直流20V档,测量空气流量计插座针脚 3 和针脚 5,应有 1.5V 左右电压,用吹风机从空气流量计隔珊端向空气流量计吹入冷空气或热的空气,测量空气流量计插座针脚3和针脚5,电压应瞬时上升至2.8V回落。不能满足上述条件,可以判定空气流量计有故障。

就车测试:起动发动机至工作温度,将数字万用表调至直流 20V档,测量空气流量计针脚5 的反馈信号,红表针置于空气流量计针脚 5,黑表针置于空气流量计针脚3,怠速时应显示电压1.5V左右;急加速应显示 2.8V 变化。若不符上述要求,在电源电压与参考电压完好的前提下,可以确定空气流量计已损坏,需要更换。

三、相关维修案列

案例一

故障现象:一辆帕萨特B5GLi型轿车冷车起动不着,但起动机运转正常。若用脚稍点住油门板,连续开关点火起动几次,发动机可以起动。若稍微松一下油门板,发动机马上就会熄火。使发动机保持这种状态运行10几分钟后,发动机则工作正常。

故障原因:空气流量计沾污。、

故障排除:首先用故障诊断仪查得故障代码为:17916 P 1508 035,故障含义是到达怠速调整系统理论上限值。清除故障码后,关闭发动机。然后重新起动发动机再检查,故障代码17916仍然存在。

对数据块进行检查,未发现有异常情况。询问驾驶员。了解到该车己行驶2万km未更换过空气滤芯。打开空气滤清器,滤芯粘满尘土,更换空气滤清器并对进气管路进行了清理。再次清除故障码,根据对故障现象的分析,可能是空气流量计,热膜上粘附了灰尘造成进气质量信号失准所致。用压缩气体对热膜清洁后,故障排除。

案例二

故障现象:一辆桑塔纳2000GSi发动机怠速时发动机抖动较厉害,行驶中出现加速不良现象。

故障原因:空气流量计断路。

故障诊断与排除:阅读故障码,有两个:00533空气流量计对地开路或短路;00561混合气自适应超限。观察数据流,发现进气流量信号能随发动机转速变化,但喷油脉宽及节气门角度均超过经验正常值(1.65-1.90ms及2-4º;)。清洗节气门及喷油器后,装车、清码、基本设定。启动着车后,发现发动机怠速抖动更严重。再阅读故障码,仅剩00533,而且再也清不掉。从空气流量计上拔下线束插头,阅读进气流量数据流信号与插着插头时相同。可见当产生故障码“00533空气流量计对地开路或短路”时,数据流不是真实值,而是替代值(由发动机转速与节气门位置传感器信号计算替代)。可见此时阅读进气流量数据流已无意义。仔细检测空气流量计及其线路,结果发现空气流量计线结束插头转角处的信号线断路。重新整理线束插头后再试车,故障排除。

参考文献:

[1]冯渊.汽车电子控制技术.机械工业出版社.2011

故障检测与诊断范文第10篇

关键词:暖通空调;故障检测;故障诊断

引言:随着暖通空调技术的发展,暖通空调系统的故障检测与诊断也得到了广泛研究,其起源可追溯到上世纪90年代。关于暖通空调系统的故障检测与诊断,其关键就在于对暖通空调系统故障的研究,建立起故障发生的特征与故障本身之间的联系形成故障诊断模型。利用成立的模型来对暖通空调的故障进行辨识就是暖通空调系统的故障检测与诊断。现如今,相较于国外对暖通空调故障的研究,我国还处于起步阶段,由于研究时间较晚,科技手段也较落后,对于暖通空调系统故障的研究大多只局限于传感器故障研究,远不如国外故障研究的类目众多。

一、暖通空调系统的故障研究

关于暖通空调系统的故障,其故障形式多种多样,由于暖通空调系统中含有许多的设备和零配件,系统之间互相关联,极为复杂,而暖通空调系统中的每一个部件都可能发生故障,根据统计,其中大部分故障为电气故障,还有少数机械故障和管道阀门配件类的故障。关于暖通空调系统的故障成因,由于系统复杂性难以确定,但是暖通空调系统的故障并不会产生危险,只是会使暖通空调系统的性能受损,影响用户的使用效果,还有就是增加设备系统的能源消耗。关于暖通空调系统的故障检测与诊断,其困难就在于暖通空调系统的复杂性。暖通空调系统是一个整体,它将系统之中的配件和设备,利用管道相互连接,可以说,暖通空调系统中的配件是有着联系的,配件之间是连结共生,相互影响的。

二、暖通空调系统的故障类型

暖通空调系统的故障除了自然老化而引起的故障还有因设计问题引起的故障,故障类型复杂且多,但大致分类可以分以下几点:首先,按系统故障的性质分类可分为自然故障和人为故障。自然故障是指因自身问题而导致的系统运行故障,而人为故障自然是指因人为损坏产生的系统故障。其次可以按照故障的严重程度来分,分为软故障和硬故障,软故障就是系统配件因为使用而积累损伤,表现为老化受损,从未导致配件的部分性失效或者使用效果降低的故障。而硬故障就是指设备,配件等彻底损坏,完全失去功效的情况。软故障的发生不像硬故障一般发生得迅速突然,且破坏性较大,软故障的故障发生是循序渐进的,隐蔽性较强,所以相较于软故障,硬故障的检测与诊断较为容易。最后按故障发生的配件分,暖通空调系统的故障又可细分为组件故障和传感器故障。组件故障是指暖通空调系统的组成设备发生故障,冷水泵或新风机发生故障就可以归于组件故障。传感器故障就是暖通空调系统中的各类传感器出现的故障,可能是数据采集的精度下降,也可能是完全没发挥作用。

三、暖通空调系统的故障辨识

(1)基于规则的专家系统故障辨识。这种故障检测与诊断的方法的应用较为广泛,涉及领域也较广,主要原理就是依靠对故障研究的历史信息,利用IF-THEN的规则能,表现故障表征与故障信息的特征之间的联系,通过电脑程序来进行检测与诊断。(2)基于模型的故障辨识。这一诊断方法是采用数字逻辑电路结构以及传输方式来对系统的各个层次进行故障检测,虽然故障诊断较为精准,但是由于计算复杂,所以故障辨识的效率并不高。(3)基于故障树的故障辨识。(4)基于案例推理的故障辨识。案例推理是通过同类型故障案例进行推理诊断的方法。缺点就是需要一定数量的案例,适用于变因不多的故障。(5)基于模糊逻辑的故障辨识。模糊逻辑是根据经验值和模糊数据构成模糊矩阵,再以模糊逻辑结合算法进行全面判断。(6)基于模式识别的故障辨识。模式识别主要是对正常运行模式与故障模式进行区分,通过两者的不同变量进行故障诊断。(7)基于小波分析的故障辨识。小波分析依靠对异常的工作信号所发回的信息进行分析,小波分析的故障检测适合做信号处理。(8)基于神经网络的故障辨识。这一方法通过大量相互关联的神经组成的网络来进行故障检测与诊断。(9)基于遗传算法的故障辨识。遗传算法的理念是根据自然界适者生存的法则,采用模糊区间的推理方法,运用遗传算法进行故障检测。

结语:随着暖通空调的快速发展,暖通空调的应用可以说渗透在社会的方方面面,暖通空调系统的故障检测与诊断有着不可估量的发展前景,其未来的发展必然向着高精度,高科技和高效率的方向。通过暖通空调系统故障检测与诊断实现暖通空调系统更好,更节能的优化发展,减少暖通空调设备的能耗,带来经济与节能的双重收益。

故障检测与诊断范文第11篇

关键词:暖通空调系统;故障检测;诊断研究

一、暖通空调系统故障原因分析

暖通空调系统是由多种设备组合而成的,其中系统设计时应用到了多个学科的技术,如热力学、流体力学等。暖通空调系统在运行时,各种设备的参数相互配合,共同完成对建筑物的采暖、调节空气的作用。暖通系统的复杂性增强了故障发生的机率,同时各种故障的相互影响,也会造成新的故障。暖通空调系统应用到多种空调设备,这些设备之间互相用管道进行间接,关联性特别强,如果某种设备出现故障,也会影响其他设备的运行,从而影响整个暖通空调系统性能和功能发挥。

暖通空调系统发生故障后,可能会造成整个系统故障的连锁反应,影响其他设备正常运行,这样也会造成故障检测和诊断带来困难。大范围的参数变化让维修人员不容易找到故障原因,难以分清数据和参数的变化因素,因此很难做出准确的诊断结果判断,给系统为诊断维修造成了较大的困难。由于暖通空调设备中传感器设置较少,很多故障发生却不能够用准确的数据和图片表达出来,会给系统管理者的故障检测带来较大的困难,很多故障只有在发生后通过各种手段检测出来,不能够做好故障预防,不利于暖通空调系统正常运行。

二、常用的故障检测和诊断方法

(一)通过案例进行故障检测和诊断。暖通空调系统的故障主要分为硬件故障和软件故障,在故障发生时要根据实际情况进行处理。在故障发生时,如果不能立即得出诊断结果,可以根据故障发生的细节,在暖通空调故障知识库和相似的文件和资料中找到故障的原因,从而根据提示做好故障检测和诊断工作。暖通空调数据库内包括很多故障案例,检测者可以通过检索找到自己需要的内容,但是由于实际上的故障可能会有很多交叉故障产生,因此出现的现象与案例分析中的结果会有一定的差异,因此不能够对故障检测的结果立即确定,因此造成了故障诊断不迅速,这个方式还是有一定的局限性。

(二)通过推理而得出诊断方法。每一种故障发生时都会表现出不同的征兆,如硬件故障则会使机械停止运行或发生一定的声音提示等;有经验的诊断者就会根据系统故障的现象,推理出故障的具体地方及原因,从而做出相应的诊断措施。暖通空调系统故障时,也会有一定的数据紊乱的提示,这也能作为故障检测的评判标准,通过数据推理,将不清晰的提示内容加以整合,从而获得较准确的结论。通过推理,虽然也能够实现故障检测与诊断,但模糊的信息有时候也会产生错误的偏差,因此也会造成错误推理,因此要综合实践进行分析,从而使故障检测与诊断更加准确[1]。

(三)建立故障树诊断。暖通空调系统会因运行目的不同而造成的故障不同,在系统故障设计时,可以利用计算机的树形模型进行故障的排序和分类。在设置中,采用汉字提示,具有相应的菜单提示和编辑方式,方便故障的监视和诊断。在故障系统设置时,根据故障结果进行分类,在每个系列中各自按照相应的故障原因,对每一个故障进行相应的编号处理。在暖通空调系统出现故障时,将根据每一个编号的所处的故障系列,进行相应监视和诊断,在数据库中对应具体的位置,从而找到故障的源头。故障树诊断通过检索找到故障源头,从而对故障做出诊断,但当暖通空调系统较大时,故障模型也会相应复杂,因此给系统设计者带来了困难[2]。

(四)通过神经网络进行故障诊断。由于机械运行时可能会同时引起多个故障,造成暖通空调系统故障复杂化,因此采取神经网络故障可以实现部分故障的检测和诊断。神经网络故障是利用神经元的作用,将大量的神经元应用于系统设计中,并对神经元进行设置,使神经元之间相互联系,建立成网络系统实现故障诊断。神经元是数据传递的纽带,通过大量的数据样本不断完善神经网络的功能,使每个故障在神经网络系统中都能够有显示,最终实现故障检测和诊断的功能。神经网络设计过程中不需要建立物理模型,而且对非线性的问题有着较大的优势,因此被应用于故障检测和诊断中。

(五)传感器和软件诊断。随着科学技术不断发展,对暖通空调系统的诊断方式更加科学化。传感器诊断是自动化诊断的一种方式,主要利用传感器实现机械运行时各个参数的变化,以达到正常运行的目的。暖通空调系统故障检测利用到传感器,可以实现故障自动检测,提高了检测效率和诊断速度。在暖通空调系统诊断中,软件诊断也发挥了重要作用,通过对系统的全面检测和修复,维护系统安全。

结语:暖通空调系统在运行时出现的故障会对整个系统的稳定造成较大的影响,因此要加强系统检测和诊断的能力。随着科学技术不断发展,各种故障检测和诊断方式应运而生,让故障维修更加简单,也促进了整个系统的安全和稳定。

参考文献:

故障检测与诊断范文第12篇

关键词 汽车检测与故障诊断技术;实践能力;CAN总线

中图分类号:G642.0 文献标识码:B

文章编号:1671-489X(2017)04-0060-04

Abstract Aiming to the problems such as outdated content, only focus on the conventional vehicle technology and poor regionally adaption, the optimization study is conducted on the teaching content

of Vehicle Inspection and Fault Diagnosis Technology. The old tea-

ching contents are integrated based on market demanding of automo-

tive technology and conforming to Beijing around requirements, the

new type and new energy vehicle inspection and fault diagnosis tech-

nology are added. The course structures are more reasonable and broader coverage after optimized and could meet the vehicle service marked around Beijing as well as the objectives of school training objectives. The main purpose of this article is researching the optimi-

zation of teaching contents about the vehicle inspection and fault diagnosis technology.

Key words vehicle inspection and fault diagnosis technology; prac-tical ability; CAN bus

1 w论

汽车检测与故障诊断是汽车交通类专业的重要课程之一,也是理论联系实际的课程,课程目的旨在提升学生专业理论水平和实践能力。该课程具有很强的理论性和专业性,内容涉及汽车不解体检测的基本原理、整车技术状况的检测、汽车各部分故障诊断及检测仪器设备基本结构等,课程的设置能够为从事汽车检测与维修方面的工作提供一定的理论和实践基础。

北京信息科技大学车辆工程专业汽车运用与服务工况方向主要培养在京津冀地区汽车后市场服务的复合型、应用型人才,要求学生具有较强的专业实践能力。京津冀一体化的提出,对北京的定位提出明确的要求,未来的任务是加大京津冀的环境治理力度,而学校的定位是“培养适合首都经济圈的应用技术型人才”。因此,需要根据社会发展对首都的要求,根据学校的定位差异与学生学缘结构、基础及就业意向的差异来规划整合现有资源,从而契合《北京行动纲要》及符合北京信息科技大学工程认证新要求。

新能源汽车作为新能源、新业态及八个专项的首要组成部分,对大幅提升制造业创新发展能力具有重要的支撑作用。北京小客车摇号系统数据显示,北京地区的新能源汽车销量仅2015年就已呈现爆发式增长,电动车辆技术状况的检测也逐渐成为市场不可分割的一部分。新能源汽车检测与维修技术人才的紧缺对专业的发展既是机遇也是挑战。为更好地服务社会与适应京津冀的发展,需加快电动汽车检测与维修人才的培养。近年来,汽车底盘综合控制系统、稳定性控制系统及主、被动安全控制系统的运用及CAN总线的广泛运用,使基于CAN总线信息的检测技术得到发展,如何将先进的电子、测控、计算机等技术融入汽车检测与故障诊断课程中,成为教学人员需要解决的一个重要问题。

综上所述,可根据目前技术需求和京津冀汽车产业的发展方向,对汽车检测与故障诊断技术现有教学内容和教学资源进行整合与优化,在进行课程资源整合及新增新检测技术、新能源检测与故障诊断技术的基础上,构建面向首都的融传授知识、培养能力、提高素质于一体的具有北京信息科技大学特色的汽车检测与故障诊断技术课程,充分发挥学生在学习中的主观能动作用。

2 汽车检测与故障诊断技术课程现状分析

教学内容陈旧 随着汽车检测诊断技术的不断发展,新的检测诊断方法与设备不断涌现并逐步应用于实践中,而与发展状况相比,现行教材的知识结构与内容则显得有些陈旧。随着汽车技术的发展,化油器结构、柴油机简单喷射系统已经逐渐退出市场,某些汽车检测技术在日益变化的今天也逐步被淘汰。目前,教学内容陈旧,对社会上的4S店、大修厂普遍使用的汽车先进检测线系统、汽车先进底盘控制系统、稳定性控制系统及主、被动安全控制系统却没有涉及。这就造成书本知识与社会严重脱节,对培养掌握先进检测技术的应用型人才极为不利[1]。

重视传统汽车教学,新能源汽车教学落后 2016年上半年新能源汽车销量显示,新能源汽车销量出现井喷式增长,新能源汽车销量同比增长162%,达到17万辆,我国由此成为世界最大的新能源汽车市场。2016年,北京小客车指标年度配额为15万个,其中示范应用新能源指标额度6万个。随着电动车辆使用年限的增强,故障凸显,因此,需要掌握电动车辆故障检测与诊断技术的专业技术人才,满足就业和汽车服务市场的需求。而现有的汽车检测与故障诊断技术课程多针对传统燃油车辆,针对新能源车辆检测与故障诊断技术内容相对薄弱和落后。

目前,现有电动汽车服务行业从业人员素质较低,对电动汽车高、低压电系统了解较少,缺乏系统的电动汽车技术知识,跟不上电动汽车技术现代化的发展[2];需要加强从业人员的素质培养和技术水平,也需要地区高校加大人才培养力度,适应行业的发展。

教学内容适用性较差 就目前的汽车检测发展而言,先进的通信技术及先进的总线技术已经广泛应用于车载信息系统和控制系统当中,而这其中最为典型的为CAN总线技术的发展和应用[3]。现有的教学内容并未涉及CAN仪器的使用和纠错使用方法,知识内容跟进不够及时。与此同时,有一些自动化程度较高的汽车检测线使用CAN总线作为通信总线及自诊断系统的通信协议。因此,掌握总线的通信技术和纠错方法对汽车检测、检测线检测及先进汽车自诊断系统的故障检测和诊断具有重要意义。

在网络技术、信息技术等不断推广和应用的情况下,现代汽车故障诊断方法变得越来越多样化、智能化、自动化,是社会不断发展和汽车产业不断发展的必然趋势,是汽车故障诊断领域研究不断深入的必然结果。而现有课程内容对新技术及高自动化检测设备的试用性较差,需要进行内容优化,这对满足不同现代汽车的故障诊断需求有着重要意义。

3 课程教学内容优化

对现有内容进行整合梳理的基础上添加新型检测与故障诊断技术、新能源汽车检测与故障诊断技术方面的内容。

现有教学内容整合 按需进行教材整合和内容调整,同时强化教材整体性,加强立体化教学内容建设。在现有课程资源基础上,对现有的汽车检测与故障诊断技术进行完善和优化,删除化油器式汽油机燃油供给系统故障诊断部分内容。将发动机检测技术章节与电子喷射章节进行合并统一,调整为传统―电子点火系统故障诊断、电脑控制点火系统检测、汽油机燃油供给系统检测,具体内容调整为汽油泵的检测原理和方法、点火类型、波形形成原理、发动机点火正时检测、电控喷油信号和燃油压力的检测。各部分内容整合为传统―电子点火系统两部分内容,在对比分析点火系统的基础上,使学生对点火系统有整体的理解和掌握。其他诊断章节如气缸密封性检测、柴油机燃油供给系统检测、系统检测、发动机异响诊断维持原状不变。调整后的分类如表1所示。

新检测与故障诊断技术 在保留有益教学内容基础上,不断更新、充实新的教学内容,并将本学科的最新发展和科研成果补充到教学内容中,通过对教材内容的不断推陈出新,使课程内容更贴近生产实际。现近汽车检测技术发展迅速,CAN总线技术已经广泛应用于汽车通信、检测系统通信[4]及检测设备之间的通信设计,在CAN总线技术的帮助下使车辆各个传感器之间的信息得到共享,也为汽车故障检测与诊断提供最有力的保障。

在维修方面,CAN总线的应用也实现了在线诊断功能。故障诊断专家系统、视觉检测技术也已经广泛应用于检测与诊断的各个领域,包括电梯、变压器、电网、工程机械、数控机床等众多I域,在汽车检测中也获得广泛应用,如使用专家系统的汽车检测线检测系统及车轮定位参数的视觉检测系统开发等。与此同时,随着汽车自诊断技术及新能源汽车自诊断技术的发展,其基本原理均为通过分析数据总线(CAN)中的数据进行检测,可见CAN总线技术对汽车控制和检测的重要性。因此,读懂并了解CAN总线通信规则和数据格式提取等知识,对掌握先进检测设备及汽车先进诊断技术至关重要。

针对目前先进检测技术及控制系统关键内容,添加新型检测系统的检测原理及可检测项目、基于CAN总线技术的汽车底盘控制系统故障诊断与检测部分内容,对汽车新技术进行总结归纳,包括先进汽车检测技术、CAN总线通信技术及基于CAN总线技术原理。具体增加内容如表2所示。

新能源车辆检测与故障诊断技术 电机作为电动汽车的心脏是最容易出现问题的系统,而目前无刷直流电机[5-6]的广泛应用及学生对电机检测知识的缺乏,成为制约检测人员素质的一个因素。从新能源汽车的关键系统结构出发,针对目前新能源汽车的产业结构,根据混合动力电动汽车及纯电动汽车的相同和区别,新增新能源车辆综合检测技术现状分析部分内容。结合新能源汽车与普通燃油汽车的区别,对关键部分的电驱动系统故障诊断与检测[7]、混合动力电动汽车电机控制系统故障诊断与检测内容进行整合梳理。针对纯电动汽车的结构特征和目前受广泛关注的电池电压一致性和安全问题等,增加纯电动汽车电池系统故障诊断与检测[8-11]课程内容。新增课程共4学时,囊括了新能源汽车的关键部分故障检测与诊断技术。受学时限制,其他内容仅作课后自习内容。具体新增内容如表3所示。经过优化后的课程内容和建议学时如表4所示。

4 结论

根据本课程的特点及适应京津冀一体化对汽车检测与故障诊断人才的需求,结合学校的定位差异、学生学缘结构与自身基础的不同及就业意向的差异来选择教材和课程内容。在现有课程建设基础上,进一步整合和完善新型检测系统的检测原理及检测项目、基于CAN总线技术的汽车底盘控制系统故障诊断与检测、电动车辆综合检测技术现状及电驱动系统故障诊断与检测、混合动力电动汽车电机控制系统故障诊断与检测、纯电动汽车电池系统故障诊断与检测的教学支撑部分,进行教材整合和内容调整,同时强化教材整体性,加强新教材和立体化教学的建设。

通过优化,使课程涵盖面更广,内容更加丰富新颖,课程体系和教学内容更加符合北京信息科技大学的培养目标和定位,教学内容有助于提升学生学习能力、实践能力及创新能力,确保教学质量的提高和培养的人才能够更好地服务社会与适应京津冀的发展,达到面向首都地区车辆检测综合性人才培养的目标。

参考文献

[1]焦洪宇,李英,张凯,等.《汽车检测与故障诊断技术》课程教学改革研究[J].常熟理工学院学报:教育科学,

2012(12):106-108.

[2]张红英.电动汽车检测与维修技术人才培养的探讨[J].湖南农机,2011,38(11):195-196.

[3]李顶根,陈军,黄荣华,等.基于CAN 网络的纯电动轿车车载信息系统[J].华中科技大学学报:自然科学版,

2008,36(2):17-21.

[4]丁强强,鲍远慧.基于CAN总线的汽车检测线计算机控制系统[J].合肥工业大学学报:自然科学版,2010,33(4):

514-518.

[5]王强,王友仁,张子富,等.无刷直流电机驱动系统逆变器的开路故障诊断[J].中国电机工程学报,2013,33(24):

114-210.

[6]吴鹏坤,贾琴姝.无位置传感器无刷直流电机控制系统仿真研究[J].伺服控制,2011(4):29-33.

[7]孙天奎.电动汽车驱动系统系统故障检测与诊断技术的研究[D].哈尔滨:哈尔滨工业大学,2012.

[8]樊晓松,王英.动力电池系统高压电绝缘设计与测试[J].技术导向,2014(8):25-28.

[9]杨为,谢永芳,胡志坤.高压动力电池组绝缘性能的实时监测研究[J].计算技术与自动化,2015,34(3):55-59.

[10]缪传杰,高琛,陈建清,等.串联动力电池组单体电池电压检测新方法[J].传感器世界,2010,16(4):29-31.

故障检测与诊断范文第13篇

关键词:故障诊断;特征结构配置;鲁棒性;观测器

中图分类号:TP277

文献标识码:B

文章编号:1004―373X(2008)04―115―03

1 引 言

随着对控制系统可靠性要求的提高,FDI已成为一个活跃的研究领域。在控制系统FDI技术的研究中主要有基于模型和基于知识2种途径,其中基于模型的方法是利用控制系统模型内在的解析冗余度构造某种残差,通过对残差的分析与评价实现故障的检测与隔离。由于在绝大多数实际的控制系统中,总是存在或多或少诸如建模误差、噪声干扰等不确定性因素,因此基于模型的故障检测与诊断技术(FDI)对这些不确定性因素的鲁棒性是一个至关重要的问题,并日益引起了人们的重视。鲁棒故障诊断指的就是在建模不确定的情况下,故障诊断系统能在一定程度上区分扰动和故障,仍然以较好的性能诊断出故障。本文针对具有未知扰动输入的飞行控制系统,运用特征值配置设计了一种用于故障检测和诊断的观测器,他通过对观测器进行左特征向量的配置使得残差与干扰分布方向正交。通过这种方法,残差信号得以对干扰具有鲁棒性。最后通过实例在Matlab下进行仿真,仿真结果验证了该方法的有效性。

2 基于特征向量配置故障诊断方法

3 算法步骤

用左特征结构配置方法对干扰进行解耦进而产生残差的具体设计算法如下:

(1)计算残差加权矩阵Q,使得QcE=0;

(2)确定观测器的特征结构:按照希望动态残差性质选取合适的特征值,并保证QC的行均为观测器的p个左特征向量,其余的(n-p)左特征矢量的选择则可以产生好的诊断效果为准。以上阐述运用左特征向量配置对干扰直接解耦的理论和设计方法,若左特征矢量的配置条件不易满足,还可以考虑进行观测器的右特征矢量的配置。

这样做的优点在于Q取值的改变不会影响K的取值。

根据计算结果,建立系统simulink仿真模型,在传感器发生卡死和恒偏差故障时,输出残差波形如图2,图3所示。

故障检测与诊断范文第14篇

关键词:故障诊断;状态检测;BP神经网络

中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2013)05-1126-02

1 概述

建筑桥梁贯通两地,促进经济发展。但随着时间的推移,由于温度、污染、认为等各种因素的影响,桥梁的状态在修建和使用过程中会发生变化,例如:表面锈蚀、裂缝扩大、承载力下降。在一定程度之内的变化可被认为属于正常现场,但如果出现局部材质恶化、结构损伤或是桥梁过载等现象时便会影响桥梁的正常使用,甚至危及桥梁和车辆运营安全。为此需要在桥梁的修建和使用期间需定期对桥梁的状态及各种技术指标进行检测和预防性维护来保证桥梁的质量和安全性。

桥梁状态发生变化的原因主要有以下三个原因:自然条件及其变化,即大气温度、地震及桥墩台地基的土壤的物理性质、水位变化、水文地质、工程地质等;与桥梁自身相关的原因,即墩台和梁的结构(型式)、恒载(包括作用在桥梁上部结构的和墩台的)以及活动荷载(桥上行驶车辆的数量、车辆行驶时引发的震动、水平风力等);人为因素(勘探测量、设计、施工以及运营管理等工作过程中的不合理方案、操作等)。桥梁所有状态的变化可以归为两种:静态变化和动态变化。

当前,主要采用两种手段对桥梁进行检测:凭借人工经验,没有数据记录,仅适用于刚建或有突变故障的桥;专业的桥梁检测队,数据准且分析全面,但检测费用高、过程复杂,难以得出桥梁寿命等定量的准确预测值。

2 便携式桥梁状态参数检测仪及智能故障诊断系统

“便携式桥梁状态参数检测仪及智能故障诊断系统”采用的倾角传感器具有高精度,并且桥梁的各项指标通过系统测量获得的倾角计算得到,除了能能检测横、纵向的振频、振幅,而且智能故障诊断系统运用BP神经网络技术还能对桥梁的状态作出检测和发展趋势作出预测解决了困扰多年的动挠度检测问题。系统的主控制器是一特的掌上电脑(PDA),其特点是:体积小,便携;智能化,操作简单;及时地监测正在运营的桥梁,而且各项费用低廉。该系统除了具有可信度高、测试精度高、存储信息大等特色外,还具有断电保存数据与上位机的标准通信等功能。

BP神经网络又名反向传播神经网络属于前馈网络,在众多网络中最常用,为此其广泛应用于故障诊断中。反向传播神经网络算法的实质是梯度下降法:每一层上包含了若干个代表神经元节点,但是同一层上的各节点之间没有紧密配合与相互影响的关系,在各节点见信息单向传播,从上到下依次经过各节点(包括隐含层的)直至到达输出层节点。BP算法优点很多,但也存在不足尤其运用于复杂的实际问题时:一收敛速度慢,二容易陷入局部极小点(由于隐节点的数目多、学习步长的选择复杂、样本集需预处理、以及选择网络初始权值的等)。针对BP算法中存在的问题,该文在桥梁故障诊断中使用改进型的BP算法:为加快收敛速度在初始的算法中引入动量因子。

3 桥梁状态检测中运用智能故障诊断技术

桥梁是交通运输中的重要组成部分,桥梁的状态在修建和使用过程中会发生变化,需要对桥梁进行故障诊断并进行及时的预防和消除故障,保证其正常使用。

3.1 桥梁故障诊断

桥梁故障诊断包括:状态监测和故障诊断。桥梁状态监测,即测试获得结构的某些特征参数,将测定值与规定的正常值进行比较,最终判断结构当前的工作状态。桥梁故障诊断则是对故障所在部位、内容、严重程度、产生的原因进行诊断。故障诊断的任务是:

1)状态监测:了解和掌握设备运行状态,包括对桥梁进行各种检测、分析、评估运行状态及判断是否处于正常工作状态。

2)故障诊断:利用前面桥梁状态监测所获取的信息(各种参数),将其与桥梁结构特征、所处环境、设备相关记录(包括运行记录和已发生的故障及维修记录)相结合,对设备已发生或是未来可能发生的故障进行分析、判断,确定故障(包括故障的部位、性质、产生的原因和所属类别等),并提出控制和消除故障对策确保设备能正常运转使用,并加以实施。

3)指导设备管理维修:桥梁维修已由最初的事后维修,定期的预防性维修,现在发展到向着适性维修前进。

本文主要通过将历史测量数据和当前的测量数据比较,利用BP神经网络技术对桥梁的状态进行综合的分析和判断,预测桥梁未来的发展的状态,实现智能诊断桥梁故障。

3.2 桥梁故障诊断中运用BP神经网络

在桥梁故障诊断中运用BP神经网络的主要步骤为:依据桥梁故障诊断出的问题组织样本来学习,再依据样本来构造出BP神经网络并对其进行训练,测试构造出的BP神经网络。本节将利用上文的的改进型的BP算法,对桥梁状态检测后的故障诊断问题进行研究和分析。

1)选择学习样本:桥梁的故障征用五个参数来表征:列车驶过桥梁时桥梁的横向振幅、纵向振幅、横向频率、纵向频率和动挠度;并用它们来作为输入变量;而由于桥梁的故障原因(钢轨出现裂缝、墩台倾斜和钢轨弯曲变形)众多,该文提出以桥梁的综合质量而非单独的问题作为判断标准,质量越高则综合质量数值越大,神经网络的输出变量用为桥梁检测的综合质量和预期综合质量;把数据测量时间作为神经网络的输入变量,以便能实现预测。因此,该文设计构造的BP神经网络的有六个输入变量和两个输出变量。通过相关专业领域专家的知识和对桥梁故障机理的分析获得桥梁系统的故障征兆集、故障原因集以及两者之间的关系集。

2)神经网络的构成与训练:样本数据具有较大的离散性,从而使得进入神经网络的数据同样具有较大的离散性。针对于本网络的将S型函数作为传递函数,其输出范围为0-1,对数据进行归一化。例如:第i个输入变量Ai,全部样本中第i个输入变量的最小值为Amin和最大值为Amax,Ai归一后为[Ai]:

利用MATLAB软件进行大量的仿真试验,确定BP网络中隐含层节点数和取得优良的故障诊断结果。学习样本的网络节点数、算法和结构参数会影响学习的速度,该文通过设定允许误差限度,用改进型的BP网络算来优化参数:

第一,固定神经网络的学习效率和所有隐含层中的节点个数,引入动量因子并研究其对算法的影响。结果显示,学习收敛因引入动量因子而改进,并且在一定范围内:动量因子越多,学习收敛的速度越快。动量因子为α最优。

第二,固定学习率和动量因子,分析神经网络学习与BP网络的所有隐含层节点数之间的相互作用情况。结果显示,BP网络的所有隐含层节点数对学习的收敛性关系密切。对于该故障诊断问题BP网络的隐含层节点数为h是最佳的。

第三,根据以上参数优化结果,设定ɑ动量因子为和h隐含层节点数,改变学习率训练神经网络。结果显示,学习率较小时网络收敛较慢,学习率过大时收敛出现振荡。经反复训练最终确定学习率为β。

3)测试神经网络络:用上述训练好的神经网络对已学习过的数据进行预测,并看与经验值是否吻合;采用一组新的数据对其进行测试,归一化后看死否相符;另选一组样本数据测试神经网络,验证其对陌生数据处理的有效性。若相符(吻合)或是得到误差较小的输出变量,满足规范,则表明此BP神经网络具有实际可用性,能正确实现故障诊断。

综上所述,经现场桥梁现场人员的同意和配合,并结合有关要求,我们提出并使用桥梁综合质量作为判断指标,利用基于用改进的BP算法训练后的神经网络初步研究了铁路桥梁状态检测的智能故障诊断进行了并进行了仿真,实现了对桥梁状况的综合判断和未来发展趋势的预测。

参考文献:

故障检测与诊断范文第15篇

关键词:工业自动控制系统;故障检测;诊断方法

中图分类号:TP277 文献标识码:A

1 故障检测与诊断领域研究现状

1.1 模型误差和系统不确定度的研究。基于数学模型的FDD系统的研究已日趋完善,但其诊断性能(如灵敏度,鲁棒性,实时)仍有待提高。

在该方法中,模型的不确定性的鲁棒性差,系统模型的准确性是高的,特别是对非结构化的不确定性。系统的鲁棒故障诊断是急需解决的问题。

1.2 目前,对于时滞系统故障检测与诊断研究成果还很少,还有许多问题有待进一步研究系统故障检测与故障诊断的研究成果未见报道。

1.3 对线性参数变化系统故障检测与诊断问题的研究刚刚起步,还有许多问题有待于深入研究。

1.4 混合动态系统的故障检测与诊断。混合动态系统(HDS)是指从共存的物品的新连续特性协助一个复杂系统的相互作用,由于混合动力系统的研究是一个刚刚起步的新领域。因此,对该类系统的故障检测与诊断有许多研究。

1.5 非线性系统的故障检测与诊断问题非常有限。线性模型不能用于非线性系统,它是基于小偏差理论进行局部线性化得到的线性化模型不能用于PDD,由于系统的工作点在实践中发生了变化,利用人工神经网络有效地融合了动态趋势的信息,并在一定程度上避免了传统故障诊断方法的不足,减少了故障检测与诊断的延迟。

2 车道设备及工作原理

2.1 线圈检测器及车道线圈

车道环形线圈由专用电缆绕几匝及其馈线构成,它通过一个变压器接到被恒流源支持的调谐回路,有源环形线圈构成LC调谐回路的电感部分,并在线圈周围的空间产生电磁场。当含有乌铁金属的车体进入线圈磁场范围,车辆铁构件内产生自成闭合回路的感应电涡流;此涡流又产生与原有磁场方向相反的新磁场,导致线圈的总电感变小,引起调谐频率偏离原有数值;偏离的频率被送到相位比较器,与压控振荡器频率相比较,确认其偏离值,从而发出车辆通过或存在的信号。常用的线圈检测器如图1所示。

车道地感线圈布设有两组:一组安装在收费亭窗口下方的路面上,其功能是车辆驶入车道后,触发地感线圈的电感变化,使车道计算机得到车辆驶入信号,对车辆进行计数;通过计算机的多媒体抓拍采集驶入车道的车辆图像,上传到监控室图像管理机。另一组安装在栏杆下方,其功能是车辆驶离车道后,触发地感线圈的电感变化,车道线圈检测器发出车辆离开信号,收费系统自动发出落杆指令。车道线圈的埋设布置如图2所示。

2.2 ETC入口车道工作流程

车辆进入通讯范围,首先压到路侧天线的前触发线圈,启动读写天线。判断车辆是否携带OBU,若携带,则读写天线与OBU进行通讯,判断其是否为浙江省内发行的OBU,编号和使用期限是否有效,若有效,则读取OBU内包含的车辆参数信息。接下来,判断OBU携带的CPU卡的发行方、卡编号、卡类型、卡的使用期限是否有效,卡是否与OBU对应,若有效,入口信息写入CPU卡中,自动栏杆打开,通行信号灯变绿。车辆压到路侧天线的后触发线圈,天线关闭。车辆向前行驶,触发到抓拍线圈,系统进行图像抓拍,字符叠加器将过车信息叠加到抓拍图像中。车辆通过落杆线圈后,栏杆自动回落,通行信号灯变红。系统保存交易记录,并将其上传至收费站服务器中,等待下一辆车进入。如果上述有效性判断未通过,则系统报警提示工作人员将该车辆引入附近的人工收费车道处理。

2.3 ETC出口车道工作流程

车辆进入通讯范围,首先压到路侧天线的前触发线圈,启动读写天线。判断车辆是否携带OBU,若携带,则读写天线与OBU进行通讯,判断其是否为浙江境内发行的OBU,编号和使用期限是否有效,若有效,则读取OBU内包含的车辆参数信息。接下来,判断OBU携带的CPU卡的发行方、卡编号、卡类型、卡的使用期限是否有效,卡是否与OBU对应,若有效,读取CPU卡中携带的入口信息,判断入口站编码是否有效、入口时间是否超时,若信息有效,系统自动计算收费额,并将出口信息回写入CPU卡中,自动栏杆打开,通行信号灯变绿,车辆压到路侧天线的后触发线圈,天线关闭。车辆向前行驶,触发到抓拍线圈,系统进行图像抓拍,字符叠加器将过车信息叠加到抓拍图像中。车辆通过落杆线圈后,栏杆自动回落,通行信号灯变红。系统保存交易记录,并将其上传至收费站服务器中,等待下一辆车进入。与入口ETC车道相同,以上任意有效性判断未通过,则系统报警提示工作人员将该车辆引入附近的人工收费车道处理。

3 收费系统安全管理

3.1 数据库安全管理

(1)及时升级数据库系统安全补丁,堵塞系统安全漏洞。

(2)设置必要的帐户密码,特别是超级用户的密码。

(3)制定数据管理制度。对数据实施严格的安全与保密管理,防止系统数据的非法生成、变更、泄露、丢失及破坏。

(4)制定数据库备份策略,定期备份数据库数据。

(5)外来数据输入收费系统或收费数据向外,均严格按规定流程操作,并保证这一过程不使收费系统感染病毒或与公网建立直接的连接。

3.2 系统登录控制和安全策略

(1)制定恰当的操作系统登陆策略,收费系统除管理员外禁止无关人员登陆。系统登陆口令定期更换。

(2)对系统补丁更新、软件安装等操作前进行系统备份,确保操作系统能及时恢复。

(3)防止收费网络被非法侵入,通过防火墙、路由器的设置使收费网只允许已授权的IP地址或地址段进行访问。

(4)安装必要的检测软件或硬件设施,检查和报告网络流量异常。

(5)建立机房管理制度,对进出机房人员及其操作进行详细登记。防止强磁、强电、危险性液体等危及系统安全运行的物体带入机房。

3.3 系统应急预案制定和实施

(1)针对本地实际,制定雷击、电源损坏、洪水地震等突发灾害的应急预案。应急预案应包括应急人员组成、临时措施实施步骤、设备恢复次序、设施调配方式等内容。

(2)收费系统在特殊情况下,可降低服务水平,提供基本通行收费服务,如车道系统暂时停用自动栏杆、信号灯;计重系统临时改为按车型收费或标准质量收费;ETC车道暂时改为人工车道等。待系统设备恢复后再逐步启用原有服务。

(3)应急预案应定期演练,使各级参与人员都熟练掌握处理过程,防止在紧急情况出现时惊慌失措。通常一年应演练1~2次。

结语

本文所述了工业自动控制系统的故障检测与诊断方法,但由于现代传感器技术和专家系统技术的结合,该系统的故障检测与诊断已成为一种非常强大的生命力,将为企业提高生产效率和稳定性提供越来越有力的支持。

参考文献

[1]吴吉平.吴运新.隆志力.基于模糊数学的故障诊断专家系统的设计和实现[J].包装工程,2003(02).