美章网 精品范文 机电一体化综述范文

机电一体化综述范文

机电一体化综述

机电一体化综述范文第1篇

【关键词】机电一体化;煤矿生产;监测监控;矿井运输;采煤机

1 机电一体化技术的概述

“机电一体化”(Mechatronics)是集机械、电子、计算机和信息技术等多种技术有机结合的一门交叉综合技术。机电一体化是在机械的主功能、动力功能和控制功能上引进计算机和电子技术,将机械装置和电子设备以及软件等紧密结合起来,相互渗透,相互融合而形成的一门新兴的综合技术。它的本质不仅是单纯地利用电子技术来简化或替代机械,更重要的是将机械系统、微电子和计算机技术、信息技术组成了最佳系统。

机电一体化技术具有下述优势:提高使用的安全性和可靠性、改善使用性能。机电一体化产品均具有自动监视、报警、诊断等功能,大大简化了操作步骤并且简单、方便;适用面广、生产能力强、工作质量高。机电一体化产品的各种自动功能适用于不同的场合和领域,应变能力强,很大程度提高了控制和检测的灵敏度和精度;具有复合功能、调整和维护方便。机电一体化产品具有复合技术和复合功能,它的它的自动化检验和自动监视功能可对工作过程中出现的故障自动采取措施,使工作恢复正常。

2 机电一体化技术的发展历程和趋势

总体说来,机电一体化技术经历了四个发展阶段:准备阶段,计算机的出现标准着机电一体化技术的产生。上个世纪六十年代,日本首先提出这个名词,但是限于当时的技术水平,该技术无法得到广泛的推广和应用;起步阶段,信息技术,微电子技术的发展成熟和第四代电子产品的商品化是机电一体化这一设想变成了现实,在这一时期,机电一体化的影响不断扩大,并取得了较大发展;发展时期,进入八十年代,机电一体化技术已为全世界学者所嘱目,机电一体化技术和产品已像雨后春笋般出现;蓬勃发展时期,九十年代至今,各种新技术出现并取得突破性的发展,日新月异的变化使机电一体化技术和产品扩展到人们生活的各个领域。

我国制造的机电一体化产品都具有智能化、程序化、信息化的特点,以及设备体积小、操作、维护方便、保护齐全、性能可靠等优点,机电一体化产品的广泛应用减轻了劳动强度,提高了生产力水平,创造了巨大的经济和社会效益。然而,我国的机电一体化技术与发达国家相比差距还很大,其未来的发展趋势是:开发有自主知识产权的核心技术,研究具有自主知识产权的核心装置;增加产品的通信功能,以适应综合自动化的需要;开发以微处理器和微机为基础的矿井设备工况和健康监测以及微处理器、计算机和专家系统的应用等;机器人仍然是机电一体化技术今后研究的重点之一。

3 机电一体化技术在煤矿生产中的应用状况

3.1 在煤矿带式输送机中的应用

带式输送机是我国煤矿井下输送系统主要运输设备,具有长距离连续输送、输送量大、运行可靠、效率高和易于实现自动化等特点。因此,近几年来带式输送机已成为机电一体化技术的研究重点。由于煤炭产量的不断提高,长距离、大运量、高带速的带式输送机成为井下煤炭运输的主要设备,且多为大功率、多电机驱动,通常需要中压供电,因此对电机的驱动控制提出更高要求,主要有以下几点:

(1)启动电流要小,减少对电网的无功冲击,减少对机械设备的强烈冲击;

(2)电机的启动力矩要大,可重载启动;

(3)多电机驱动时的功率平衡及各电机的速度同步精度要高;

(4)起、制动过程要平稳,避免胶带和滚筒之间的打滑;

(5)驱动控制方式有利于节能降耗;

(6)使用方便、维护成本低,系统的运营效益高。

采用调压式软启动器、液力祸合器、CST可控软启动器中的任意一种启动皮带机,虽能解决或部分解决胶带机软启、软停问题,但实际使用中存在诸多问题,如调压式软启动器受其控制原理的限制,重载时往往不能启动、不具备调速功能;采用液力祸合器,电动机必须空载启动,启动电流大,对机械设备有冲击、多驱动电机的功率平衡不好解决、传动效率较低,调速范围窄,低速时能量损耗大;CST通过调节油膜间距实现软启动,但没有调速功能,不能实现过程控制,且油价昂贵,维护费用高等缺点。

可见,带式输送机运输中还存在诸多问题,有关机电一体化在带式输送机中的应用问题,尚需进一步研究。

3.2 在矿井安全生产监测监控系统中的应用

矿井安全生产监控系统是最能体现煤矿机电一体化的技术之一。我国监测监控技术应用较晚,,20世纪80年代初,原国家煤炭部组织了对国外煤矿监控技术进行大规模的考察和引进工作,此举大大促进了国内监控技术的发展。先后从波兰、法国、德国、英国和美国等引进了一批安全监控系统(如DAN6400、TF200、MINOS和Senturion-200),在部分煤矿中应用;在引进的同时,通过消化、吸收并结合我国煤矿的实际情况,研制出KJ2,KJ4等系统并通过了鉴定。20世纪90年代以来,紧跟世界监测监控系统的发展潮流,我国自行研制开发出了一批具有世界先进水平的监控系统,如煤炭科学研究总院重庆分院的KJ90系统、煤炭科学研究总院常州自动化研究所的KJ95系统等,它们的主要特点是:测控分站的智能化水平进一步提高;具有网络连接功能;系统软件采用了Windows操作系统。同时,在“以风定产,先抽后采,监测监控”12字方针和煤矿安全规程有关条款指导下,规定了我国各大、中、小煤矿的高瓦斯或瓦斯突出矿井必须装备矿井监测监控系统。自此,大大小小的系统生产厂家如雨后春笋般的不断出现,不仅为各煤矿提供了更多的选择机会,且促进了各厂家在市场竞争条件下不断提高产品质量和服务意识。经过多年的实践表明,安全监测监控系统为煤矿安全生产和管理起到了十分重要的作用。

对我国现有煤矿监测监控系统及配套传感器等设备的现场应用效果进行综合评价,煤炭科学研究总院重庆分院的KJ90、天地科技股份公司常州自动化分公司的KJ95、煤炭科学研究总院抚顺分院的KJF2000 和北京瑞赛公司的KJ4, KJ2000 等系统无论在软硬件功能、稳定性和可靠性、专业技术服务能力、企业性质和生产规模等方面基本代表了我国煤矿监测监控系统的技术水平。

3.3 在采煤机上的应用

1970 年,我国自主设计制造装配了第一套综合机械化采煤工作面,并在大同矿务局进行试验使用,一直试验使用到80 年代后期,这项技术的使用标志着我国的煤矿综合机械化采煤有了重大的突破性发展,推动了煤矿自动化的发展进程,同样,采煤机也由液压牵引开始转向电牵引;液压支架的控制系统也逐渐向计算机化发展,以计算机为核心,采用电液控制,移架自动化得以实现。另外,对工作面刮板运输机也进行了微机监控装置的配置, 实现计算机自动化控制。机电一体化技术在综合机械化采煤中的应用,使设备动作趋于协调,且安全性、可靠性大为提高,操作性能更加完善,为煤炭企业带来了更高的经济效益。

4 煤矿机械中机电一体化技术应用的意义

4.1 提高劳动效率

机电一体化产品的应用使过去落后的生产方式得到极大的改变,大量新型自动化电子设备的使用彻底转变了煤矿的作业模式,明显降低了工人的劳动强度,大幅提升了劳动生产率,极大地提高了劳动效率。

4.2 提高了矿山开采的经济效益

机电一体化不仅是机械设备上的一次全新的进步,同时也给煤矿带来了前所未有的进步,一方面采煤量有了很大程度的提高,其次,煤矿工人的劳动强度适当得到了减轻;再次,机电一体化在煤矿中的应用,降低了矿山的开采费用,使煤矿的经济效益得到了增加,同时还带动了相关产业的发展,在很大程度上推进了地方经济的进步。

4.3 提高了安全的煤矿开采工作环境

煤矿工作本身就是一个高危险性的工种,每年煤矿的事故都会有所发生,煤矿的工作安全性时刻危及着人们的生命财产的安全,机电一体化技术在煤矿中的应用,在很大程度上降低了事故的发生率,不仅在一定程度上提高了工作效率,还在安全方面有了很大的保障。

参考文献:

机电一体化综述范文第2篇

由于旋盖的螺纹长度较长和螺纹成型后脱模力较大,与常规的脱模机构不同,图4模具采用电机驱动链轮使螺纹型芯旋转的方法来实现自动脱模。

模具结构特点:(1)常规的三板模结构,1模2腔,侧浇口进料。(2)无拉料杆和推杆装置,在弹簧力的作用下通过浇口推板将主流道凝料从定模板上推出,模具结构简单。(3)模具工作可靠,操作方便,自动化程度高。(4)脱螺纹机构的主要零件有:电机、链轮、链条、推力轴承、深沟球轴承、接近开关、中间继电器、时间继电器等。模具的工作过程为:模具合模、注射、保压、冷却过程结束后,模具开模,动模开始向后运动,浇口推板18在弹簧17的作用下,将主流道凝料和塑件从动模上推出。动、定模开模到一定距离,注塑机顶杆通过动模座板16的顶出孔进入模具,使接近开关22受到感应,并发信号给中间继电器19,启动电机26。

电机通过主动链轮24、链条14带动从动链轮8旋转,螺纹型芯7在推力轴承5和深沟球轴承6的配合下作旋转运动。塑件与型芯在相对旋转运动的作用下实现自动脱模。当时间继电器20到时后自动断电,电机停止运转,型芯同时停止旋转,模具的一个工作循环过程结束。

模具中采用的机电一体化控制系统包括电器控制、机械传动和动力元件三大部分。电器控制部分功能上包括:信号采集、信号传递和信号控制;机械传动的类型有:齿轮传动、链传动、蜗杆传动、螺旋传动以及常用机构等。动力元件有:电机、液压泵和气压泵。下面主要对电器控制元件的功能和作用进行介绍。

信号采集元件信号采集元件可分为:接近开关(见图5)、光电开关(见图6)、信号传感器等。图4模具中使用接近开关作为信号采集元件。接近开关是一种无需与运动部件进行机械接触而可以操作的位置开关,当物体接近开关的感应面到动作距离时,不需要机械接触及施加任何压力即可使开关动作,从而触发交流或直流电器工作或给计算机装置提供控制指令。光电开关是利用被检测物对光束的遮挡、吸收或反射,检测物体有或无。物体不限于金属,所有能反射光线的物体均可被检测。光电开关将输入电流在发射器上转换为光信号发出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。

信号传递元件图模具中采用中间继电器(见图7)作为信号传递元件。中间继电器是用来传递信号或同时控制多个电路,也可直接用它来控制小容量电机或其他电气执行元件。继电器的工作原理是:当某一输入信号(如电压、电流、温度、速度、压力等)达到预定数值时,使它动作,以改变控制电路的工作状态,从而实现既定的控制或保护的目的。在此过程中,继电器主要起传递信号的作用。

机电一体化综述范文第3篇

    模具结构特点:(1)常规的三板模结构,1模2腔,侧浇口进料。(2)无拉料杆和推杆装置,在弹簧力的作用下通过浇口推板将主流道凝料从定模板上推出,模具结构简单。(3)模具工作可靠,操作方便,自动化程度高。(4)脱螺纹机构的主要零件有:电机、链轮、链条、推力轴承、深沟球轴承、接近开关、中间继电器、时间继电器等。模具的工作过程为:模具合模、注射、保压、冷却过程结束后,模具开模,动模开始向后运动,浇口推板18在弹簧17的作用下,将主流道凝料和塑件从动模上推出。动、定模开模到一定距离,注塑机顶杆通过动模座板16的顶出孔进入模具,使接近开关22受到感应,并发信号给中间继电器19,启动电机26。

    电机通过主动链轮24、链条14带动从动链轮8旋转,螺纹型芯7在推力轴承5和深沟球轴承6的配合下作旋转运动。塑件与型芯在相对旋转运动的作用下实现自动脱模。当时间继电器20到时后自动断电,电机停止运转,型芯同时停止旋转,模具的一个工作循环过程结束。

    模具中采用的机电一体化控制系统包括电器控制、机械传动和动力元件三大部分。电器控制部分功能上包括:信号采集、信号传递和信号控制;机械传动的类型有:齿轮传动、链传动、蜗杆传动、螺旋传动以及常用机构等。动力元件有:电机、液压泵和气压泵。下面主要对电器控制元件的功能和作用进行介绍。

    信号采集元件信号采集元件可分为:接近开关(见图5)、光电开关(见图6)、信号传感器等。图4模具中使用接近开关作为信号采集元件。接近开关是一种无需与运动部件进行机械接触而可以操作的位置开关,当物体接近开关的感应面到动作距离时,不需要机械接触及施加任何压力即可使开关动作,从而触发交流或直流电器工作或给计算机装置提供控制指令。光电开关是利用被检测物对光束的遮挡、吸收或反射,检测物体有或无。物体不限于金属,所有能反射光线的物体均可被检测。光电开关将输入电流在发射器上转换为光信号发出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。

    信号传递元件图模具中采用中间继电器(见图7)作为信号传递元件。中间继电器是用来传递信号或同时控制多个电路,也可直接用它来控制小容量电机或其他电气执行元件。继电器的工作原理是:当某一输入信号(如电压、电流、温度、速度、压力等)达到预定数值时,使它动作,以改变控制电路的工作状态,从而实现既定的控制或保护的目的。在此过程中,继电器主要起传递信号的作用。

机电一体化综述范文第4篇

关键词:变电站综合自动化;教学改革;课程设计;综合实验;毕业设计

作者简介:黎静华(1982-),女,广西博白人,广西大学电气工程学院,副教授。(广西?南宁?530004)

基金项目:本文系“国家自然科学基金项目”(项目编号:50907012)的研究成果。

中图分类号:G642.1?????文献标识码:A?????文章编号:1007-0079(2012)24-0040-02

“变电站综合自动化”一直是广西大学电气工程学院本科生的专业限选课,共36个学时。该课程主要包括变电站综合自动化系统的结构形式,数字量和模拟量I/O通道的组成和原理,交流采样常用算法的分析,低频减载备用自投等智能装置,微机保护装置,数据通讯原理和技术,提高变电站综合自动化系统可靠性措施等。其目的是让学生掌握变电站设备的工作原理及运行特点,使学生掌握变电运行岗位所需要的相关技术、规章制度、设备巡视的方法及要求,具有对变电站异常和事故处理的能力。然而,仅靠课堂的理论讲授,是不可能让学生真正掌握如此多的内容。且其中涉及到现场的实际设备的运行,大部分学生对现场设备很陌生,“填鸭式”的讲授让课堂显得枯燥无味,教学效果差,难以达到教学目的。因此,经过几年的教学实践,不局限于课堂的讲授,将变电站综合自动化的内容融入参观实习、理论讲授、课程设计、综合实验与毕业设计等多个教学环节中,调度学生的学习积极性,真正参与其中的设计及实验,不仅减轻了学生“抽象”学习的压力,且学生能在设计环节中感受到学习乐趣,增加学习的兴趣,进一步启发学习的思维,部分学生还能有所创新,收到良好的教学效果。

一、变电站参观

“百闻不如一见”,让学生在学习之前现对设备进行认识,引发学生学习的好奇心,增强学习的兴趣。主要参观和认识变压器、互感器、刀闸、开关等一次设备及监控系统、微机保护、备用自投及低频减载等二次设备,掌握变电站运行的安全知识,体验现场运行工作环境。参观分为观前准备、参观及观后总结三个环节。观前准备主要目的是加强参观的效果,主要包括搜集整理变电站主要一、二次设备以及变电站运行方面的相关知识和资料,熟悉变电站电气主接线、主要电气设备构成,了解电气设备的布置,了解电气运行的有关知识。参观内容设置如表1所示。观后总结是必要和关键的一环,让学生进一步加深对整个参观过程的理解和认识,认真思考变电站运行的特点,从而起到事半功倍的作用。

二、理论讲授

综合自动化是一门实践性很强的课程,平淡的叙述往往会让学生感到枯燥无味,课堂气氛沉闷。教师应充分利用现代教学中多媒体的直观性、图文声像及动态性等优势,向学生提供丰富、清晰及真实的背景资料,反映知识在实际中运用的方法,以便学生形成自己的认知结构。如在讲述时,可以用相机拍下具体装置元件部分的照片,辅以说明,这样可以增强学生的视觉效果,而且让学生有种真实的感觉,从而更容易接受教师所讲述的内容。

例如,在介绍变电站微机保护硬件装置时,介绍完微机保护硬件逻辑图(图1),应辅以实际的硬件图(图2)。以加深学生的理解,加强其理论与实际的联系,缩短认识上的差距。

理论讲述的内容主要包括:变电站综合自动化概述、变电站综合自动化信息的测量和采集,变电站的通信系统,变电站监控系统,变电站微机保护,变电站低频减负荷控制、变电站电压和无功功率控制,备用电源自投入装置,小电流接地系统单相接地故障检测,变电站综合自动化系统的可靠性问题。

三、课程设计

课程设计是学习专业技术课所需的必要教学环节,学生运用所学的基础理论和专业知识通过课程设计的实践,巩固和掌握专业知识,并为今后的毕业设计做好必要的准备。通过课程设计使学生接触和了解局部设计从收集、方案比较、计算、绘图的过程。培养学生的计算和绘图的设计能力。表2为作者设计的关于变电站综合自动化的课程设计方案,供广大师生参考。

四、综合实验

综合实验的目的是通过实验环节巩固和加深对电力系统相关理论课程的理解,达到对学生进行实验方法和操作技能训练的目的。鉴于数据通信是综合自动化系统中一个非常重要的环节,因此设置了如表3所示的两个通信实验。

五、毕业设计

本科生毕业设计的基本教学目的是培养学生综合运用所学知识和技能的能力,提高分析和解决问题的能力,初步掌握科学研究的基本方法。通过综合自动化毕业设计教学环节,要求学生得到以下多方面能力的培养。

设计题目一:变电站综合自动化系统的设计

目的:

(1)了解变电站综合自动化的基本概念及重要意义;

(2)熟悉变电站综合自动化的基本结构及要求;

(3)掌握变电站综合自动化的基本结构及要求;

(4)掌握变电站综合自动化监控系统的功能、结构;

(5)掌握变电站综合自动化系统的微机保护功能及其工作原理。

任务:

(1) 根据变电站的一次电气接线图,设计一个合理的综合自动化系统;

(2)根据要求设计变电站综合自动化系统的结构;

(3) 设计监控系统,并根据实际情况对系统设备进行选型;

(4)设计微机保护系统,并根据实际情况对系统设备进行选型;

(5)设计其他智能装置,并根据实际情况对系统设备进行选型;

(6) 绘制所设计的变电站综合自动化系统的结构及原理图。

设计题目二:基于通用组态软件的变电站监控系统的设计

目的:

(1)掌握变电站运行的特点;

(2)掌握变电站的基本操作内容;

(3)掌握变电站监控系统的结构;

(4)掌握变电站监控系统的功能。

要求:

(1) 灵活使用通用组态软件;

(2)利用通用组态软件绘制变电站一次接线图;

(3) 实现站内各数据量的采集;

(4) 实现采集数据与数据库的链接;

(5) 实现图形界面与数据库的链接;

(6) 实现Web信息功能。

六、结语

变电站是电力网中的线路连接点,是用来变换电压、功率和汇集、分配电能的设施,是电力系统中输配电的重要一环。变电站综合自动化是实现电气设备监视、控制和保护自动化、智能化,提高保护、控制的可靠性和电力系统的安全运行水平的重要保障,该课程是电力系统及其自动化专业学生的重要专业课程。本文通过设置变电站认知实习、理论讲授、课程设计、综合实验和毕业设计等多个教学环节,加深学生对变电站一次、二次设备的理解,缩短理论与实践的差距,从而达到良好的教学效果。

参考文献:

[1]张成林,杨茂涛.从高职评估探讨变电站综合自动化课程教学改革[J].中国电力教育,2009,(3).

[2]丁书文.变电站综合自动化原理与应用[M].北京:中国电力出版社,

机电一体化综述范文第5篇

关键词:EDA;自顶向下;VHDL;交通信号灯

中图分类号:TP311文献标识码:A 文章编号:1009-3044(2008)15-21050-04

Implementation of Traffic Signal Lights Based on VHDL

LUO Hai-tao

(School of Informatics,Guangdong University of Foreign Studies,Guangzhou 510420,China)

Abstract:EDA integrates the latest technologies of modern Electronics and Computer Science,its design adopts top down methodology,and hardware description language is used to design electronic circuit in EDA;VHDL becomes one of the most popular hardware description language because of its strong ability of modeling and syntheses.Designed traffic signal lights based on VHDL.

Key words:EDA(Electronics Design Automation);Top down;VHDL;Traffic Signal Lights

1 引言

硬件描述语言(HDL,Hardware Description Language)至今约有40余年的历史,现在已成功地应用于ASIC自动设计的模拟验证和综合优化等方面。其特点是借鉴高级语言的功能特性对电路的行为与结构进行高度抽象化、规范化的形式描述,并对设计进行不同层次,不同领域的模拟验证与综合优化等处理,使设计过程达到高度自由化。

VHDL语言全称是“超高速集成电路硬件描述语言”(Very High Speed Integrated Circuit Hardware Description Language),1982年被研发出来以。1987年底,VHDL被IEEE和美国国防部确认为标准硬件描述语言,并公布了VHDL的IEEE-1076版(87版)。1993年IEEE对VHDL进行修订,从更高的抽象层次和系统描述能力上扩展了VHDL的内容,公布了新的VHDL版本,即IEEE标准的1076-1993版本(93版)。VHDL语言描述能力强,覆盖了逻辑设计的诸多领域和层次,大大简化了硬件设计任务,提高设计的可靠性。基于VHDL语言的设计方法得到了广泛的应用,VHDL语言已成为硬件描述语言的工业标准。

2 EDA技术与VHDL语言

EDA 技术是90年代迅速发展起来的,是现代电子设计的最新技术潮流,是综合现代电子技术和计算机技术的最新研究成果,是从事电子线路设计与分析的一门技术,包括电子线路的设计、计算机模拟仿真和电路分析、印制电路板的自动化设计三个方面的内容。

进入21世纪后,EDA技术得到了更大的发展,突出表现在以下几个方面:(1)使电子设计成果以自主知识产权的方式得以明确表达和确认成为可能;(2)在仿真和设计两方面支持标准硬件描述语言的功能强大的EDA软件不断推出;(3)电子技术全方位纳入EDA领域;(4)EDA使得电子领域各学科的界限更加模糊,更加互为包容。传统的电子产品的设计必须经过设计方案的提出、电原理图设计、初步验证、样机制作、小批量试制、大批量生产等几个过程。对于电子产品设计工程师而言,必须保证理论设计、初步验证两个过程完全正确,才能按电路原理图绘制成电路板图,并进行进一步的生产。

传统的电子产品的设计通常采用自底向上(Bottom Up)电路设计方法,即首先根据系统对硬件的要求,写出详细的技术规格书,画出系统的控制流程图;其次,根据技术规格书和控制流程图,对系统功能进行细化,合理划分功能模块,画出系统的功能框图;然后,对各个功能模块进行细化和电路设计;最后,将各个功能模块的硬件电路连接起来再进行系统地调试,最后完成整个系统的硬件设计。手工设计方法的缺点是:(1)复杂电路的设计、调试十分困难;(2)如果某一过程存在错误,查找和修改十分不便;(3)设计过程中产生大量文档,不易管理;(4)对于集成电路设计而言,设计实现过程与具体生产工艺直接相关,因此可移植性差;(5)只有在设计出样机或生产出芯片后才能进行实测。

基于EDA技术的设计则采用自顶向下的设计方法。

(1)采用可以完全独立于目标器件芯片物理结构的硬件描述语言,在系统的基本功能或行为级上对设计的产品进行描述和定义,结合多层次的仿真技术,在确保设计的可行性与正确性的前提下,完成功能确认;

(2)利用EDA工具的逻辑综合功能,把功能描述转换成某一具体目标芯片的网表文件,并将它输出到该器件厂商的布局布线适配器,进行逻辑映射及布局布线;

(3)利用产生的仿真文件进行功能和时序验证,以确保实际系统的性能。

自顶向下方法的优点是:顶层功能描述完全独立于目标器件的结构,在设计的最初阶段,设计人员可不受芯片结构的约束,集中精力对产品进行最适应市场需求的设计,从而避免了传统设计方法中的再设计风险,缩短了产品的上市周期;设计成果的再利用得到保证;由于采用的是结构化开发方法,因此确认主系统基本结构后,可以实现多人多任务的并行工作方式,提高系统的设计规模和效率;在选择目标器件的类型、规模、硬件结构等方面具有更大的自由度。

EDA技术通常采用硬件描述语言进行电子电路设计,EDA技术主要特点是:(1)采用硬件描述语言作为设计输入;(2)库(Library)的引入;(3)设计文档的管理;(4)强大的系统建模、电路仿真功能;(5)具有自主知识产权;(6)开发技术的标准化、规范化以及IP核的可利用性;(7)适用于高效率大规模系统设计的自顶向下设计方案;(8)全方位地利用计算机自动设计、仿真和测试技术;(9)对设计者的硬件知识和硬件经验要求低;(10)高速性能好;(11)纯硬件系统的高可靠性。

目前常用的用于EDA技术的硬件描述语言有:ABEL-HDL;Verilog HDL:IEEE 1364-1995,2001;VHDL(Very High Speed Integrated Circuit Hardware Description Language): IEEE 1076-1993。其中VHDL语言以其强大的行为建模、结构建模、寄存器传输级描述以及逻辑综合功能成为EDA技术中应用最广泛的硬件描述语言之一。

3 VHDL建模方法

VHDL建模方法一般有行为建模、结构建模、寄存器传输级描述等方式。VHDL具有强大的行为描述能力,成为系统设计领域最佳的硬件描述语言。行为描述避开具体的器件结构,从逻辑行为上描述和设计大规模电子系统。VHDL丰富的仿真功能和库函数可以在系统的设计早期阶段查验系统功能的可行性,并对设计进行仿真模拟。分解大规模设计和已有设计的再利用,这是由VHDL的行为描述能力和程序结构决定的。用VHDL完成设计后,可以用多种EDA工具进行逻辑综合和优化,VHDL对设计的描述具有相对独立性。行为建模是一种抽象描述,不是对具体电路结构的描述,是对设计实体整体功能的描述,是高层次的概括。对系统进行行为描述目的:在系统设计的初始阶段通过对系统行为描述的仿真发现设计中存在的问题;行为描述阶段不考虑用具体硬件去实现实际的操作和算法,主要检验系统的结构以及工作过程能否达到系统设计的要求。

行为建模主要使用函数、过程和进程,采用行为建模的方法设计的VHDL语言程序一般不能进行综合,必须先使用EDA工具在行为级上进行仿真,确认无误后再将程序改为结构建模或者数据流建模的VHDL语言程序,然后再进行综合。行为建模意义在于对复杂的、多层次的系统来说,行为建模使设计者在早期发现错误,并且确定设计是否合理。

结构建模是指在层次化设计中,高层次(顶层)模块调用低层次模块、基本逻辑门或者基本逻辑单元来组成复杂数字电路或系统,例如一位全加器可以由一位半加器和或门构成,在进行结构建模时,可以先建立半加器和或门模块,包装入库,再调用这些模块建立全加器。这里,全加器是顶层模块,半加器和或门是底层模块,所以,结构化描述体现了层次化设计思想。

寄存器传输级描述RTL(Register Transfer Level),其设计实体的描述按照从信号到信号的数据流形式,或者叫“数据流描述方式”。根据RTL描述,可以导出系统的逻辑表达式并进行逻辑综合,是ED设计中经常采用的描述方法。行为方式描述的系统结构程序抽象度高,很难直接映射到具体的硬件,必须先转换为RTL方式描述的VHDL语言程序。

逻辑综合是针对给定的电路功能和实现此电路的约束条件,如速度、功耗、成本及电路类型等,通过计算机进行优化处理,获得满足要求的电路设计方案。逻辑综合的依据是逻辑设计的描述和各种约束条件;逻辑综合的结果是一个硬件电路的实现方案,该方案必须同时满足预期的功能和约束条件。满足要求的方案可能有多个,但逻辑综合器将产生一个最优或接近最优的结果,该结果和逻辑综合器的工作性能有关。

4 系统设计实现

本系统在Altera公司的Max+ Plus II 10.0 BASELINE软件下用VHDL语言设计实现,操作系统环境为Windows XP version 5.1.2600。系统采用自顶向下的设计方法,首先把系统按功能分解成4个模块:controller、display、fenwei以及frequency。分别设计4个模块,然后再调用它们构成整个系统。系统顶层采用图形方法设计,如图1所示。

4个底层模块则采用VHDL语言设计,其中Controller的接口代码为:

Entity Controller Is

Port

(Clock:In Std_Logic;

Reset:In Std_Logic;

Hold:In Std_Logic;

Flash:Out Std_Logic;

NumA,NumB:Out Integer Range 0 To 25;

RedA,GreenA,YellowA:Out Std_Logic;

RedB,GreenB,YellowB:Out Std_Logic

);

Frequency模块的接口代码为:

Entity Frequency Is

Port

(Clk10Hz: In Std_Logic;

Clk1Hz:Out Std_Logic

);

End;

Display模块的接口代码为:

Entity Display Is

Port( Clock:InStd_Logic;

Flash:In Std_Logic;

Qin:In Std_Logic_Vector(3 Downto 0);

Display:Out Std_Logic_Vector(0 to 6));

End;

Fenwei模块的接口代码为:

Entity Fenwei Is

Port

(Clock:In Std_Logic;

Numin:In Integer Range 0 To 25;

NumA,NumB:Out Integer Range 0 To 9

);

End;

编译后运行结果如图2所示。

5 结束语

VHDL是一种功能非常强大的硬件描述语言,主要用于描述数子系统的结构、行为、功能和接口。VHDL借鉴了高级语言的特点,可以将一项工程设计,或称设计实体,(可以是一个元件、一个电路模块或一个系统)分成外部(可视部分即端口)和内部(不可见部分),即设计实体的内部功能和算法完成部分。在对一个设计实体定义了外部界面后,只要其内部开发完成,其他的设计就可以直接调用这个实体。

参考文献:

[1] 胡振华-VHDL与FPGA设计[M].北京:中国铁道出版社,2003.

[2] 求是科技.VHDL应用开发与工程实践[M].北京:人民邮电出版社,2005.

机电一体化综述范文第6篇

关键词:专用集成电路;寄存器传输级;门级网表;可靠性;手工综合

中图分类号:TN402.22文献标识码:A

文章编号:1004-373X(2009)20-004-03

Research on Manual Synthesis Based on ASIC Design

WANG Xiaohua,LUO Xiaoshu,YIN Yangang

(College of Physics and Electronic Engineering,Guangxi Normal University,Guilin,541004,China)

Abstract:With the development of ASIC design rapidly,it is key technology of the front-end IC design that the register transfer level description is manually synthesized the register transfer level.Through artificial participation,behave-level code by some of the most basic logic gates(such as nand-door,non-door,nor-door,etc.) gets the corresponding gate-level circuit according to the corresponding synthesized circuit model.Such methods used in ASIC design not only can optimize the circuit structure,but also can guarantee the correct logic function.At the same time,it can reduce the transmission delay and improve the reliability of chip design.Therefore,research on the ASCI design by manual synthesis is of practical value.

Keywords:application specific integrated circuit;register transfer level;register transfer level;reliability;manual synthesis

0 引 言

随着专用集成电路(Application Specific Integrated Circuit)设计的迅速发展,将寄存器传输级(RTL)描述的手工综合成门级网表,是IC前端设计中的关键技术[1]。在当前IC设计中,通常在行为级功能验证后,采用软件进行自动综合的方式。这种方式虽然缩短了ASIC设计的周期,但是利用软件综合的门级电路存在很大的冗余,从而影响到整个芯片的版图面积和延时。如果采用手工综合,则会得到最简的电路结构和最少的线路延时。在总体上,手工逻辑综合可分为时序逻辑综合和组合逻辑综合[2]。

在此,以成功开发的无线发码遥控编码芯片为实例,详细介绍手工综合RTL级代码的理论依据和实用方法,重点介绍时序逻辑综合的实现方法,将时序逻辑综合的实现方法归纳出各种描述的一般特征,将用户多种多样的描述归整为五种形式,避免了综合过程中的盲目性,使得整个综合过程有据可依,从而提高综合的效率和准确性[3],并对手工综合进行深入的研究。

1 组合逻辑综合

组合逻辑综合的功能是对组合逻辑函数的描述形式进行一系列转换和优化,求取实现该逻辑函数性能最佳的组合逻辑结构形式,并生成与逻辑功能描述相等价的优化的逻辑级结构描述。由于行为级描述或寄存器传输级描述经转换后所得到的逻辑级的逻辑函数表示通常都是非优化的表示,因此就需要使用逻辑优化工具对其进行综合和优化。

组合逻辑综合的目标通常有:其一是为了在满足延迟的约束下将面积最小化;其二是为了提高电路的可测试性[4]。

组合逻辑电路设计是数字电路设计的基础。相对时序逻辑电路而言其综合过程要简单,可参考上面的手工综合步骤,在这里设计了两个电路对ASIC的手工综合进行具体研究。

1.1 单增量加法器(4位)

所谓单增量加法器,就是在二进制计算中,行使代码换算的任务,即二进制计算中若输出有N值存在,接下来的数值就是N+1,为了把输出值从N变为N+1就必须做一个电路。若其Verilog HDL描述语言为:

counter_disp

则综合步骤为:

(1)列出真值表(略);

(2) 从真值表可以得出其逻辑表达式为:

sum[0]=NOT disp[0]sum[1]= disp[0] XOR disp[1]

sum[2]= disp[2] XOR (disp[0] AND disp[1])

sum[3]= disp[3] XOR (disp[0] ANDdisp[1]AND disp[2])

(3) 综合后的电路图如图1所示。

图1 单增量加法器手工综合后电路

1.2 数值比较器(4位)

完成A

对应的描述语言为:

if(counter disp

(1) 列出真值表(见表1)。其中“X”表示任意值。

(2) 从真值表写出比较结果的逻辑表达式,再通过化简得到最简表达式为:

A_small_B =A3n•B3+(B2B2)A2n•B2+(A3B3)(A2B2)A1n•B1+(A3B3)(A2B2)(A1B1)•A0n•B0

(3) 画出综合后的电路图(见图2)。

表1 真值表

输入输出

A3B3A2B2A1B1A0B0A

A3>B3XXX0

A3

A3=B3A2>B2XX0

A3=B3A2

A3=B3A2=B2A1>B1X0

A3=B3A2=B2A1

A3=B3A2=B2A1=B1A0>B00

A3=B3A2=B2A1=B1A0

A3=B3A2=B2A1=B1A0=B00

图2 数值比较器手工综合后电路

2 时序逻辑综合

时序逻辑综合的主要研究集中于同步时序电路的设计综合。异步时序电路由于其设计和控制过程的复杂性,自动综合十分困难。同步时序电路逻辑综合研究的内容主要有:同步时序电路的综合方法(即有限状态机的综合)、时序的优化以及时钟系统的设计优化等。

有限状态机综合的主要任务是根据给定的逻辑功能,选取触发器和锁存器等时序元件,寻求优化的时序状态激励函数。同步时序电路综合的目标是获得芯片面积优化的高性能电路结构形式,其中包括时序重构和时序逻辑优化等方面。时序优化与时钟系统的优化通过分析时序电路的数据传输行为,设置合理的参数,提高系统的效率,消除时序错误,解决时序冲突[6]。优化电路,得到最终的门级电路网表。

在进行了格式判别,确定采用何种时序元件后,就可以从相应的目标库中提取相应的元件,组织成符合最终输出形式的网表格式。在提取元件时应当根据用户的输入描述取得最优化的结果,当然,这种优化问题也可以在得到最终的数据通道之后进行。对于同步/异步复位及上升/下降沿触发的问题,在一般的目标库中,都有各种不同类型的时序逻辑电路元件,同步/异步复位元件为其中之一[7]。同步/异步复位触发器的综合与其他元件的综合有所不同,综合时考虑的不仅是某一条赋值语句,而是将用户的描述作为一个整体来考虑。在提取赋值语句时,同时分析相互有关联的语句以及这些语句的相关条件,根据上下文语义得出最终的结论。

下面针对上述理论用一实例来说明:在采用上面的综合步骤预处理和综合实现算法后,得到输出信号outA的赋值情况如下:

条件X1成立时outA≤0;条件X2成立时outA≤0;条件Y1成立时outA≤1;条件Y2成立时outA≤in1;其他条件下outA保持。

其处理过程如下:

(1) 将所有使输出信号为0的条件标识为A1,A2等A类(A1=X1,A2=X2);

(2) 将所有使输出信号为1的条件标识为B1,B2等B类(B1=Y1);

(3) 将所有使输出信号为某个输入信号或中间信号值的条件标识为C1,C2等C类(C1=Y2);

(4) 写出其逻辑表达式:

outA=(A1+A2+in1_not C1)(B1+in1•C1+outA)

=(X1+X2+in1_not Y2)(Y1+in1•Y2+outA)

(5) 将目标信号的逻辑表达式进行画简(这里设定已为最简式);

(6) 画出对应的逻辑电路图(见图3):(其中in1_not表示为in1的非,其余类同。)

图3 综合后电路

具有数据通道的有限状态机是描述数字系统的最常用的模型。有限状态机分为两个部分:数据通道部分和控制部件部分。数据通道部分包括数据的处理部件、存储部件、传输部件及其互连[8]。控制部分主要完成数据通道的时序控制,以及根据当前状态、外部控制输入和数据通道内部状态产生外部控制输出和数据通道控制信号等。逻辑综合接受算法级行为描述,通过将其编译转换成为内部表示形式,然后经过操作调度和硬件资源分配等处理过程,最终产生表示数据通道的寄存器传输级网表,并根据调度的需要提取控制信息产生控制部件的行为描述(即有限状态机的描述,一般为状态转换表/图)[9]。控制流综合对行为描述的有限状态机进行分解、化简、分配等处理,选取时序元件,导出状态转换函数和控制输出函数。

下面以一个实例来介绍控制部分的逻辑综合过程和方法。

按照前面的步骤,分析Verilog HDL代码,已得出该控制流部分的状态转换图(见图4),在这里只列出用符号代替的状态转移条件,未写出各输出端信号。

图4 状态转移图

这是LED驱动控制芯片核心模块(显示和键扫控制模块)的状态转换图,下面以DISPLAY状态为目标求其状态转移电路图,如图5所示。

图5 状态DISPLAY 综合后电路

(1) 根据状态转移图列出与DISPLAY状态相关的状态转换条件:

当A=1,DISPLAY=1 D=1时,DISPLAY=1;

当B=1,DISPLAY=0 C=1时,DISPLAY=0

(2) 推断出DISPLAY状态保持的条件,设为E:

E=(B && DISPLAY) ||(C&& DISPLAY)+H=

BC&& DISPLAY+H=BC&& DISPLAY

(3) 化简并得出DISPLAY的逻辑表达式:

DISPLAY≤A+D+E (4) 画出其逻辑电路图(状态机采用独热码编码方式)。

3 结 语

在此归纳出一套手工逻辑综合的方法和综合步骤,该方法适用于中小规模和超大规模中的核心电路部分的电路综合。同时手工综合后的效果与自动综合软件相比,其电路可靠且使用的门电路规模减少,功耗降低,延时达到最小。

参考文献

[1]蔡彭慈,.超大规模集成电路设计导论[M].北京:清华大学出版社,2005.

[2]刘丽华,辛德禄,李本俊.专用集成电路设计方法[M].北京:北京邮电大学出版社,2001.

[3]汪庆宝,宿昌厚.超大规模规模集成电路设计技术从电路到芯片[M].北京:电子工业出版社,1996.

[4]Martin,Kenneth W.Digital Integrated Circuit Design[M].Beijing:Pub.House of Electronics Industry,2002.

[5]Christopher Saint,Judy Saint.IC Layout Basic[M].北京:清华大学出版社,2003.

[6]Michael John Sebastian Smith.Application-specific Integrated Circuits[M].北京:清华大学出版社,2006.

[7]R Jccob Baker,Harry W Li,David E Boyce.CMOS Circuit Design,Layoutand Simulation[M].北京:机械工业出版社,2005.

机电一体化综述范文第7篇

1EDA技术的基本特征及发展趋势

EDA技术的基本特征是采用高级语言描述,具有系统级仿真和综合能力。具体而言,设计人员采用“自顶向下”的设计方法,对整个系统进行方案设计和功能划分,然后采用VHDL、Verilog-HDL、ABEL等硬件描述语言对高层次和系统行为进行设计,并通过逻辑综合优化工具生成目标文件,最后系统的电路由CPLD、FPGA或ASIC(专用集成电路)来实现。EDA技术的发展至今已有30年的历程,其大致可分为三个阶段。20世纪70年代为计算机辅助设计(CAD)阶段,人们用计算机辅助进行电路原理图编辑、PCB布局布线,这极大的促进了当时中小规模集成电路的开发和应用,使人们得以从繁杂的机械图的版图设计工作中解脱出来,这是第一代EDA技术。80年代,出现了以计算机仿真和自动布线为核心技术的第二代EDA技术,即计算机辅助工程阶段(CAE),其主要功能:原理图输入、逻辑仿真、电路分析、自动布局布线、PCB后分析,称之为“电路级设计”。90年代后,出现了以高级语言描述、系统级仿真和综合技术为特征的第三代EDA技术。它采用的是一种“自顶向下”的全新设计方法,这种设计方法首先从系统设计入手,在顶层进行功能方框图的划分和结构设计,在方框图一级进行仿真、纠错,并用硬件描述语言对高层次的系统和行为进行描述,在系统一级进行验证,然后用综合优化工具生成具体门电路的网络表,其对应的物理实现级可以用ASIC来完成。由于设计的主要仿真和调试过程是在高层次上完成的,也就有利于早期发现结构设计上的错误,避免了设计工作的浪费,极大地提高了系统设计效率,缩短了产品的研发周期。

2EDA技术的基本设计思路

2.1EDA技术的电路级设计

电路级设计工作的流程图如图1所示。设计人员首先确定设计方案,并选择能实现该方案的合适元器件,然后根据元器件设计电路原理图,接着进行第一次仿真,其中包括数字电路的逻辑模拟、故障分析等,其作用是在元件模型库的支持下检验设计方案在功能方面的正确性。仿真通过后,根据原理图产生的电气连接网络表进行PCB板的自动布局布线。在制作PCB之前,还可以进行PCB后分析,并将分析结果反馈回电路图,进行第二次仿真,称之为后仿真。其作用是检验PCB板在实际工作环境中的可行性。综上所述,EDA技术的电路级设计可以使设计人员在实际的电子系统产生以前,就“已经”全面了解系统的功能特性和物理特性,从而将开发风险消灭在设计阶段,缩短开发时间,降低开发成本。

2.2EDA技术的系统级设计

随着技术的进步,电子产品的更新换代日新月异,产品的复杂程度得到了大幅增加,以前鉴于电路级设计的EDA技术已不能适应新的形势,必须有一种高层次的设计方法,即“系统级设计”。其设计流程图如图2所示。基于系统级的EDA设计方法其主要思路是采用“自顶向下”的设计方法,使开发者从一开始就要考虑到产品生产周期的诸多方面,包括质量成本、开发周期等因素。第一步从系统方案设计入手,在顶层进行系统功能划分和结构设计,第二步用VHDL、Verilog-HDL等硬件描述语言对高层次的系统行为进行描述;第三步通过编译器形成标准的VHDL文件,并在系统级验证系统功能的设计正确性;第四步用逻辑综合优化工具生成具体的门级逻辑电路的网络表,这是将高层次的描述转化为硬件电路的关键;第五步将利用产生的网络表进行适配前的时序仿真;最后系统的物理实现级,它可以是CPLD、FPGA或ASIC。

3EDA技术在现代数字电子系统设计中的应用

3.1设计要求

设计一个四位二进制同步计数器。同步计数器是指在时钟脉冲(CP)的控制下,构成计数器的各触发器状态能够同时发生变化。该计数器带异步复位,计数允许,四位二进制同步计数器电路,如图3所示,其真值表如表1。

3.2用VHDL(VeryHighSpeedIntegratedCircuitHardwareDescriptionLanguage)来设计

其设计代码如下:LIBRARYIEEE;USEIEEE.STD_LOGIC_1164.ALL;ENTITYcountAISPORT(cp,clr,en:INSTD_LOGIC;Qa,,qb,qc,qd:OUTSTD_LOGIC);ENDcountAARCHITECTUREcountAOFcountAISSIGNALcount_4:STD_LOGIC_VETOR(3DOWNTO0);BEGINQa<=count_4(0);Qb<=count_4(1);Qc<=count_4(2);Qd<=count_4(3);PROCESS(cp,clr)BEGINIF(clr=1)THENCount_4<=“0000”;ELSEIF(CP‘EVENTANDCP=1)THENIF(en=1)THENIF(count_4=“1011”)THENcount_4=“0000”;ELSEcount_4=count__4+1;ENDIF;ENDIF;ENDIF;ENDPROCESS;ENDexample;

3.3系统功能仿真

即验证系统设计模块的逻辑功能。设计人员可以利用EDA工具,运用测试平台的方法来进行验证。测试平台可以实现自动地对被测试单元输入信号测试矢量,并且通过波形输出,文件记录输出或与测试平台中的设定输出矢量相比较,验证仿真结果。本系统输入CP,CLR,EN三个信号,可以得到其输出波形。经验证,系统逻辑功能正确。(注:一般较简单的系统也可忽略这一步)。

3.4逻辑综合与优化

所谓逻辑综合,即是将较高抽象层次的描述自动地转换到较低抽象层次描述的一种方法,目前的EDA工具提供了良好的逻辑综合与优化功能。它利用综合器对VHDL源代码进行综合,优化处理,并将设计人员设计的逻辑电路图自动转化为门级电路,并生成相应的网络表文件。一般的逻辑综合过程如图4所示。

3.5系统时序仿真

即验证系统设计模块的时序关系。本系统在输入CP、EN、CLR三个信号下,可以输出时序波形图。从时序波形图可知,系统的延迟时间符合设计要求。(时序图略)3.6编程下载经过以上几个设计步骤以后,设计人员在确定设计系统基本成功以后,即可通过编程器或下载电缆下载数据流进行硬件验证。最后物理实现级通过ASIC形式实现。

机电一体化综述范文第8篇

1.面向云计算数据中心的能耗建模方法 

2.云计算安全:架构、机制与模型评价

3.云计算访问控制技术研究综述 

4.云计算采纳行为研究现状分析 

5.Google三大云计算技术对海量数据分析流程的技术改进优化研究

6.大数据、云计算技术对审计的影响研究 

7.虚拟化云计算平台的能耗管理  

8.云计算环境下的分布存储关键技术 

9.推动中国云计算技术与产业创新发展的战略思考 

10.云计算:体系架构与关键技术 

11.我国云计算教育应用的研究综述  

12.云计算及云计算实施标准:综述与探索

13.云计算:系统实例与研究现状 

14.云计算环境下的联网审计实现方法探析 

15.云计算和云数据管理技术  

16.基于云计算的多源信息服务系统研究综述 

17.云计算安全问题研究综述 

18.云计算系统相空间分析模型及仿真研究 

19.云计算时代关键技术预测与战略选择

20.云计算方案分析研究  

21.基于云计算的B2C电子商务企业价值链优化  

22.面向图书馆的云计算研究综述  

23.云计算时代的数据中心建设与发展 

24.基于Hadoop的云计算辅助教学平台研究 

25.云计算研究现状综述 

26.基于云计算的智能电网信息平台 

27.云计算资源调度研究综述 

28.论云计算的服务质量 

29.我国云计算教育应用的现状与发展趋势 

30.云计算及其关键技术  

31.云计算技术发展分析及其应用探讨 

32.云计算应用服务模式探讨 

33.云计算的发展及其对会计、审计的挑战

34.构建云计算平台的开源软件综述 

35.云计算安全研究 

36.云计算和虚拟化技术  

37.基于企业视角的云计算研究述评与未来展望  

38.云计算数据中心的新能源应用:研究现状与趋势  

39.云计算环境下的电子文件迁移模型研究 

40.云计算:构建未来电力系统的核心计算平台

41.移动云计算的应用现状及存在问题分析 

42.云计算中虚拟机放置的自适应管理与多目标优化 

43.云计算:概念、技术及应用研究综述  

44.基于虚拟散列安全访问路径VHSAP的云计算路由平台防御DDoS攻击方法

45.云计算集群相空间负载均衡度优先调度算法研究 

46.电力系统云计算中心的研究与实践 

47.云计算初探  

48.随机任务在云计算平台中能耗的优化管理方法 

49.基于“云计算”的数字图书馆服务模式 

50.云计算与信息资源共享管理  

51.云计算中调度问题研究综述

52.云计算给图书馆管理带来挑战

53.云计算安全研究综述  

54.云计算中数据隐私保护研究进展  

55.云计算应用及其安全问题研究  

56.基于云计算的电力数据中心基础架构及其关键技术 

57.基于云计算和极限学习机的分布式电力负荷预测算法 

58.美国联邦政府云计算战略  

59.基于云计算平台的新型电子取证研究 

60.云计算信息安全分析与实践 

61.基于Openstack的科研教学云计算平台的构建与运用  

62.云计算安全关键技术分析  

63.云计算技术研究与应用综述 

64.基于云计算的义务教育学科课程资源共建共享模式 

65.面向云计算环境的能耗测量和管理方法 

66.基于云计算的实验室管理信息系统设计

67.云计算概念、模型和关键技术  

68.云计算环境下的审计业务模式变革研究 

69.基于Hadoop的分布式云计算/云存储方案的研究与设计

70.云计算环境中绿色服务级目标的分析、量化、建模及评价

71.基于云计算的图书馆建设与服务发展 

72.物联网、大数据及云计算技术在煤矿安全生产中的应用研究 

73.基于专利分析的我国云计算技术发展现状研究 

74.云计算的价值创造及其机理  

75.云计算环境下高校实验教学模式的创新与实践 

76.寄心海上云:云计算环境下的知识管理 

77.基于云计算的居民用电行为分析模型研究 

78.云计算环境下的数据存储  

79.基于效用的云计算容错策略和模型 

80.云计算环境下的智能决策研究综述  

81.云计算安全风险因素挖掘及应对策略 

82.我国云计算产业发展趋势及政策建议 

83.云计算安全需求分析研究 

84.智能电网中虚拟化云计算安全的研究 

85.云计算架构下的移动学习 

86.基于云计算的终身教育服务平台设计 

87.云计算在电力系统数据灾备业务中的应用研究 

88.云计算与图书馆:为云计算研究辩护 

89.浅谈云计算技术  

90.云计算研究现状与发展趋势 

91.云计算环境下的著作权制度:挑战、机遇与未来展望 

92.基于云计算的数字化信息资源建设模型的研究 

93.云计算发展态势与关键技术进展 

94.云计算技术在图书馆中的应用探讨 

95.国外云计算发展现状综述  

96.云计算对知识产权保护的若干影响  

97.基于云计算的远程教学资源建设模式——以浙江开放大学为例 

98.云计算在智慧校园中的应用研究  

99.对云计算技术及应用的研究 

100.云计算应用展望与思考  

101.云计算给图书馆带来的发展机遇  

102.云学习:云计算激发的学习理念  

103.云计算环境下的信息资源云服务模式研究  

104.云计算研究进展综述 

105.云计算及安全分析  

106.一种云计算操作系统TransOS:基于透明计算的设计与实现 

107.基于等级保护的云计算安全评估模型  

108.云计算:从概念到平台  

109.云计算环境下信息安全分析  

110.云计算技术简述  

111.云计算综述与移动云计算的应用研究  

112.中国云计算产业结构和商业模式  

113.云计算安全问题  

114.云计算下的国外图书馆联盟服务研究 

115.云计算技术的应用及发展趋势综述  

116.云计算在区域信息资源共享中的应用探究  

117.基于云计算的图书馆信息平台的构建  

118.云计算技术驱动下构建数字图书馆虚拟化环境的探讨  

119.云计算支撑信息服务社会化、集约化和专业化 

120.云计算环境下基于协同过滤的个性化推荐机制 

121.云计算环境下的网络技术研究  

122.云计算模式在电力调度系统中的应用  

123.云计算环境下的隐私权保护初探 

机电一体化综述范文第9篇

本文研究的煤矿为我国某省一大型的软岩煤层综采工作矿井,由于该煤矿属于深层开采矿井,因此地质灾害较多,且地表中的瓦斯含量较高。煤矿综采作业时,容易出现顶钻伤人及喷孔事故,如下图为该省某煤矿Ⅲ11软岩工作面综合柱状图[1]:从图1中可以看出,该矿井综采工作面地质结构复杂,作业过程中的主要难点在于尽可能抽采卸压瓦斯,从而有效消除煤层中突出的危险,以此保证矿井作业能够顺利进行。通过分析发现,该矿井泥岩层平均抗压强度为25.3MPa,在综采工作面中存在粉砂岩及砂质泥岩、砂岩等不同属性的岩层,使机电设备工作运行中容易出现故障;采掘过程中耗材量大,对采掘作业效率提升造成了严重影响。因此,本文在故障分析基础上,试图找到更加科学的安全防范措施。

2软岩煤层综采工程案例

该软岩煤层综采工作面实际开采长度与倾向长度分别为860m与104m,软岩煤层综采工作面的实际开采高度及设计尺寸分别为2.0m与2m/d。在综采过程中,本项目采用综合机械设备采岩,单向下隔切岩,综采工作面中的液压支架沿推溜方向进行移架放顶。在综采工作面中由上到下或由下到上单向推移运输进行科学作业。由于该软岩煤层综采工作面主采泥岩,因此与煤相比,其不仅硬度较大,而且在实际作业过程中会导致运料及切割设备负荷超限。因此,会使机械设备维修频率增加。结合上述情况,为了不断提升机械设备的运行性能及减少软岩煤层综采机电设备运行故障,作业时要科学选择具有良好装岩效果及稳定性强、可靠性好的行走机构、滚筒等,同时利用性能较好的支撑滑靴组件及液压系统、免维护运输设备进行作业,降低能耗,确保该软岩层综采机电设备能够正常连续运行。

3软岩煤层综采机电设备事故分析

具体而言,软岩层综采机电故障主要包括转载机设备事故及采煤机事故和运输机事故等。首先,通过分析发现,自从该矿井中的此套设备投入使用以来,出现了诸多运行故障,比如采煤机及运输系统事故等,还有工作面车和转载机系统事故。上述综合性事故大约占全部设备事故总量的比例为73%,因此降低了软岩煤层综采机电设备的运行效率.在实际运行过程中,运输机一旦产生事故会导致设备断链,且机械设备运行中的链条会遭到严重磨损。从机械设备本身的原因来看,出现上述故障的主要成因是机械设备工作面磨损量较大,且转载机设备的链轮相关组件磨损较为严重,因此容易产生跳链现象。另外,还有人为方面的因素,比如操作人员对矸石的控制不到位,从而导致输送机设备无法合理运行。

4软岩煤层综采机电设备事故防治措施

首先,需全面优化设备使用技术工艺,联系设备生产厂家,针对设备中存在的问题,从技术源头上改进机械设备的生产技术工艺,从而提升机械设备型号与环境地质的匹配度。在对复杂地质层的矿物质进行开采时,事先需安排专业技术人员对泥岩层位进行超前判断与评估,通过动态化技术监测,以此做好地质安全保障工作。针对一些断层开采地质,需在采掘过程中重点结合地质特征采用微差工艺进行技术爆破,配合平推硬过及超前层位对接快速过断层等相关采掘技术工艺进行作业,有效防止采煤机设备截割硬岩。其次,技术人员需结合实际综采情况,对机电设备的维修模式进行合理优化。因软岩煤层采掘工作具有特殊性,因此一般的检修模式无法满足设备安全运行需求,需采用精细化管理维修方式,对设备运行过程进行自动化及信息化管理。通过对相关机电设备进行定量管理,从而避免煤层采掘过程中的不确定因素影响综采作业。针对上述情况,可建立综合性的信息管理平台及综采设备检修平台,对机械设备进行定期检测,缩短机械设备的检修周期。除此之外,采矿企业需加强对相关设备与人员的组织配备,通过定期对技术人员进行思想教育,提高技术人员对软岩煤层综采机电设备事故的分析能力,改变传统机械设备使用与保管过程中的无序现状。通过严格的质量标准,对设备生产与使用及检修过程进行监督管理,从而防止人员操作失误导致设备安全隐患出现。

5结语

综上所述,从上述分析过程可知,软岩煤层综采机电设备在运行过程中会出现诸多故障,因此本文通过故障种类分析及故障成因分析,建议通过科学的措施有效防范软岩综采机电设备相关运行故障,不断强化相关技术人员的安全责任意识,保证机电设备顺利运行。

作者:周飞飞 单位:太原煤气化股份有限公司炉峪口煤矿

机电一体化综述范文第10篇

关键词 电液控;试验台;组态软件;PLC+继电器;液压

中图分类号:TP315 文献标识码:B

文章编号:1671-489X(2017)04-0015-02

Abstract The purpose and significance of the design of the electro-

hydraulic and control test bench are expounded, and the composition and principle of the test bench are expounded. The test bench is di-vided into the electrical system, including operation display part and

PLC+relay part, and the hydraulic system. The configuration soft-

ware part, PLC+relay part, and the hydraulic system are designed,

and the working principle and the design contents are expounded. And at last, the experiment which can be done by this compre-hensive test bench are expounded.

Key words electro-hydraulic and control; test bench; configuration software; PLC+relay; hydraulic

1 引言

目前电液控系统应用广泛,有液压的地方基本都会有对应的电气控制系统,并且这样的系统在各行各业都有大量的应用。但是目前这样的试验台缺乏,现有的试验设备往往集成度高,试验单一,比如现有液压与气动实验室、PLC实验室等,很少有电气与液压集成的实验室;目前也有一些这样的试验设备,集成PLC与液压系统为一体,但是没有把PLC的上位机组态软件集成到一起。

基于此,设计电液控试验台。通过在此试验台上的试验学习,学生学会如何通过电气部分对液压部分进行控制,还能学会如何利用工控机,通过PLC上位机组态软件对电气及液压部分进行控制和数据采集。

2 总体设计

图1所示为电液控试验台总体设计框图,该试验台的主要组成部分有电气系统与液压系统,其中电气系统包括操作显示部分(工控机及组态部分)、PLC+继电器部分。该试验台的工作原理:工控机通过组态软件对PLC进行控制和数据采集,PLC接收工控机的控制信号,并把相应的数据利用组态软件传输到工控机并且显示;继电器接收PLC的控制信息,进而控制液压系统;液压系统按照接收到的信息进行动作,并把相应的数据传递到PLC。该试验台设计的内容有电气系统设计和液压系统设计。

3 电气系统设计

操作显示部分设计 操作显示部分通过组态软件在工控机上显示,主要是组态部分的设计。并且进行组态监控程序设计时,将监控界面中的组态变量cPLC程序中对应的变量寄存器进行连接,让它们一一对应,借助MCGS6.2组态软件的开发系统,设计出适合于电液控试验台的监控软件。主要有操作控制按钮设计(借助组态软件实现)、数据采集数显表设计以及保存历史数据的设计。通过组态软件界面可以对PLC进行控制,还可以把系统相应的量进行数据采集。

PLC+继电器部分设计 把PLC及继电器固定在试验台上,留出线路接口,并给予标注。设计的主要内容如下所示。

1)PLC部分设计。PLC是电气控制部分的核心,接收上位机组态软件控制信息,经过程序运行后再发送出去,进而控制继电器、液压系统等;数据采集部分主要通过EM231模块来实现,采集试验系统中的压力、流量、位置等数据,把采集到的数据进行处理后再发送到控制继电器、液压系统等,或通过组态软件显示到工控机界面上。

①PLC硬件设计。本实验台使用西门子CPU226 PLC和一个EM231模块,该部分主要是线路连接,根据不同的实验要求进行接线,主要包括PLC输入部分的接线和输出部分的接线。

②PLC程序设计。主程序是PLC程序主要部分,是各子程序入口,具有接收指令后,判断子程序是否需要被激活的作用。初始化程序对PLC中各个变量赋予初值,是试验系统能够遵照后续程序正常运行的前提条件。手动程序的作用是使系统能够接收操作指令,并对指令做出响应,完成指定动作。自动程序是通过运行可以让设计好的试验系统按照一定的步骤自动运行。模拟量转换程序是经压力变送器调制电压信号(0~5 V)进入EM 231CN模拟量扩展模块,然后经过程序转换显示出对应物理量数值。运算程序是PLC 程序中最为重要的程序段,包含系统工作过程中主要动作和主要运算过程,是整个程序的核心。

③I/O口分配。I/O接口分配,把输入输出信息与PLC的I/O口一一对应,进而进行控制操作及数据采集。根据不同的实验,可以进行不同的I/O口分配。

2)继电器部分设计。选用普通的继电器,根据实验要求,进行继电器的接线,如有延时,可选用时间继电器。

4 液压系统设计

借助普通液压试验台,试验台的组成有液压源(液压泵、过滤器、溢流阀及液压管线等组成)、控制阀(包括电磁换向阀、节流阀等)、液压缸及管线。通过液压试验台能做以下实验。

1)液压泵实验。了解液压泵的工作特性;通过实验增加对液压泵工作的感性认识,如液压泵工作时的振动、噪声,油压的脉动,油温的升高等;掌握测试液压泵工作性能的方法。

2)液压回路实验。液压回路是液压系统的重要组成部分,通过对液压回路的动作观察和动手操作,可加深对液压回路组成元件和液压回路工作原理的了解。液压回路实验如下所示:

①换向回路,了解利用电磁换向阀控制双杆液压缸运动、停止的原理;

②调速回路,了解利用节流阀或调速阀在液压系统中调节液压缸运动速度的原理;

③多缸顺序动作回路,了解由行程开关控制电磁换向阀的自动往复换向回路的基本原理。

通过该实验台可以做如上液压试验,接上对应的继电器及PLC线路等,根据实验要求,安装不同的液压控制元件,用液压管线组建液压回路,就可以进行不同的电液控综合实验。

5 结论

此试验台集成了液压及电气PLC部分、组态软件。通过此试验台,学生可做的实验有:

1)组态软件的使用,包括控制与数据采集部分,与PLC对应的接口连接;

2)PLC实验,包括硬线连接、程序设计及调试;

3)接口设计实验一,组态与PLC连接的接口设计实验;

4)继电器实验,包括继电器的选取、硬线连接;

5)接口设计实验二,PLC与继电器接口连接设计实验;

6)液压实验,包括液压元件的选取、液压回路的设计及调试;

7)电控综合实验一,通过按钮控制继电器实验;

8)电控综合实验二,通过按钮控制PLC,进而控制继电器实验;

9)电液控综合实验一,通过继电器控制液压系统实验;

10)电液控综合实验二,通过PLC控制液压系统实验。

通过该试验台的学习,学生更熟悉了继电器、PLC及液压部分;通过接口实验,学生更深入地理解了它们的连接关系;通过电液控综合实验,学生更深入地理解了电液一体化。通过这些实验,为学生W习电气液压一体化及机电一体化打好基础,为将来走上工作岗位打好基础。

参考文献

[1]贾光政,张富臣,王显伟.高压气体装置性能检测系统[J].化工自动化及仪表,2011,38(7):800-801.

[2]郗安民,刘颖,曲开宏,等.机电系统教学试验台[J].实验技术与管理,2002,19(1):24-26.

[3]王野牧,马洪义.电液伺服比例综合实验台设计和研究[J].机械工程师,2011(5):37-39.

[4]李永法.电液伺服阀综合实验台的研制[J].河南科技学院学报:自然科学版,2009,37(2):52-55.

[5]刘志奇,段锁林,王明智.液压泵综合试验台设计[J].太原重型机械学院学报,2000,21(1):35-38.

[6]雷杰.50MPa液压综合试验台的设计与研究[J].陕西科技大学学报,2007,25(1):103-106.

[7]孙永厚.液压综合试验台设计[J].工程机械,2003(11):

机电一体化综述范文第11篇

Abstract: This paper introduces the scientific status, progress trend level, structure and characteristics of computer maintenance monitoring device. It also introduces the auxiliary power system and the characteristics of auxiliary power measurement and control system and the supposed effect of auxiliary power computer maintenance monitoring device. Finally, it analyzes the hardware requirements of the maintenance monitoring device according to the site and sums up the hardware requirements strategy of auxiliary power maintenance monitoring device.

关键词: 厂用电;维护监测装置;LPC2468;软硬件

Key words: auxiliary power;maintenance monitoring device;LPC2468;hardware and software

中图分类号:TM774 文献标识码:A 文章编号:1006-4311(2014)15-0047-02

0 引言

发电厂中最主要的负荷来源于厂用电,保护发电厂安全经济运转需归功于厂用电能否稳固牢靠。厂用电系统中微机维护监测装置起着至关重要的作用。厂用电的电气体系,首要包括电气二次部分的维护、测量监测和自动机构等,厂用电电气体系能否稳固牢靠,是否能在全厂综合操纵和协作下,实施采集厂耗电系统的运转讯息、设施情况、实施监控、控制、测量和设施管理等职能,会直接关联厂用电系统的稳固性和电厂运转的统一经济效益。发电厂电气测控管理体系随着厂用电电气自动化的进展而发明出来,维护监测装置对发电厂电气监测管理体系可否向高端阶段发展至关重要。厂用电维护监测装置首要是针对9kV和6kV电压等级的。针对厂用电微机维护监测装置硬件需要,本文总结出一套高性价比的厂用电微机维护监测装置的综合设计方略。在阐述了装置的硬件的全体结构基础上,分别阐述了CPU模块、开关型模块、电子资料采样模块、人机对接模块、讯息沟通模块和电路原理谱和芯片资讯表,然后详尽论述了硬件的抗干扰,指导了PCB的绘图方法。装置的软件模块主要包含基层的硬件驱动编程和应用编程。基层驱动编程首要包含硬件体系初始化,数据采样板块的驱动,FM3164储存器的驱动,通讯模块的驱动,人机对接的驱动等。最后阐述了软件设计的抗骚扰,为软件设计提供了参照。在阐述了各个基层驱动程序后,对微机维护监测装置的所有软件结构进行了论述,并对中断模块进行重要的阐述。

1 厂用电维护监测装置的现状和特性

1.1 厂用电维护监测装置的科研状况 厂用电维护监测装置是电力体系继电维稳的重要部分,其进展和继电维稳的进展存在紧密的联系。机电维稳在电力体系高速发展中持续提升了高要求,网络技术,电子化技术与通讯技术的高速发展又使继电维稳技术的进展涌入了新鲜的活力,所以继电维稳技术钟灵毓秀,从九十年代中期时起,我国的厂用电体系维稳便逐步受到重点关注,国外进口的厂用电综合维稳装置被许多工程运用。在性能方面,此类维稳监测装置包含维稳、监测、控制、监控和通讯诸多方面;在全方位维稳原理上,自适用等相关维稳原理上早已广泛施行。用太网、光纤通讯的发展使维稳能获取多样化的系统运转和故障讯息,完成了维稳的网络化,使自适用的维稳原理的运用实现了超越,同时使系统维稳也实现了超速发展。因为所有保护元素都可以通过用光纤通讯、太网分享系统的运转和故障讯息的数据,对故障性能,故障方位和故障间距实施确切的监测和辨析,所有保护元素和复合闸装置在辨析此类讯息和数据的基础上协助合作,准确保护系统的安全稳固运转。

1.2 厂用电维稳监测装置的结构和特性 厂用电中压保护监测装置与别种微机保护装置一样,也是以微观控制器械为基本硬件,将传统的维稳、计量、监测、控制、通信等功能相互结合,替代使用一种微观控制器械为中心的硬件体系、模型化软件和通讯构成的综合性体系。泛泛而言,厂用电中压保护监测装置的硬件体系按照功能可划分为以下七大要件:①电源模块。供用微观处理器械、电子电路、模数转化芯片等必需的电源;②CPU模块。囊括微观处理器械、可读储存器、随机存取存储器、定时器等等。微观处理器械施行存储程序储存器中的维稳程序,辨析处理数据采样系统的数据,完成所有维稳功能;③开关计量输出、输入模块。由许多并行对接口、电光间隔器、以及中间继电器等构成,以及完成所有维稳出口的跳闸、讯号报警、外源接点输入等功能;④数据收集模块。包含微观处理器械、可读储存器、随机性存取储存器械、定时器等。微观处理器处理存储在程序中储存器的保护程序,对数字收集系统的数据进行辨析整理,实施各类维稳功能;⑤通讯模块。包含通讯对接口电路和对接口以实施多机通讯的联网;⑥人机对接口模块。首要包含键盘和液晶两大类。

2 火电厂维稳监测设备的发展轨迹

最近几年来,人工智能技术诸如网络脉络、遗传性计算、数字综合技术、波段变化、免疫理念、进化规则、模糊理念等在火电力体系的所有区域都有所运用,在微机维稳区域运用的科研已经启动。但是截至目前,人工智能的运用尚未取代以往维稳原理。然而电脑在电力体系维稳和调控中的运用和有关技术的进展为自我适用维稳和暂时状态的维稳提供了契机。暂态维稳是表示通过监测故障暂态发生的高频讯号以实现输出线和电力设施的维稳。暂态故障产生的讯号里包含大批的讯号,其中包含故障的类别、方位、位置、陆续时间段等。此类讯息贯穿于讯号的所有领域,从直流、分频到高频总量。在基于分频的维稳理论中,故障发生的高频量度被当作干扰清理掉,许多科研工作施用于建设过滤掉高频讯号的滤波器上。伴随着理论的进展,将来同样会在火电厂用电维稳监测设备中得以运用。

3 电路连接图

经过科学的计算,电路输入电压为+5V,CPU板的电源电路建设图应如图1所示。芯片DCMD5D13-120是定力电压电源输入模型。电路原理如图2所示。

4 结束语

综上所述,工作就是要研发一种高性价比的适用厂用电体系的中压微机维稳装置。具体可囊括为如下几点:①辨析厂用电体系,依据科研的状况,辨析厂用电维稳监测装置的硬件,并发明一种适用厂用电体系的维稳方略,绘出详尽的逻辑统计图;②建立基于ARM的维稳监测装置,包含讯号输出模块、讯号输入模块、人机对接模块和通讯模块。

参考文献:

[1]贾胜超.基于LPC2468的厂用电中压保护测控装置的研究[D].东南大学,2009.DOI:10.7666/d.y1580283.

机电一体化综述范文第12篇

关键词:EDA技术 电子工程系统设计

中图分类号:S611 文献标识码:A 文章编号:

1EDA技术的基本特征

EDA代表了现代电子设计技术最先进的发展方向,它的基本特征是:设计人员按照“自顶向下”的设计方法,对整个电子系统进行方案设计和功能划分,系统的关键电路用一片或几片专用集成电路(ASIC)实现,然后采用硬件描述语言(HDL)完成系统行为级设计,最后通过综合器和适配器生成最终的目标器件,这样的设计方法被称为高层次的电子设计方法。下面介绍与EDA基本特征有关的几个概念。

1.1 “自顶向下”的设计方法

高层次的电子设计给我们提供了一种“自顶向下”(Top-Down)的设计方法,这种设计方法首先从系统设计入手,在顶真、纠错。并用硬件描述语言对高层次的系统行为进行描述,在系统一级进行验证。然后,用综合优化工具生成具体门电路的网表,其对应的物理实现级可以是印刷电路板或专用集成电路(ASIC)软件来完成对系统硬件功能的实现。

1.2ASIC芯片技术

随着现代电子产品的复杂度日益提高,一个电子系统可能由数万个中小规模集成电路构成,同时也带来了体积大、功耗大、可靠性差的问题,解决这一问题的有效方法之一就是采用ASIC芯片进行设计。ASIC芯片按照设计方法的不同可以分为:全定制ASIC,可编程ASIC(也称为可编辑逻辑器件)。

设计全定制ASIC芯片时,设计师要定义芯片上所有晶体管的几何图形和工艺规则,最后再将设计结果交由IC厂家掩膜制造完成。优点是:芯片可以获得面积利用率高、速度快、功耗低等最优性能。缺点是:开发周期长,费用高,只适合大批量产品开发。

半定制ASIC芯片的版图设计方法分为门陈列设计法和标准单元设计法,这两种方法都是约束性的,其主要目的就是简单设计,以牺牲芯片性能为代价来缩短开发时间。

可编程逻辑芯片与上述掩膜ASIC的不同之处在于:设计人员完成版图设计后,在实验室内就可以烧制出自己的芯片,无需IC厂家的参与,缩短了开发周期。

可编程逻辑器件自上世纪70年代以来,经历了PAL、GAL、CPLD、EPGA几个发展阶段,其中CPLD/EPGA属高密度可编程逻辑器件,目前集成度已高达200万门/片,它将掩膜ASIC集成度高的优点和可编程逻辑器件设计生产方便的特点结合在一起,很适合样品研制或小批量产品开发,使产品能尽快上市。而当市场扩大时,它又可以很容易地转由掩膜ASIC实现,因此也降低了开发风险。

上述ASIC芯片,尤其是CPLD/EPGA器件,已成为现代高层次电子设计方法的实现载体。

1.3硬件描述语言

硬件描述语言(HDL-Hardware Description Language)是一种用于电子系统硬件设计的计算机语言,它用软件编程的方式来描述电子系统的逻辑功能、电路结构和连接形式,与传统的门级描述方式相比,它更适合大规模电子系统的设计。硬件描述语言可以在3个层次上进行电路描述,其层次由高到低分为行为级、R级和门电路级。常用硬件描述语言有WDL、Verilog和VHDL语言等。

2 EDA技术的设计方法

2.1电路级设计

电路级设计工作流程如图1所示。电子工程师接受系统设计任务后首先确定设计方案,同时要选择能实现该方案的合适元器件,然后根据所选元器件设计原理图。接着进行一次仿真,包括数字电路的逻辑模拟、故障分析、模拟电路的交直流分析和瞬态分析。系统在进行仿真时,必须要有元件模型库的支持,计算机上模拟的输入输出波形代替了实际电路调试中的信号源和示波器。这一次仿真主要是检验设计方案在功能方面的正确性。仿真通过后,根据原理产生的网络表进行PCB板的自动布局布线。在制作PCB板之前还可以进行后分析,包括热分析、噪音及串扰分析、电磁兼容反洗和可靠性分析等,并且可以将分析后的结果参数反馈回原理图,进行第二次仿真,也称为后仿真,后仿真主要是PCB板在实际工作环境中的可行性。

可见,EDA技术在电路级设计方面的应用使电子工程师在实际的电子系统产生之前,就可以全面了解系统的功能特性和物理特性,从而将开发过程中出现的缺陷消灭在设计阶段,既缩短了开发时间,也降低了开发成本。

图1 电路级设计工作流程

2.2系统级设计

系统级设计工作流程如图2所示。系统级设计是一种“概念驱动式”设计,设计人员无须通过门级原理图描述电路,而是针对设计目标进行功能描述。由于摆脱了电路细节的束缚,设计人员可以把精力集中于创造性概念构思与方案上,一旦这些概念构思以高层次描述的形式输入计算机后,EDA系统就能以规则驱动的方式自动完成整个设计。

系统级设计的步骤如下:

第一步:按照“自顶向下”的设计方法进行系统划分。

第二步:输入VHDL代码,这是系统级设计中最为普遍的输入方式。此外,还可以采用图形输入方式(框图、状态图等)这种输入方式具有直观、容易理解的优点。

第三步:将以上的设计输入编译成标准的VHDL文件。对于大型设计,还要进行代码级的功能仿真,主要是检验系统功能设计的正确性,因为对于大型设计,综合适配要花费数小时,在综合前对源代码仿真,就可以大大减少设计重复的次数和时间一般情况下,可略去这一仿真步骤。

第四步:利用综合器对VHDL源代码进行综合优化处理,生成门级描述的网表,这是将高层次描述转化为硬件电路的关键步骤。综合优化是针对ASIC芯片供应商的某一产品系列进行的,需要在相应的厂家综合库支持下才能完成。综合后,可利用产生的网表文件进行适配钱的时序仿真,仿真过程不涉及具体器件的硬件特性,较为粗略。

第五步:利用适配器将综合后的网表文件针对某一具体的目标器件进行逻辑映射操作,包括底层器件配置、逻辑分割、逻辑优化和布局布线。

第六步:将适配器产生的器件编程文件通过编程器或下载电缆载入到目标芯片EPGA或CPLD中。如果是大批量产品开发,通过更换相应的厂家综合库,可以很容易转由ASIC形式实现。

图2系统设计工作流程

2 结束语

21世纪是EDA技术的高速发展时期,EDA技术是现代电子系统设计技术的重要发展方向之一。随着集成电路技术的高速发展,数字系统正朝着更高集成度、超微型化、高性能、高可靠性和低功耗的系统级芯片方向发展,借助于硬件描述语言的国际标准VHDL和强大的EDA工具,可减少设计风险并缩短周期,随着VHDL语言使用范围的日益扩大,必将给硬件设计领域带来巨大的变革。

参考文献:

[1]谭会生,张昌凡.EDA技术及应用[M].西安:西安电子科技大学出版社,2001

[2]ALTERA公司.DATA BOOK[M].北京:清华大学出版社,1998.

[3] ALTERA公司.ADHL语言[M].北京:清华大学出版社,1998.

机电一体化综述范文第13篇

关键词 研究生;机电一体化;模糊综合评价;课程评价

中图分类号:G642 文献标识码:B

文章编号:1671-489X(2014)18-0090-04

1 机电一体化课程评价变量的模糊化

建立课程评价指标体系的因素集 机电一体化课程的评价根据构建的指标体系是一级、二级、三级等结构不同,可以进行一级评价、二级评价、三级评价……本文针对机电一体化课程评价采用三级结构形式,其指标体系如表1所示。

指标体系的因素集是以影响评判对象的各种指标变量为元素所组成的一个集合,由于评价指标体系为三级结构,故其指标因素集也为三级,各级指标变量可以是模糊的,也可以是非模糊的。由表1可列出各级指标变量的评价因素集,一级指标变量评价因素集为:

U={u1,u2,u3,u4} (1)

其中,ui(i=1,2,3,4)代表一级指标因素。

二级指标变量评价因素集为:

Ui={ui1,ui2,ui3}(i=1,2,3,4) (2)

其中,uij(i=1,2,3,4; j=1,2,3)代表二级指标因素。

三级指标变量评价因素集为:

Uij={uij1,uij2,…,uijn}(i=1,2,3,4;j=1,2,3) (3)

其中,uijk(i=1,2,3,4; j=1,2,3; k=1,2,…,n)代表三级指标因素。

建立指标体系的权重集 权重集是描述各指标重要程度的关系集。权重集的确定有主观评价和客观评价两种方法:主观评价法可采用最简单的调查统计法或直接打分法;客观评价法可用层次分析法(AHP),即通过建立判断矩阵、计算权重集、进行一致性检验三步来确定。

由表1建立各级指标因素集的权重集。一级指标权重集为:

W={w1,w2,w3,w4} (4)

其中,。

二级指标权重集为:

Wi={wi1,wi2,wi3}(i=1,2,3,4) (5)

其中,。

三级指标权重集为:

Wij={wij1,wij2,…,wijn}(i=1,2,3,4;j=1,2,3) (6)

其中,。

建立指标体系的备择集及隶属度函数 备择集即评语等级论域,是评判者对评判对象隶属于各种可能的总评判结果。一般,评语等级取3~9个,对机电一体化课程的评价可设优(v1)、良(v2)、中(v3)、差(v4)等四个等级,即:

V={v1,v2,…,vm} (7)

其中,m=4,vl(l=1,2,3,4)代表各种可能给出的综合评判结果,每一个等级对应一个模糊子集,具体等级依据评价内容进行适当的语言描述。

第三级指标由专家按百分制评价,其评价指标属于评语等级的隶属度函数,根据不同的评价对象有不同的分布规律,可以用模糊三角分布、模糊正态分布、高斯分布、柯西分布等,研究生机电一体化课程的评价可选用模糊三角分布,其分布规律如图1所示。

2 机电一体化课程评价的模糊关系及模糊综合评价模型

对每个影响因素进行评价,建立评价因素的模糊关系矩阵。确定单指标影响因素对各等级模糊子集的隶属度,得一级评判三级指标的模糊关系矩阵为:

(8)

其中,rkl(k=1,2,…,n; l=1,2,…,m)为第三级评价指标uijk(i=1,2,3,4; j=1,2,3; k=1,2,…,n)对vl等级模糊子集的隶属度。

利用三级指标的权重集与指标的模糊关系矩阵进行模糊运算(用模糊合成算子进行模糊变换),求出一级评价结果向量为:

(9)

根据最大隶属度原则或秩加权平均原则比较评价结果向量中的大小,就可以确定机电一体化课程三级指标所对应的评价等级。

由三级指标求出的一级评价结果向量组成二级指标模糊关系矩阵Ri,即:

(10)

利用二级指标的权重集与二级指标模糊关系矩阵进行模糊运算,求出二级评价结果向量Si以及由其组成的一级指标模糊关系矩阵R,即:

(11)

(12)

根据最大隶属度原则或秩加权平均原则比较评价结果向量中的大小,确定机电一体化课程二级指标所对应的评价等级。

根据二级评价结果向量组成的模糊关系矩阵R,计算一级指标的评价结果向量S,并作三级(终极)综合评判,即:

(13)

上述各式中“”代表模糊合成算子,用M(∧,∨)(取大取小运算)变换。式(13)表示的终极综合评判结果向量,反映一级指标对评价论域V中各模糊子集的隶属程度。根据最大隶属度原则或秩加权平均原则比较评价结果向量中的大小,就可以评价出机电一体化课程所对应的综合评价等级。

3 机电一体化课程模糊综合评价例

评价指标的权重及隶属度确定 根据表1所示机电一体化课程评价指标体系,本文由专家评分并根据图1计算可得某机电一体化课程的第三级指标隶属于评价语言的模糊隶属度,以及根据层次分析法确定各级评价指标的权重系数,见表2~表5所示。

机电一体化课程的模糊综合评价

1)一级模糊综合评价。一级模糊综合评价是根据第三级指标隶属于评价语言的隶属度,计算出各二级指标隶属于评价语言的模糊子集,即一级模糊综合评价结果向量。评价对象为二级指标Uij,影响因素为对应的三级指标。由式(8)及表2得指标u11的等级评判关系矩阵为:

权重向量为:W11=(0.4 0.4 0.2)

由式(9)得队伍结构的一级模糊综合评价结果向量为:

根据模糊子集S11按最大隶属度原则,可评判出机电一体化课程二级指标的队伍结构u11为v1级(优秀)。

同理可得,学术水平的一级模糊综合评价结果为:

S12=W12R12=(0.36 0.445 0.195 0.00)

即机电一体化课程二级指标的学术水平u12为v2级(良好)。

教学水平的一级模糊综合评价结果为:

S13=W13R13=(0.575 0.375 0.05 0.00)

即机电一体化课程的二级指标教学水平u13为v1(优秀)。

按上述评价方法,由表3~表5同样可计算出教学条件、教学质量以及教学管理等二级指标各因素的一级模糊综合评价结果,不再赘述。

2)二级模糊综合评价。二级模糊综合评价是根据一级模糊综合评价的各模糊子集组成模糊关系矩阵,并计算出各一级指标隶属于评价语言的模糊子集,即二级模糊综合评价结果向量。

将一级模糊综合评价的结果向量S11、S12、S13代入式(10)组成二级评价的模糊关系矩阵,即u1的单因素模糊关系矩阵为:

指标u1的各二级指标权重为:

W1=(0.2 0.4 0.4)

由式(16)得二级模糊综合评价结果向量为:

按最大隶属度原则,可将机电一体化课程的一级指标师资队伍u1评定为v1级(优秀)。

同理可得一级指标教学条件u2的模糊综合评价结果向量为:

S2=W2R2=(0.304 0.531 0.165 0.000)

即:教学条件u2的模糊综合评价结果为v2级(良好)。

教学质量u3的模糊综合评价结果向量为:

S3=W3R3=(0.296 0.580 0.124 0.000)

即:教学质量u3的模糊综合评价结果为v2级(良好)。

教学管理u4的模糊综合评价结果向量为:

S4=W4R4=(0.604 0.334 0.062 0.000)

即:教学管理u4的模糊综合评价结果为v1级(优秀)。

3)三级模糊综合评价。三级模糊综合评价是根据二级模糊综合评价的各模糊子集组成模糊关系矩阵,并计算出机电一体化课程隶属于评价语言的模糊子集,即三级(终级)模糊综合评价结果向量。

三级模糊综合评价就是在一级指标中进行模糊综合评价,所得结果为最终判断值。将二级模糊综合评价的结果向量S1、S2、S3、S4代入式(12)组成三级模糊综合评价的模糊关系矩阵为:

一级指标的权重集为:

W=(0.2 0.2 0.4 0.2)

于是,三级模糊综合评价结果为:

S=WR=(0.407 0.478 0.115 0.000)

机电一体化课程的等级评语集为:V=(v1 v2 v3 v4)=(优 良 中 差)。按最大隶属度原则,该课程的最终评价结果为良好级。

4 结论

1)针对研究生机电一体化课程建立课程评价的三级指标体系。

2)建立机电一体化课程体系评价的权重集和备择集,提出计算三级指标隶属度的模糊三角隶属度函数。

3)建立计算各级模糊综合评价模型,以及由评价结果组成模糊关系矩阵模型。

4)应用建立的模糊综合评价模型,对机电一体化课程进行实际评价。

参考文献

[1]张勤.高校本科优质课程评价探微[J].中国高等教育评估,2001(2):50-54.

[2]陈淑燕,瞿高峰.高校教师教学质量的模糊评估方法[J].甘肃教育学院学报:自然科学版,2001,15(3):20-24.

[3]李应生.课程建设与课程质量评估指标体系研究与构建[J].甘肃教育学院学报:自然科学版,2001,15(2):55-59.

[4]王景英.教育评价理论与实践[M].长春:东北师范大学出版社,2002.

机电一体化综述范文第14篇

关键词:城市轨道交通;电力监控;系统集成;综合监控

中图分类号:U231 文献标识码:A

一、城市轨道交通电力监控系统集成方式的发展

电力监控系统作为城市轨道交通供电系统的重要组成部分,实现对供电系统中各类设备运行状态的监视和控制,保障供电系统的稳定运行及异常状况下的快速紧急处理,是城市轨道交通系统中不可或缺的重要组成部分。

在早期的城市轨道交通工程项目中,如重庆轨道交通二号线(1999年开工),受限于信息集成技术、网络传输技术,以及服务器等数据处理硬件性能指标等因素,往往采用按功能要求设置多个分离系统的模式,如独立的电力监控系统、独立的车站设备监控系统、独立的火灾报警系统、独立的门禁控制系统等。随着信息技术及其涵盖的软硬件和通信技术的不断发展,在城市轨道交通中逐渐引入了综合监控系统的概念,采用高度集成的综合监控系统实现以前各个独立功能系统的所有功能,对减少设备重复投入,人员岗位的精简,以及系统设备集中管理和大数据统计分析等都有很大帮助。在近年来的城市轨道交通工程项目中,如重庆轨道交通一号线(2007年开工)、三号线(2007年开工)、六号线(2009年开工),基本都采用了以综合监控系统代替各独立功能系统的方式,只是在综合监控集成的深度和广度有所不同而已。

二、综合监控系统集成电力监控模式分析

在这种模式下,电力监控系统作为综合监控系统的集成子系统存在,在结构上分为控制中心电力调度级和各变电所综合自动化级,共两级。控制中心电力调度级与综合监控深度集成,在硬件上共用综合监控系统的中心级数据服务器、历史服务器、磁盘阵列等设备,对接收到的变电所综合自动化系统提供的信息进行统一处理;在软件上共用综合监控系统的中心级应用软件,实现系统与电力调度人员的人机交互。变电所综合自动化级则是通过设置在各变电所内的电力系统专用二次设备(继电保护装置、测控装置、远动装置等),利用计算机技术、电子技术、通信技术和信息处理技术等实现对变电所现场各供电系统设备的运行状态监视、测量和控制等功能,并将各类数据上传给控制中心电力调度统一处理。

同时,由于电力监控系统的控制中心电力调度级已深度集成在综合监控系统中。这种模式下的工程划分,往往就是电力监控系统作为综合监控的子系统而划归综合监控承包商,而电力监控系统所要监控的现场供电设备属于供电系统承包商,故而产生在工程划分方面的接口界面,如图1所示。

重庆轨道交通一号线、三号线、六号线都是采用的这种模式,通过这三条线的工程经验总结,这种电力监控集成模式虽然在信息系统高度集成、减少设备重复投入,人员岗位精简,以及系统设备集中管理和大数据统计分析等方面具有优势,但也因为工程划分接口的出行而产生了一些劣势,主要表现在3个方面。

首先,是工期安排上的问题。在城市轨道交通的信号系统、车辆系统、环控系统、消防系统、通信系统等各个系统的单体设备调试以及系统联合调试的必要条件之一,就是这些系统设备带有稳定可靠的供电电源。因此,在工程建设时序上,供电系统往往提前于其他各系统,经常出现变电所已经建好且所内供电系统已带电,而车站各综合监控系统的设备房间还在施工的情况。这时,由于车站级综合监控系统尚未完工,各变电所的电力监控数据无法传至控制中心电力调度,就无法开展电力监控系统的远动功能调试,时间白白浪费。待到车站级综合监控系统具备功能后,再开展电力监控的远动功能调试就显得时间紧迫。

其次,一个变电所的供电系统功能实现以及施工图设计、现场设备安装施工等,应该是包括一次设备、二次设备、变电所综合自动化系统的整体。由于控制中心电力调度级集成进了综合监控系统,电力监控系统就被划分到综合监控承包商实施。这时,变电所综合自动化系统虽然在功能实现上应该与供电设备系统高度相P,但也被划分到了综合监控承包商实施。这种工程划分方式增加了工程管理和实施上的接口,出现变电所内两个承包商交叉施工,不便于工程实施的统一安排和管理。

最后,由于综合监控是包括电力监控系统、车站设备监控系统、火灾报警系统、门禁控制系统、视频监控系统等的集成系统,各子系统的数据处理都在一套软硬件设备中完成。在大数据量的背景下,难免不会出现雪崩数据流的情况。这时,集成到综合监控系统中的电力监控系统也会受到影响,丧失对各变电所综合自动化系统的监控,这也是高度集成的大系统所共同面临的问题之一。

三、电力监控系统独立设置模式的分析

正是由于存在前文所述的问题,通过总结重庆轨道交通一号线、三号线、六号线的典型综合监控集成方案的实施情况,发现了电力监控系统深度集成到综合监控系统中的不足。因此,在最近开工或即将开工建设的重庆轨道交通环线、四号线、五号线、九号线、十号线中,采用了电力监控系统独立设置的模式。其结构如图2所示。

这种结构的区别在于:

(1)各变电所综合自动化系统的信息直接经由通信骨干网透明传输至控制中心的电力调度系统,不再通过车站级的综合监控系统进行信息的处理和转发。这种结构就避免了前文所述的电力监控系统集成到综合监控系统时的第一个缺点。变电所电力监控系统的远动调试,不再受制于车站综合监控系统的建设进度,只要电力监控系统自身建设完成,通信骨干网建设完成,即可开展电力监控系统的远动调试,调试开始时间可以大大提前。

(2)工程实施的划分界面的变化。电力监控系统集成到综合监控系统时的工程划分界面是在变电所内的综合自动化系统网络交换机端口处,这时就存在着前文所述的第二个缺点。当电力监控系统独立设置后,电力监控系统的工程实施则可以纳入供电系统承包商统一实施。这时就不再有前文所述的工程管理和实施上的接口,避免了前文所述的电力监控系统集成到综合监控系统时的第二个缺点。

(3)控制中心电力调度系统独立设置。这种设置方式,就避免了前文所述的电力监控系统集成到综合监控系统时的第三个缺点。因为软硬件都是独立设置,就避免了因其他系统出行雪崩数据时造成的整个集成系统崩溃。电力监控系统能否正常运行,仅和本系统的运行状态有关。

虽然,高度集成的信息系统是未来的发展趋势。但是结合在城市轨道交通系统设备工程建设中的实际经验,电力监控系统集成到综合监控系统的缺点也体现得较为明显,是未来需要研究解决的问题。在目前的情况下,最终还是选择在近期开工的重庆轨道交通环线、四号线、五号线、九号线、十号线中回归了电力监控系统独立设置的模式。

机电一体化综述范文第15篇

关键词:数字电路;教学体系;重构;设计

中图分类号:G642.0?摇 文献标志码:A 文章编号:1674-9324(2014)06-0165-02

一、概述

数字技术是近几十年发展最快的技术,其发展对人类社会产生着深远的影响。作为数字技术硬件基础的数字电路遵循摩尔定律,在几十年中经历了从分立电路到集成电路的设计历程,到现在已进入片上网络(Network on Chip,NoC)的阶段。从数字电路的晶体管电路时代,历经中小规模集成电路设计时代,到现在广泛采用EDA工具进行ASIC设计以及基于FPGA进行设计的时代,电路设计的每一步发展过程都产生过很多重要的设计思想及设计方法。这些设计思想及方法的累积构成了现在的数字电路教学体系。然而,由于新旧体系高速更迭,使得目前的数字电路教学体系呈现一种拼接的模式,整体内容缺少因果链接,电路的逻辑设计、功能设计和性能设计三方面脱节。这种现状与当前数字技术领域对人才的要求极不适应。要对现状有所改革,首先需要对数字电路各部分内容有所了解,从中提取适应发展的部分,重新构成一个自洽的课程内容体系。本文希望通过对现有课程中不同部分内容进行分析,在此方面进行一些尝试。

二、基于晶体管的设计

目前,数字集成电路采用的主要工艺是CMOS工艺,在这种工艺条件下,电路逻辑结构由MOS晶体管担任开关作用来实现。MOS晶体管分为PMOS和NMOS两种形式,分别用于传导高电平(1)和低电平(0),如图1所示。逻辑输入控制晶体管的栅极,连通的晶体管支路由电源或地为逻辑输出提供标准输出电平,如图2所示。在晶体管的相互连接中,NMOS的串联可以实现AND运算,并联实现OR运算,由此可以形成各种基本的逻辑单元,如图3所示,这些逻辑单元的进一步连接可以形成各种功能电路。

在目前国内外教材的分析中,对此类电子电路的评价主要集中于晶体管数量。如何在设计中减少晶体管的使用量成为设计的主要目标。基于这一考虑,在基本单元层次,发展了AOI电路结构,将“与-或”二级结构形成一个整体,晶体管数量只与初级与门输入的数量相关。在功能设计的层次,引入卡诺图对逻辑方程进行最小化,其目标也是通过减少初级门输入端的数量来实现晶体管数量的减少。上述设计方法能够非常准确地表达数字电路的逻辑体系实现,并能建立组合逻辑的卡诺图分析设计方法和时序逻辑的转移输出表的分析设计方法,为数字电路的规范化设计体系奠定了很好的基础,也构成了目前数字电路设计的理论基础。但在目前的教学体系中,这种设计方法只是将晶体管作为标准开关器件使用。由于缺少有效的评价体系,目前逻辑分析仅停留在简单电路的分析设计,在中规模功能电路的分析设计中,几乎没有采用这一体系。在VLSI的设计时代,对电路性能的评价主要表现为集成度(占用芯片面积、成本)、速度(最长延迟时间、最高时钟频率)和功耗(最大功耗、平均功耗)等指标上。要实现同样的功能,利用逻辑定理可以设计出很多不同结构的电路,最优化成为设计中的中心环节。而要实现这一目标,在基本逻辑结构形成的阶段就需要补充对于相关性能的描述模型。

三、基于中小规模集成块的设计

在上世纪70~80年代,为了应对数字技术的广泛采用,发展了以74系列为代表的各种中小规模集成块。不同领域的用户可以选用尽可能少的通用集成块连接形成电路,满足自己的特殊系统需求。为了使用上的方便,中小规模集成块在外型和I/O端口性能方面都进行了统一标准设计,其输入/输出特性由Data sheet详细规定,用户在使用时可以不忽略其内部电路工艺及逻辑形成方式,只根据设计要求选取对应功能块,根据端口特性设计外部负载连接电路。考虑到通用模块可能需要对模拟器件进行驱动,此类电路通常都配备了强大的对外驱动电路,导致集成芯片中主要部分为I/O部件,逻辑功能部分只占据了集成芯片的次要部分。为了增加模块的通用性,通常会在基本功能的基础上添加许多额外的控制/状态端口(与集成块的总体成本相比,这些添加几乎不增加成本,但能够带来市场上的好处)。由于电路的成本、速度、功耗主要由I/O部件及外壳决定,简单逻辑与复杂功能的模块在价格和速度上相差不大,用户倾向于选用复杂功能模块来构成电路(使用模块的部分功能),而不是选用基本逻辑部件构成电路,电路设计的主要目标成为选择最少逻辑块及最少连线进行设计,与逻辑设计基本脱离关系。在目前的教学体系中,关于逻辑单元静态与动态特性的讨论基本采用这种方式讲解;各种组合功能电路的设计和时序功能电路的设计(二进制计数器、移位寄存器等)都采用此类方式。由于目前的实验条件,以及学生创新活动中自己设计小系统的需要,中小规模集成块仍然具有重要的使用价值,相关内容也就构成了数字电路课程教学中功能设计的主体部分。然而,中小规模集成块作为一种集成度低下的分立设计,其高成本和低速度是其不可避免的缺陷。如何将相应内容与低层逻辑设计合理地结合,将电路性能的评价带入到对不同结构设计的选择上,是解决这一问题的关键。在ASIC设计中,不会无谓地设计不需要用到的所谓多功能扩展,对功能模块的教学改革应该首先着眼于基本功能的最佳实现方式,然后考虑在不同应用中的最佳扩展设计方式。目前基于多功能器件进行设计,利用其部分电路的设计方式对中小规模集成块是优化的方式,但对于片上设计就是一种浪费的设计了。

四、基于HDL的设计

随着计算机技术的广泛采用,数字集成电路的设计也进入EDA时代。HDL使电路的设计描述和仿真验证可以利用计算机工具进行,方便于层次化设计中信息的交流、保存、修改,有效提高了设计效率,降低了设计成本。同时,基于FPDA的设计也成为中间设计的主流方式。为了适应这种发展,现行数字电路课程中开始引入HDL语言的内容,并对各种功能电路的描述编程进行了足够详细的介绍。同时也对FPGA的基本结构进行了介绍。利用这些内容,学生能够方便地使用计算机系统开展各类数字设计,扩大了数字电路的应用教学,通过对设计的仿真也能够更好地理解电路性能与设计的关系,使学生对数字电路设计有更实际的理解,也便于开展课程设计和各种实验活动。HDL是一种硬件电路的描述工具,主要帮助仿真过程的自动进行。而目前关于HDL的教学中,很少将电路逻辑与性能的关系反映到语言描述中,使语言的描述沦为对电路功能的描述,失去了EDA工具的使用本意。对电路性能描述中比较容易的是对延迟时间(或时钟频率限制)的描述。若要进行这方面的描述,HDL必须基于最基本的逻辑单元,设计者应对各种基本部件的时间延迟以及连线负载带来的时间延迟有足够的了解。而电路的功能设计描述则必须基于这种带时间延迟的部件互连设计(结构设计的描述)。此点在目前的HDL的教学中应特别强调。同时需要注意到,这种仿真一定要在与综合无关的工具上进行。对设计集成度的衡量取决于电路设计的综合方式。目前,在EDA设计领域尚未建立一种统一的综合方式,不同的综合工具采用不同的算法结构,综合效率各有不同。虽然综合算法本质上是基于基本逻辑优化理论建立的,但其中涉及的各种数学理论很多,不是数字电路这门课程能够解决的。因此,本课程无法涉足综合领域,也难以将课程内容与综合工具得到的结果形成对应关系。如何将基本理论与综合算法联系起来,形成一个统一的系统,应该是数字电路课程未来一段时间的改革目标。目前,很多的免费EDA工具采用FPGA作为综合的基础,这种综合工具的优点是能够方便地得到所设计电路的评价(占用单元数量、延迟时间、时钟频率)。然而,由于FPGA设计的基础是4输入查找表(等价于4输入卡诺图的最小项和设计),在基本逻辑层次上可以认为未进行任何化简,集成度低、延迟时间长。同时综合工具会根据4输入查找表建立优化算法进行综合,由此将用户进行的结构设计思想抹杀,不利于课程内容的相互衔接。如果要理解其综合结构,就必须首先建立FPGA基本单元和布线方式的电路参数模型,然后在此基础上建立独特的综合算法。目前,本课程难以完成这一任务。

五、统一体系的思考

基于上述分析,可以看到目前数字电路面临的困境,也展现了建立一个统一体系的需求。统一体系应该以电路性能参数(集成度、速度等)作为评价模型,着重考虑ASIC和VLSI设计中的需求。评价模型应该由底层基本器件(晶体管)开始分析建立,继承现有体系中关于逻辑设计的思想,将性能评价延伸到逻辑模块和功能模块层次;逻辑层次的设计中,主要展现功能的不同结构实现方式,为电路设计提供灵活性;而在功能层次的设计中,则通过对不同结构的性能进行比较,确定电路的最佳形成方式。HDL的设计应该将速度的评价融入到电路结构的描述中,并通过仿真工具的应用使这一评价能够推广到大系统中,对同步时序设计提供支持。

参考文献:

[1]姜书艳,罗刚,吕小龙,邓罡,周启忠.片上网络互连串扰故障模型的研究及改进[J].电子测量技术,2012,35(4):123-127.

[2]姜书艳,罗刚,吕小龙,金卫,谢暄.90nm和65nm工艺下片上网络互连串扰故障模型分析[J].电子测量与仪器学报,2012,26(3):267-272.

[3]艾明晶.基于自动设计方法的数字逻辑课程改革研究与实践[J].实验技术与管理,2012,29(9):151-155.

[4]张苹珍,王俊峰,仲涛.VHDL在数字逻辑电路设计中的应用方法[J].信息通信,2012,(5):96-97.

[5]张丽杰,吕少中.QuartusⅡ软件在数字逻辑电路教学中的应用[J].软件导刊,2012,11(4):199-200.

[6]曹维,徐东风,孙凌洁.基于CDIO理念的数字逻辑实践教学探索[J].计算机教育,2012,(12):75-77.

[7]Frank Vahid. Digital Design with RTL Design,VHDL,and Verilog,A John Wiley & Sons,Inc.,Publication.2011:41-48.