美章网 精品范文 半导体材料设计范文

半导体材料设计范文

半导体材料设计

半导体材料设计范文第1篇

关键词:半导体 LED 灯具 散热

1 散热机构的设计与半导体灯具寿命息息相关

对于半导体灯具设计,散热机构设计是设计中的重要一环,散热机构设计能减少材料从而节约成本、提高LED灯珠的可靠性与寿命,长时间工作使用会比较容易造成每个器件性能降低,半导体灯具急速光衰,并造成安全事故,严重影响用户体验。

2 半导体灯具的散热器制造工艺现状

传统的半导体灯具仅仅将LED灯珠嵌设在铝材质制造而成的散热体内,利用铝材质良好的散热性能,将LED灯珠产生的热量散发出去,进而降低LED灯珠工作时升高的温度。尤其是对于大功率LED灯珠矩阵都会通过配置大型散热体来解决散热问题,然而问题随之而来:一方面,半导体灯具的总功率不断上升,为增加散热面积其对应的散热体也越做越大,е铝诵矶喽钔獬杀究销,灯具的重量也无法接受;另一方面,由于LED灯珠在使用时还需安装于专用光学灯罩内,有时候甚至是安置于一个相对密封的罩体中,由于密封的罩体内热量无法与外界空气形成对流,只能通过简单的辐射和大热阻的空气进行很少的热量传递。因此,现有LED灯珠即使使用散热面积较大的散热体,甚至散热体上加置散热风扇,也无法将LED灯珠发出的热量迅速带走,最终导致热量囤积于散热体上,使散热效果大打折扣,从而影响LED灯珠的使用寿命。目前市面上的半导体光源灯具散热器造型各异,散热器的制作工艺大都是采用铝材压铸成型工艺和挤压型材切割工艺制造,导热系数低、散热器重量较大、耗材多、后加工复杂、生产效率低、生产成本高。

2.1 铝合金压铸工艺

铝合金压铸工艺和塑料注塑工艺原理接近,都是将原材料加温成液态后填充到模具型腔形成产品,铝合金压铸的材料有ADC12、A380、A360、YL113,常用的材料是ADC12,相对于其他材料,它更加容易成型,优异的后加工和机械性能。

优点:(1)一体化压铸成型,整体性强;(2)外观可设计弧面,有利于工业造型。

缺点:(1)导热系数低(约为96 W/M・K);(2)表面处理受限制。

2.2 铝挤出成型工艺

铝挤出成型工艺目前在大功率路灯、隧道灯领域相对广泛,近年来室内较少用。常用的材料为AL6063,相对于压铸ADC12材料,它具有很好的导热系数(一般为200 W/M・K)。

优点:(1)导热系数高;(2)容易做表面处理。

缺点:单向挤压型材,外观结构受到限制。

2.3 散热鳍片拼接扣工艺

散热鳍片常用的是五金冲压加工得到,容易实现自动化生产,使用的材料有导热铝合金。

优点:(1)散热面积多,需配合风扇形成空气流效果才能更好;(2)重量轻便。

缺点:成本较高。

2.4 热管结合散热鳍片工艺

热管结合散热鳍片相对来看成本较高,同时对外观和尺寸有一定要求。这将导致市面上一些小型公司放弃使用该项技术。

优点:(1)LED灯珠工作时发出的热能快速传导到散热器散热鳍片;(2)重量轻便。

缺点:(1)工艺相对复杂;(2)成本较高。

2.5 导热塑料注塑成型工艺

导热塑料分为两大类:导热导电塑料和导热绝缘塑料。半导体灯具散热器常用的是导热绝缘塑料。导热绝缘塑料主要成分包括基体材料和填料。基体材料包括PPS、PA6/PA66、PPA、PEEK等,填充材料包括AIN、SIC、AL203、石墨、纤维状高导热碳粉等。

优点:(1)一次成型,光泽度高;(2)绝缘性能优异,宜采用各种不同的电源方案。

缺点:(1)导热系数低;(2)重量相对金属较轻。

2.6 塑包铝结构工艺

市面上现有的塑包铝结构分为两种:(1)导热塑料和铝件是独立分开的2个组件,通常这种做法易成型加工,不需要先把铝块放置注塑模型腔内成型加工得到一体,而是后续通过机械固定结构将独立分开的2个组件固定形成一个整体。(2)导热塑料和铝件是一体注塑成型加工得到的。

优点:表面为导热塑料,绝缘性能好,安全。

缺点:成型工艺复杂。

3 半导体灯具散热

热量的3种传递方式有辐射、对流和传导。一般而言,LED灯珠工作时会产生光和热,散热器通常就是要把LED灯珠工作时产生的热散发出去,从能量层面来看,热并非能量,其实只是传递能量的形式,当外界能量冲击分子,能量就会由高能分子传递到低能分子,从微观层面来看,能力的传递就是热。通常,LED灯珠通过机械结构固定在散热器表面,LED灯珠与散热器的接触良好是决定LED灯珠工作时产生的热量传导到散热器的关键因素,半导体散热器的散热结构还需充分运用空气对流换气,通过传导与对流,使LED灯珠工作时产生的热量散发到空气中。

4 设计优化散热机构

4.1 半导体灯具散热设计方法的选择

散热机构设计通常使用EFD、ANSYS软件仿真,通常流体的固定边界与黏性对流体的阻力所产生的影响,使得流体中的流体元素会小部分受沿程阻力的干扰,另一方面,半导体灯具通常需要增加风扇来加速空气流动,由于风扇的增加会导致半导体灯具机构设计的复杂性,从另一角度来看,也会大大降低半导体灯具的可靠性。因此,半导体灯具的散热器采用被动式自然散热的方式,散热器的外观轮廓依据半导体灯具结构来定,因而直接利用半导体灯具外观从而设计成整体式散热器,针对散热器接触面平整度、基板厚度、散热片状条形状、散热片数量、散热片厚度、散热片与散热片的空气流动、散热片与空气接触的面积等,按照散热器相关设计准则进行优化设计,最后进行打样测试和分析定论。

4.2 被动式散热器设计

参照图1和图2,半导体灯具的散热机构包括基板1和灯体2,基板1经过旋压工艺拉伸出灯体2,再将灯体2上多余部分剪除使灯体2成圆筒状,基板1经过五金冲压扭曲后局部向上隆起形成带拉开片4的散热叶片3并形成通气孔5,基板1上第一围圆形排布设计有14条,第二围圆形排布有36条向散热器外部冲压扭曲的散热叶片3,拉开片4增加了基板1与散热叶片3的接触面积并且垂直分布,结合热量向上散发的特性,从而加快散热速度,提高整体性能。

5 结语

目前,半导体灯具得到广泛应用,其具有体积小、重量轻、使用寿命长和节能效果极佳等优点,但是半导体灯具跟半导体一样普遍存在发热量大、热量不易散发的问题,热量的积累容易导致半导体光源寿命减少、发光效率降低。上述优化后的被动式散热器设计具有制作工艺简单、易一次性成型加工、扭曲过程中较少废料、材料利用率高、生产成本低等优点。

参考文献

[1]游志.大功率LED散热鳍片扩撒热阻研究[J].电子工业专用设备,2010,39(9):37-40.

半导体材料设计范文第2篇

【关键词】宽带半导体材料 电子机构 性质

Ⅱ-Ⅲ2-Ⅳ4型三元化合物,为具有缺陷黄铜矿结构的宽带半导体材料,材料电子机构优化性强,弹性以及光学性质好,用于光学设备乃至电光器件等的制造中,在提高设备性能方面,价值显著。本文以密度泛函理论为基础,对缺陷黄铜矿结构半导体CdAl2S4的电子机构、弹性及光学性质进行了分析:

1 宽带半导体材料模拟计算方法

以密度泛函理论为基础进行模拟计算。将CdAl2S4拆分开来,分为Cd、Al以及S三个部分,三者的价电子组态存在一定差异,Cd电子组态为4d105s2、Al电子组态为3s23p2、S电子组态为3s23p4。电子与电子之间存在的交换关联势,以PBE泛函作为基础进行描述。参数设计情况如表1。

从表1中可以看出,半导体材料参数如下:

(1)动能截断值:500eV。

(2)布里渊区k点网格8×8×4。

(3)原子作用收敛标准:10-3eV/A。

(4)自洽精度:10-6eV/atom。

2 宽带半导体材料的电子机构与性质

2.1 宽带半导体材料的电子机构

从晶格结构、能带结构方面,对宽带半体材料CdAl2S4的电子机构进行了研究:

2.1.1 晶格结构

宽带半导体材料CdAl2S4的原子中,不同原子的空间占位不同,具体如表2。

考虑不同原子在空间占位方面存在的差异,应首先采用晶格优化的方法,提高材料结构本身的稳定性,CdAl2S4的晶格结构参数以及键长如下:Cd-S键长2.577、Al1-S键长2.279、Al2-S键长2.272。a实验值2.553,计算值5.648。

2.1.2 能带结构

宽带半导体材料CdAl2S4的能带结构如图1。

图1显示,宽带半导体材料CdAl2S4的价带主要由三部分所构成,分别为低价带、高价带与最高价带:

(1)低价带:低价带即能量最低的价带,包括S的s态以及Al的s态等部分,通过对半导体材料CdAl2S4的低价带的观察可以发现,S与Al两者中所包含的原则,具有较高的结合性质。

(2)高价带:与低价带相比,高价带的能量相对较高,判断与Cd原子有关。观察图1可以看出,半导体材料CdAl2S4高价带Cd-d态的局域性较强。

(3)最高价带:最高价带的能量最高,一般在-5.4-0eV之间,该价带包括上下两部分,两部分所包含的能态各不相同。以导带部分为例,其能态一般在3.395eV-6.5eV之间。

2.2 宽带半导体材料的性质

从弹性性质、光学性质两方面,对宽带半导体材料CdAl2S4的性质进行了分析:

2.2.1 弹性性质

晶体相邻原子的成键性质等,与弹性性质存在联系。从宽带半导体材料CdAl2S4的各向异性因子,该材料的弹性性质呈现各向异性的特点。

宽带半导体材料CdAl2S4的延展性与脆性,与弹性同样存在联系,简单的讲,材料的延展性与弹性呈正相关,材料脆性与弹性,则呈负相关。通常情况下,材料的延展性与脆性如何,可以采用体模量与剪切模量之间的比值来确定,当两者之间的比值在1.75以下时,说明材料的延展性较差,脆性较强,弹性性质较差。相反,当两者之间的比值在1.75以上时,则说明材料的延展性较强,脆性较弱,弹性性质较强。

通过对宽带半导体材料CdAl2S4体模量与剪切模量之间的比值的计算可以发现,比值为1.876,较1.75大,可以认为,该材料的延展性较强,脆性较弱,弹性性质较强。

2.2.2 光学性质

半导体材料的光学性质,属于其物理性质中极其重要的一方面,在光学仪器等的研制过程中,对半导体材料的光学性质十分重视。宽带半导体材料CdAl2S4的本质来看,该材料晶体为四方晶系单光轴晶体,各向异性显著。

将光谱能量确定为0-20eV,对材料的光学性质进行了研究,发现半导体材料CdAl2S4的光子能量在3.5eV以下以及12.5eV以上的区域,而不存在在两者之间,可以认为,该材料晶体的光学性质具有各向异性。另外,研究显示,该材料的反射系数可达到0.85,强放射峰在紫外区域,可以认为,宽带半导体材料CdAl2S4具有紫外探测以及紫外屏蔽的光学性质。

3 讨论

宽带半导体材料CdAl2S4电子机构相对稳定,延展性较强,脆性较弱,弹性性质较强,具有紫外探测以及紫外屏蔽的光学性质。未来,应对宽带半导体材料的性质进行进一步的研究,以开发出该材料的更多功能,确保其价值能够得到更好的发挥。

4 结论

鉴于宽带半导体材料CdAl2S4在电子机构以及弹性性质和光学性质方面存在的特点及优势,可以将其应用到紫外探测以及紫外屏蔽等材料的研制过程中,使之优势能够得到充分的发挥,为社会各领域的发展发挥价值。

参考文献

[1]张丽丽,马淑红,焦照勇.宽带隙半导体CdAl_2S_4电子结构、弹性和光学性质的研究[J].原子与分子物理学报,2016(02):357-361.

[2]陈芳,魏志鹏,刘国军,唐吉龙,房丹,方铉,高娴,赵海峰,王双鹏.扫描近场光学显微技术在半导体材料表征领域应用的研究进展[J].材料导报,2014(23):28-33.

[3]冯琳琳,顾鹏程,姚奕帆,董焕丽,胡文平.高迁移率聚合物半导体材料[J].科学通报,2015(23):2169-2189.

半导体材料设计范文第3篇

此举,对江苏省半导体照明产业来说,令人振奋;对科技部正在“十城万盏”万盏工程来说,同样提振人心。

回顾“十城万盏”工程实施一周年的历程,我国的半导体相关科研院所、检测机构做出了许多可圈可点的贡献。仅以上海为例,上海拥有同济大学与照明艺术研究中心、复旦大学光源与照明工程系、复旦大学材料科学系、上海光机所、上海技术物理研究所、上海光学仪器研究所、国家光学仪器质检中心等科研院所、检测机构。

近年,上海已在绿色照明光源领域取得多项技术突破,在半导体照明材料的制备、工艺、器件的研究和应用等方面开展了许多富有成效的研究,并已取得了一些具有国际先进水平和自主知识产权的关键技术,为产业化应用奠定了坚实的基础。2009年,上海市LED产业实现产值100亿元,其中,上海市的科研院所、检测中心功不可没。

同样,各试点城市取得的成绩,军功章上也有科研院所及检测机构的“一半”。但面对成绩,科研院所及检测机构真的可以高枕无忧了吗?

虽然时间过去了两年,但提及“337”事件、提及那位令人发怵的“美国老太太”,半导体照明产业从业者们依然如鲠在喉。

目前,我国的半导体照明研发中,依然存在诸多需要反思的问题。众所周知,作为一个科技含量较高的产业,要想实现半导体产业的利润最大化,掌握其核心技术,是必然的选择。

然而,反观我国半导体产业现实,半导体照明行业的核心专利中绝大部分都被日亚、丰田合成、科锐等国外LED企业所垄断。我国LED企业所申请的专利主要集中于,保护范围较小。目前除南昌晶能光电外,其余芯片企业的技术或多或少都涉及一些专利侵权。据了解,目前我国LED封装所用的两类荧光粉YAG:Ce 和YAG:Tb 的专利也分别为日亚、欧司朗所掌控。

因此,加强拥有核心自主知识产权的各种材料的研究,对相关科研院所来说,迫在眉睫。

从长远来看,如果无法打破国际LED巨头的技术垄断,则那位令人发怵的“美国老太太”导演的LED行业“337”事件,将会一次次地重演。

2010年1月11日,总理在国家科学技术奖励大会上发表了重要讲话。温总理在讲话中强调:“要紧密跟踪世界经济科技发展趋势,大力发展战略性新兴产业。在新能源、新材料和高端制造、信息网络、生命科学、空天海洋地球科学等领域,推动共性关键技术攻关,加快科研成果向现实生产力转化,逐步使战略性新兴产业成为可持续发展的主导力量。”

科学技术是第一生产力!

我们相信,相关科研院所、检测机构定能不负重望,在未来的“十城万盏”工程推进中,担负起半导体照明核心技术研发的重任,力争打破国际LED巨头的技术垄断,促进我国的LED产业健康发展。

北京大学宽禁带半导体研究中心

北京大学宽禁带半导体研究中心,是国内宽禁带半导体的主要研究基地之一。

物理学院Ⅲ族氮化物半导体研究组1993年起在国内最早开展了MOCVD生长GaN基材料与蓝光LED的研究工作,成功地研制出GaN基蓝光、绿光和白光LED,掌握了拥有自主知识产权的GaN基LED制备关键技术,在上海依靠自己的技术建立了北大蓝光公司并成86计划产业化基地。中心在半导体照明用大功率白光LED研制和GaN基脊型LED研制上又取得了重大突破。

北京工业大学北京光电子技术实验室

国家有色金属复合材料工程技术研究中心

北京工业大学北京光电子技术实验室国家有色金属复合材料工程技术研究中心,是部级工程中心。中心主要从事颗粒增强复合材料、有色金属半固态加工技术、喷射成形技术、激光快速成形技术、先进雾化技术等研究开发工作。

主要研究方向包括:颗粒增强金属基复合材料制备技术、有色金属半固态加工技术、喷射成形技术、激光快速成形技术、快速凝固气雾化技术、超声雾化技术、快冷铸带技术、金属纳米制备技术等。

“九五”以来,产业建设取得较快的发展,建成了具有一定规模的SMT焊粉和粉末触媒2条生产线,形成了焊粉、焊料、喷涂粉末、触媒等具有特色的高技术产品。

清华大学电子工程系集成电子学国家重点实验室

清华大学集成光电子实验室是国内从事光电子材料与器件及其在光纤通信与网络中的应用技术的主要研究基地,在许多重要的研究领域取得了突出成果。

实验室重点研究基于半导体光电子材料、低维纳米结构材料和石英光纤的各种新型光电子器件以及集成器件,研究上述器件在光纤通信系统与网络、信息处理与平板显示系统中的应用技术,及其未来高速、宽带光纤通讯与网络技术。

自1999年10月起,实验室开始GaN基蓝绿光LED研究,在GaN基LED材料的MOVCD外延生长、器件制备、管芯封装以及系统应用技术的研究等方面积累了丰富的经验。

中国电子科技集团公司第四十五研究所

中国电子科技集团公司第四十五研究所是国内从事电子专用设备技术、整机系统和应用工艺研究开发与生产制造的专业化科研生产单位,传承50年半导体专用设备研发经验,在微电子学、精密光学、计算机应用、自动控制、精密机械、液压、气动及系统工程等诸多技术应用方面居国内领先地位。

目前,研究所已形成以IC关键工艺设备“光刻机”为龙头,晶圆加工设备、芯片封装设备及电子元件设备等门类齐全,系列配套的产品。由我所研制的材料加工、光刻、清洗、中测、划片、键合设备在国内处于技术领先地位并已具备规模生产能力。

中科院物理研究所

中国科学院物理研究所是以物理学基础研究与应用基础研究为主的多学科、综合性研究机构。研究方向以凝聚态物理为主,包括凝聚态物理、光物理、原子分子物理、等离子体物理、软物质物理、凝聚态理论和计算物理等。

近年来,物理所新型化合物材料实验室利用MOCVD设备,进行超高亮度GAN基光二极管关键技术研发,具有完善的研发和测试设备。近年出色地完成了多项国家计划、973计划、科学院创新计划等项目。目前正致力于提高LED材料发光效率、深紫外材料、非极性材料、单芯片白光材料等领域的研究。

中科院半导体照明研发中心

中国科学院半导体照明研发中心经几年的基本建设,已经成为半导体照明科学技术的创新中心及我国半导体照明产业可持续发展的技术辐射中心和产业服务平台。中心在半导体照明核心,技术方面取得了重大突破,形成了一系列成果和知识产权。

中心在半导体照明重大设备、材料生长、器件工艺、重大应用等方面与国内外相关研发机构建立了良好的关系。通过技术辐射,增强了国内外相关企业的竞争力,促进产业整体水平的提高,有力地推进了半导体照明用LED的发展和应用。

中国电子科技集团第四十六研究所

中国电子科技集团公司第四十六研究所始建于1958年,是国内最早从事半导体材料和光纤材料技术研究开发与生产的专业科研单位之一。

经过四十多年的发展壮大,我所目前已形成三大专业科研领域,主要涉及半导体电子功能材料、特种光纤材料的研究开发和电子材料检测,并承担一定的生产任务。该所质量检测中心是信息产业部专用电子材料质量检测中心,主要承担对电子材料的检测、检测技术改进等任务,将建成部级电子信息材料的检测中心。

中国电子科技集团公司第十三研究试验中心

中国电子科技集团第十三研究所试验中心国家半导体器件质量监督检验中心和信息产业部半导体器件产品质量监督检验中心,是国家首批规划的100个部级中心之一。

中心曾多次承担以高频、超高频低噪声晶体管和微波晶体管为主的半导体分立器件的生产许可证确认试验、仲裁试验、创优试验和鉴定试验。同时还是全国半导体标准委员会主任单位、IEC/TC 47的归口单位及国际标准化工作网秘书单位,曾多次承担或参与国家标准和专业标准的制定、修订及标准的验证工作。

吉林大学

有机白光器件(WOLED)是下一代节能照明型技术之一,WOLED具有以下特点:是一种面光源,实用于高性能照明设备的制备:进一步发展的柔性WOLED在民用与国防照明方面应用前景更为广阔;工艺简单、有益环保、原料丰富、与无机LED有互补性。吉林大学在有机白光材料与器件方面取得了一系列有意义的研究成果。

中国科学院长春光学精密机械与物理研究所

中国科学院长春光学精密机械与物理研究所(简称“长春光机所”)以知识创新和高技术创新为主线,从事基础研究、应用基础研究、工程技术研究和高新技术产业化的多学科综合性基地型研究所。

该所在以王大珩院士、徐叙院士为代表的一批科学家的带领下,在发光学、应用光学、光学工程和精密机械与仪器等领域先后取得了1700多项科研成果,研制出了中国第一台红宝石激光器、第一台大型经纬仪等十多项“中国第一”,被誉为“中国光学的摇篮”。

中国科学院长春应用化学研究所

经不懈努力,中国科学院长春应用化学研究所现已发展成为集基础研究、应用研究和高技术创新研究及产业化于一体的综合性化学研究所,成为我国化学界的重要力量和创新基地。

在“光电功能高分子与塑料电子学”方向,研究所以发展光电功能高分子的可控合成、微加工攻器件组装涉及的关键科学问题为核心,围绕平板显示、照明光源、光通信组件等应用目标,以“分子工程―凝聚态调控―微加工方法―器件工程”研究链条为主线,在高分子设计与合成、高分子薄膜生长与调控、微加工方法学、器件工程等方面开展具有重大科学目标导向的基础研究。

同济大学

同济大学是教育部直属重点大学,是首批被国务院批准成立研究生院的高校之一,并被列入国家财政立项资助的"211工程"和国家教育振兴行动计划与地方重点共建的高水平大学行列。

“九五”以来,同济大学围绕信息、生物、新材料、能源、汽车制造、机电一体化、环保等高新术领域,取得了一大批高新技术重大科研成果。

同济大学正在承担着近百项“863”项目及国家攻关项目,一大批高新技术和科研技术实现了产业化,取得了巨大的社会效益和经济效益。

中国科学院上海光学精密机械研究所

中国科学院上海光学精密机械研究所(简称中科院上海光机所)现已发展成为以探索现代光学重大基础及应用基础前沿研究、发展大型激光工程技术并开拓激光与光电子高技术应用为重点的综合性研究所。

上海光机所重点学科领域为:强激光技术、强场物理与强光光学、信息光学、量子光学、激光与光电子器件、光学材料等。

经多年的努力,上海光机所在各种新型、高性能激光器件、激光与光电子功能材料的研制方面进入了国际先进水平。

江苏省光电信息功能材料重点实验室

江苏省光电信息功能材料重点实验室以南京大学微电子学与固体电子学国家重点学科为主干学科,部分覆盖理论物理国家重点学科、光学与光电子学和有机化学两个博士学科点。部分覆盖的研究机构有南京大学金属有机化合物(MO)源工程研究开发中心,南京大学光通信系统与网络工程研究中心。交叉与支撑研究机构有南京大学固体微结构国家重点实验室、现代分析中心、固体物理研究所等。

实验室的建设目标是:成为一个开放的、具有国际竞争力的新型光电信息功能材料研究和开发中心,一个材料、电子、物理和化学学科交叉的高素质信息功能材料人才培养基地

杭州师范大学有机硅化学及材料技术教育部重点实验室

杭州师范学院有机硅化学及材料技术实验室,从1991年开始从事有机硅化学及材料技术的研究与开发,是教育部系统最早为国防军工配套的民口研制单位之一、中国氟硅材料工业协会(硅)理事单位、中国材料网副理事长单位,现为杭州市、浙江省和教育部重点实验室。

可进行有机硅及硅酮塑料等有机材料的研制、开发,也可以进行由原材料到产品的性能检测及结构和性能关系分析等工作。还建立了“863”项目转化基地,实现了产业化技术开发批量生产,为用户提供有机硅材料、制件、产品技术。

中国计量学院信息工程学院

信息工程学院早在1985就初具雏形,其中无线电计量与测试是学校最早的专业之一。2000年8月,信息工程学院由原信息工程系与计算机科学与技术系组成而建,现主要从事电子信息与通信技术、计算机技术和生物医学工程等领域的教学和研究工作。

学院设有3个学科性研究所:电子信息与通信研究所、计算机应用技术研究所和计算机软件研究所。

厦门大学

厦门大学半导体物理学科曾经创造过许多国内第一,包括全国第一台晶体管收音机,第一个GaP红色、绿色、黄色的平面LED,第一台平板示波器等,在半导体材料和器件研发,尤其在具有光电子功能的半导体研究方面,拥有雄厚的研究力量。

曾经在晶体管收音机、平面LED、平版显示器、ZNS场致发光、LED测量、半导体材料设计等研究方面取得了重大成果,为国家半导体科学的发展作出了重要的贡献。在有光电子功能的半导体研究上,形成了VI族、Ⅲ-V族、Ⅱ-Ⅳ族材料和器件门类齐全的研究力量。

山东大学晶体材料国家重点实验室

晶体材料国家重点实验室是我国首批建设的重点实验室之一,主要致力于应用基础研究。

目前,晶体材料国家重点实验室已发展成由材料学、凝聚态物理两个部级重点学科和材料科学与工程、物理学、化学三个一级学科博士点支撑的高层次人才培养基地以及上、中、下游紧密衔接的科技成果辐射基地。

国家重点实验室建立以来,先后有LAP、KTP、双掺杂TGS、KNSBN、KTN、NdPP、NYAB、LT、DKDP、KDP、MHBA、BN等晶体材料的创新性研究工作受到了国际同行的广泛关注。

武汉光电国家实验室微光机电系统研究部

武汉光电国家实验室,是科技部于2003年11月批准筹建的五个国家实验室之一。

武汉光电国家实验室是国家科技创新体系的重要组成部分,也是“武汉.中国光谷”的创新研究基地。在光电子研究方面,实验室着眼于解决国家光电子产业发展中的重大关键技术问题,为推动武汉国家光电子产业基地的建设和发展提供原创性、实用性科研成果;为推动民族光电子产业进一步发展,提升我国光电子产业国际竞争力提供强有力的科学和技术支撑。

华南理工大学高分子光电材料与器件研究所

华南理工大学材料科学与工程学院高分子光电材料及器件研究所(简称光电所)在高分子发光材料及器件、高分子光伏材料及器件及高分子场发射材料及器件三个国际前沿领域展开特色研究。

目前承担的科研任务以部级项目为主,包括科技部提出的国家高技术重大研究计划项目(863),国家重大基础研究项目(973)和国家基金委重大研究项目等,光电所是973首席科学家单位。此外,还有教育部、广东省、广州市重大或专项项目。

国家半导体器件质量监督检验中心

国家半导体器件质量监督检验中心筹建于1986年,为国家首批规划的100个部级中心之一,1990年通过原国家技术监督局审查认可和国家计量认证,并授权开展工作,成为对半导体器件产品进行检测工作的第三方中立机构。

中心曾多次承担以高频、超高频低噪声晶体管和微波晶体管为主的半导体分立器件的生产许可证确认试验,仲裁试验,创优试验和鉴定试验。同时还是全国半导体标准委员会主任单位,IEC/TC47的归口单位,国际标准化工作网秘书单位,曾多次承担或参与国家标准和专业标准的制订、修订及标准的验证工作。

中心可按照GB、GJB、SJ、IEC、MIL标准对半导体器件、集成电路、微波组件、小整机、微型计算机、印制电路板等进行测试、筛选、DPA试验、老化试验以及鉴定检验和质量一致性检验。

国家电光源质量监督检验中心(北京)

国家电光源质量监督检验中心(北京)是国家质量技术监督局授权的部级照明电器专业检测中心,具有独立的法人资格。中心下设办公室、光源检验室、电器附件检验室、灯具及灯头灯座检验室和寿命检验室。中心于1995年通过中国实验室国家认可委员会的认可(按ISO导则25),并在2002年按ISO/IEC17025标准变更了质量体系。

检测中心的主要业务是对照明电器产品进行产品安全认证、节能认证、验货检验、委托检验,以及承担国家、北京市相关部门下达的照明产品质量抽查、新产品技术鉴定、产品质量仲裁等检验任务。是中国电光源行业中专业水平最高、技术能力最强、经验最丰富、设备设施最齐全的专业检测中心之一。

国家电光源质量监督检验中心(上海)

国家电光源质量监督检验中心(上海)于1992年成立,行政上隶属于上海市质量监督检验技术研究院。中心是专门从事电光源等照明设备的检测机构,授权检测能力共79项184个标准。国家电光源质量监督检验中心(上海)是经中国合格评定国家认可委员会认可的实验室、国家认证认可监督管理委员会指定CCC认证检测机构。

国家电光源质量监督检验中心(上海)可对LED模块用直流或交流电子控制装置等附件、固体发光光源(LED发光二极管、OLED有机发光材料、EL平面可弯曲发光材料)等光源产品进行安全、性能和节能指标的检测,同时能提供照明产品的EMC检测服务。

国家通用电子元器件质量监督检验中心

国家通用电子元器件质量监督检验中心(信息产业部电子第五研究所元器件检测中心)是中国第一批获得国际/国家认可和授权、专业从事电子元器件检测、鉴定和评价的非盈利性第三方检验机构,是按照ISO/IEC17025建立的文件化质量管理体系的部级实验室。目前,试验室已在上海、并将在深圳、北京设立办事处。

中心依托信息产业部电子第五研究所在电子元器件测试、试验、评价等领域的专业技术优势,采用国际一流设备,与国内外著名专业技术机构合作,计划建设成具有年测10亿片封装集成电路和30万片集成电路裸片测试能力的中国最大的集成电路综合测试基地。

国家半导体照明产品质量监督检验中心(筹)/江苏省工矿及民用灯具产品质量监督检验中心

半导体材料设计范文第4篇

电子具有电荷和自旋两个重要属性,传统的半导体器件仅利用了电子的电荷属性,稀磁半导体材料可以同时利用电子的电荷和自旋属性,成为未来半导体自旋电子器件的关键材料之一。人们期望通过对稀磁半导体材料的研究获得具有非易失、多功能、超高速和低功耗等特性的半导体自旋器件,这对材料和信息技术领域都将是一场质的革命。从上世纪80年代末90年代初,人们就开始关注Mn掺杂III—V族稀磁半导体材料,如(In,Mn)As和(Ga,Mn)As等,并设计出以其为基的半导体自旋相关概念型器件,如自旋发光二极管,自旋场效应晶体管等。然而在过去的几十年中,稀磁半导体材料并没有得到广泛应用,其中一个主要原因是其居里温度(TC)低于室温。所以,探索TC高于室温,且具有原子尺度均匀替代掺杂的本征稀磁半导体成为半导体自旋电子学领域的一个难点和热点[5]。宽禁带氧化物稀磁半导体由于具有高于室温的TC和自旋与载流子分离调控的特性而受到人们广泛关注[6―9],但这些材料仍然存在一些科学问题需要解决,主要有如何获得稳定的本征氧化物稀磁半导体,如何有效提高半导体自旋注入效率,室温铁磁性的来源和产生机制需要进一步探索,自旋在半导体结构中的输运、寿命和光、电等方法对自旋的操控还不是很清楚,以及以氧化物稀磁半导体为基的自旋电子器件原型还有待于人们去设计和研制等。因此,开展氧化物稀磁半导体本征铁磁性和自旋注入效率与输运特性的研究、磁性产生机制的探索以及初步应用模型的设计等非常必要,这将为推动稀磁半导体器件化提供重要的实验依据和单元雏形。

1非补偿p-n共掺氧化物稀磁半导体薄膜的本征铁磁性

一般来说,过渡金属元素在氧化物半导体中的溶解度较小,容易形成磁性金属原子团簇或第二相杂质,因此制备本征氧化物稀磁半导体具有很大的挑战性。人们尝试不同的氧化物材料和掺杂方法来研究稀磁半导体的本征磁性,但都很难排除磁性原子团簇和第二相杂质的影响[10]。项目组采用非补偿p-n共掺的方法研究了氧化物稀磁半导体,有效克服了磁性原子团簇和第二相杂质的形成,为制备具有本征铁磁性的稀磁半导体材料开辟了新的途径。根据热力学理论,由于p-n离子对之间存在库仑引力,这使掺杂离子在宿主半导体中形成能较低,从而有效增加了其在半导体中的热力学溶解度和稳定性。从动力学角度分析,非平衡生长时,p-n对之间的库仑引力有利于掺杂离子越过形成势垒,也有利于其在宿主半导体中从间隙位置进入替代位置,从而增加了掺入离子在替代位的浓度。可见,利用非补偿p-n共掺可以增大掺杂离子在宿主半导体中的热力学和动力学溶解度,有效阻止过渡金属离子的团聚和化合,形成均相稀磁半导体。以ZnO薄膜为例,以Mn为p型掺杂剂,Ga,Cr和Fe为n型掺杂剂对ZnO进行非补偿p-n共掺,可以得到均匀单相结构的本征ZnO稀磁半导体。图1(a)为Mn/Ga共掺ZnO薄膜的高分辨透射电镜图,没有发现任何团簇和第二相杂质。由于掺杂均匀性和替代位离子浓度的提高使其铁磁性得到明显加强,如图1(b)所示[13]。非补偿p-n共掺的另一个优点是可以通过控制掺入p型和n型掺杂剂的摩尔比有效调控其载流子类型和浓度,在实现局域自旋的同时调节载流子浓度。所以,非补偿p-n共掺的方法既可以降低体系能量,增加过渡金属元素的掺杂浓度,实现氧化物稀磁半导体的本征铁磁性,同时还可以调控体系的载流子浓度和磁性大小。

2氧化物稀磁半导体中缺陷和载流子对磁性的贡献

自从2000年Dietl等预言ZnO基稀磁半导体的TC可以达到室温以来,人们已经通过各种实验方法在过渡金属掺杂的氧化物稀磁半导体中实现了TC高于室温的铁磁性。然而,对于稀磁半导体的铁磁性来源一直没有形成统一的认识,存在较多的理论解释,比如载流子诱导磁性理论、束缚磁极子理论[以及电荷转移铁磁性理论[17]等。在这些氧化物稀磁半导体磁性来源的理论解释中,都分别涉及到材料的载流子浓度和缺陷。项目组在结合氧化物稀磁半导体实验研究的基础上,通过构建双磁极子模型,计算了两个束缚磁极子间隔距离不同时的铁磁稳定化能,如图2所示。氧空位缺陷是形成局域束缚磁极子必不可少的,而载流子则扮演着双重作用,既能增强束缚磁极子的稳定性,又能调控磁极子间产生长程铁磁相互作用。由此提出了载流子调控束缚磁极子间产生长程铁磁性的模型,这个模型综合了载流子诱导和束缚磁极子模型的优点,对进一步阐明氧化物稀磁半导体中磁性产生机制有一定贡献。

3氧化物稀磁半导体的应用

自从发现具有室温铁磁性的氧化物稀磁半导体以来,人们并没有仅停留在新材料的探索和磁性机制的理解上,还初步设计了氧化物稀磁半导体的器件模型,以促进其在自旋电子器件上的应用。隧道结是研究电子自旋极化、注入与输运的理想模型,同时也可以在磁性随机存储器、磁性传感器及逻辑器等器件上广泛应用。人们已经在氧化物稀磁半导体基隧道结中实现了较大的低温磁电阻效应,并且通过优化稀磁半导体/势垒层界面以及提高势垒层结晶质量,使隧道磁电阻效应一直保持到室温,实现了室温下电子自旋注入。但由于非弹性隧穿电导的增强,室温时有效自旋注入效率非常低。项目组在氧化物稀磁半导体实验和理论研究基础上,设计并制备出一种特殊“金属磁性纳米粒子核”与“稀磁半导体壳”的核壳结构,这种核壳结构弥散在半导体基质中形成一种复合薄膜,如图3(a)所示。在这种复合薄膜中获得高达12.3%的室温磁电阻率和37.5%的电子自旋极化率,在室温下实现了有效的自旋注入和探测,如此大的室温磁电阻效应可能与薄膜中“稀磁半导体壳”的自旋过滤效应有关。这不仅为研究金属/半导体界面自旋注入指出了新的途径,而且为新一代室温半导体自旋器件的实现提供了可能[23,24]。与此同时,在这种复合结构中还可以通过改变薄膜的电阻率调节其室温磁电阻率,实现自旋注入效率的宏观调控,并且制备出的一种具有大室温磁电阻率和高透光率的复合超薄磁性金属/半导体复合薄膜有望在透明自旋电子器件中得到应用。

4小结

半导体材料设计范文第5篇

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

半导体材料设计范文第6篇

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

-

半导体材料研究的新进展

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

半导体材料设计范文第7篇

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

半导体材料设计范文第8篇

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配

异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。超级秘书网

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

半导体材料设计范文第9篇

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC’s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC’S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:(1).增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。(2).提高材料的电学和光学微区均匀性。(3).降低单晶的缺陷密度,特别是位错。(4).GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW。量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W。特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W。在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可见光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计算的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料

硅材料作为微电子技术的主导地位至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶

材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体

微结构材料的建议

(1)超晶格、量子阱材料

从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

半导体材料设计范文第10篇

【关键词】导数产品包装设计最大值最小值

近年来,饮料工业已逐渐成为我国食品工业中新崛起的一大行业。如何构想出一个外形教美观、手感较好,制造成品所需材料体积又较省的易拉罐是每个商家都力争的。只要稍加留意就会发现销量很大的饮料的易拉罐的形状和尺寸几乎都是一样的。看来,这并非偶然,这是高等数学中导数知识在包装设计中的最优化设计问题。

案例1:(易拉罐的设计)如果把易拉罐视为圆柱体,是否注意到大饮料公司出售的易拉罐的半径与高之比是多少?不妨测量一下,为什么这些公司会选择这种比例呢?若要设计一个容积为500 的圆柱形容器,当其底面半径与高之比为多少时容器所耗材料最少?

分析:当设计易拉罐时,大饮料公司除考虑外包装的美观之外,还必须考虑容积一定的情况下,所用材料最少、焊接或加工制作费最低等。

解:设其底面半径为 ,高为 ,其面积为 (1)

容积为 (2)

将 代入(1)式得 ,令 ,得唯一驻点 。

因为此问题的最小值一定存在,此驻点即为最小值点,此时 ,即 。

故当底面半径与高之比为1:2时,所用材料最少。

案例2:饮料瓶大小对饮料公司利润的影响

(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?

(2)是不是饮料瓶越大,饮料公司的利润越大?

【背景知识】某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是 分,其中 是瓶子的半径,单位是厘米。已知每出售1 的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为 。

(1)瓶子半径多大时,能使每瓶饮料的利润最大?

(2)瓶子的半径多大时,每瓶的利润最小?

分析:根据净利润=利润总额-制造成本先建立目标函数,再转化为函数的最值问题求解。

解:设每瓶饮料的利润为 ,得

则 ,令 ,得驻点 (舍去)

当 时, ,它表示 为减函数,即半径越大,利润越低;

当 时, ,它表示 为增函数,即半径越大,利润越高。

故当半径 时,此时利润最小为 ;因 ,故此时利润小于0,表示此种瓶内饮料的利润还不够瓶子的成本。

当半径为 时,此时利润最大为 分。

案例3:请你设计一个包装盒.如图所示, 是边长为60 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得 四个点重合于图中的点 ,正好形成一个正四棱柱形状的包装盒. 在 上,是被切去的等腰直角三角形斜边的两个端点.设 。试问 取何值时,包装盒的容积 最大?此时包装盒的高与底面边长的比值是多少?

分析:由实际问题抽象出函数模型,利用导数求函数最优解.

解:设包装盒的高为 ,底面边长为 ,由 得

由 ,得 ,又包装盒为长方体,故容积

则 ,令 ,得驻点 (舍去)。

当 时,

由判定极值的第一充分条件得 时, 取得极大值,也是最大值。

此时 , ,即包装盒的高与底面边长的比值为1:2。

参考文献

[1]华东师范大学数学系.数学分析(第三版)[M].高等教育出版社,2001 .

半导体材料设计范文第11篇

关键词:电子科学与技术;实验教学体系;微电子人才

作者简介:周远明(1984-),男,湖北仙桃人,湖北工业大学电气与电子工程学院,讲师;梅菲(1980-),女,湖北武汉人,湖北工业大学电气与电子工程学院,副教授。(湖北 武汉 430068)

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)29-0089-02

电子科学与技术是一个理论和应用性都很强的专业,因此人才培养必须坚持“理论联系实际”的原则。专业实验教学是培养学生实践能力和创新能力的重要教学环节,对于学生综合素质的培养具有不可替代的作用,是高等学校培养人才这一系统工程中的一个重要环节。[1,2]

一、学科背景及问题分析

1.学科背景

21世纪被称为信息时代,信息科学的基础是微电子技术,它属于教育部本科专业目录中的一级学科“电子科学与技术”。微电子技术一般是指以集成电路技术为代表,制造和使用微小型电子元器件和电路,实现电子系统功能的新型技术学科,主要涉及研究集成电路的设计、制造、封装相关的技术与工艺。[3]由于实现信息化的网络、计算机和各种电子设备的基础是集成电路,因此微电子技术是电子信息技术的核心技术和战略性技术,是信息社会的基石。此外,从地方发展来看,武汉东湖高新区正在全力推进国家光电子信息产业基地建设,形成了以光通信、移动通信为主导,激光、光电显示、光伏及半导体照明、集成电路等竞相发展的产业格局,电子信息产业在湖北省经济建设中的地位日益突出,而区域经济发展对人才的素质也提出了更高的要求。

湖北工业大学电子科学与技术专业成立于2007年,完全适应国家、地区经济和产业发展过程中对人才的需求,建设专业方向为微电子技术,毕业生可以从事电子元器件、集成电路和光电子器件、系统(激光器、太能电池、发光二极管等)的设计、制造、封装、测试以及相应的新产品、新技术、新工艺的研究与开发等相关工作。电子科学与技术专业自成立以来,始终坚持以微电子产业的人才需求为牵引,遵循微电子科学的内在客观规律和发展脉络,坚持理论教学与实验教学紧密结合,致力于培养基础扎实、知识面广、实践能力强、综合素质高的微电子专门人才,以满足我国国民经济发展和国防建设对微电子人才的迫切需求。

2.存在的问题与影响分析

电子科学与技术是一个理论和应用性都很强的专业,因此培养创新型和实用型人才必须坚持“理论联系实际”的原则。要想培养合格的应用型人才,就必须建设配套的实验教学平台。然而目前人才培养有“产学研”脱节的趋势,学生参与实践活动不论是在时间上还是在空间上都较少。建立完善的专业实验教学体系是电子科学与技术专业可持续发展的客观前提。

二、建设思路

电子科学与技术专业实验教学体系包括基础课程实验平台和专业课程实验平台。基础课程实验平台主要包括大学物理实验、电子实验和计算机类实验;专业课程实验平台即微电子实验中心,是本文要重点介绍的部分。在实验教学体系探索过程中重点考虑到以下几个方面的问题:

第一,突出“厚基础、宽口径、重应用、强创新”的微电子人才培养理念。微电子人才既要求具备扎实的理论基础(包括基础物理、固体物理、器件物理、集成电路设计、微电子工艺原理等),又要求具有较宽广的系统知识(包括计算机、通信、信息处理等基础知识),同时还要具备较强的实践创新能力。因此微电子实验教学环节强调基础理论与实践能力的紧密结合,同时兼顾本学科实践能力与创新能力的协同训练,将培养具有创新能力和竞争力的高素质人才作为实验教学改革的目标。

第二,构建科学合理的微电子实验教学体系,将“物理实验”、“计算机类实验”、“专业基础实验”、“微电子工艺”、“光电子器件”、“半导体器件课程设计”、“集成电路课程设计”、“微电子专业实验”、“集成电路专业实验”、“生产实习”和“毕业设计”等实验实践环节紧密结合,相互贯通,有机衔接,搭建以提高实践应用能力和创新能力为主体的“基本实验技能训练实践应用能力训练创新能力训练”实践教学体系。

第三,兼顾半导体工艺与集成电路设计对人才的不同要求。半导体的产业链涉及到设计、材料、工艺、封装、测试等不同领域,各个领域对人才的要求既有共性,也有个性。为了扩展大学生知识和技能的适应范围,实验教学必须涵盖微电子技术的主要方面,特别是目前人才需求最为迫切的集成电路设计和半导体工艺两个领域。

第四,实验教学与科学研究紧密结合,推动实验教学的内容和形式与国内外科技同步发展。倡导教学与科研协调发展,教研相长,鼓励教师将科研成果及时融化到教学内容之中,以此提升实验教学质量。

三、建设内容

微电子是现代电子信息产业的基石,是我国高新技术发展的重中之重,但我国微电子技术人才紧缺,尤其是集成电路相关人才严重不足,培养高质量的微电子技术人才是我国现代化建设的迫切需要。微电子学科实践性强,培养的人才需要具备相关的测试分析技能和半导体器件、集成电路的设计、制造等综合性的实践能力及创新意识。

电子科学与技术专业将利用经费支持建设一个微电子实验教学中心,具体包括四个教学实验室:半导体材料特性与微电子技术工艺参数测试分析实验室、微电子器件和集成电路性能参数测试与应用实验室、集成电路设计实验室、科技创新实践实验室。使学生具备半导体材料特性与微电子技术工艺参数测试分析、微电子器件、光电器件参数测试与应用、集成电路设计、LED封装测试等方面的实践动手和设计能力,巩固和强化现代微电子技术和集成电路设计相关知识,提升学生在微电子技术领域的竞争力,培养学生具备半导体材料、器件、集成电路等基本物理与电学属性的测试分析能力。同时,本实验平台主要服务的本科专业为“电子科学与技术”,同时可以承担“通信工程”、“电子信息工程”、“计算机科学与技术”、“电子信息科学与技术”、“材料科学与工程”、“光信息科学与技术”等10余个本科专业的部分实践教学任务。

(1)半导体材料特性与微电子技术工艺参数测试分析实验室侧重于半导体材料基本属性的测试与分析方法,目的是加深学生对半导体基本理论的理解,掌握相关的测试方法与技能,包括半导体材料层错位错观测、半导体材料电阻率的四探针法测量及其EXCEL数据处理、半导体材料的霍尔效应测试、半导体少数载流子寿命测量、高频MOS C-V特性测试、PN结显示与结深测量、椭偏法测量薄膜厚度、PN结正向压降温度特性实验等实验项目。完成形式包括半导体专业实验课、理论课程的实验课时等。

(2)微电子器件和集成电路性能参数测试与应用实验室侧重于半导体器件与集成电路基本特性、微电子工艺参数等的测试与分析方法,目的是加深学生对半导体基本理论、器件参数与性能、工艺等的理解,掌握相关的技能,包括器件解剖分析、用图示仪测量晶体管的交(直)流参数、MOS场效应管参数的测量、晶体管参数的测量、集成运算放大器参数的测试、晶体管特征频率的测量、半导体器件实验、光伏效应实验、光电导实验、光电探测原理综合实验、光电倍增管综合实验、LD/LED光源特性实验、半导体激光器实验、电光调制实验、声光调制实验等实验项目。完成形式包括半导体专业实验课、理论课程的实验课时、课程设计、创新实践、毕业设计等。

(3)集成电路设计实验室侧重于培养学生初步掌握集成电路设计的硬件描述语言、Cadence等典型的器件与电路及工艺设计软件的使用方法、设计流程等,并通过半导体器件、模拟集成电路、数字集成电路的仿真、验证和版图设计等实践过程具备集成电路设计的能力,目的是培养学生半导体器件、集成电路的设计能力。以美国Cadence公司专业集成电路设计软件为载体,完成集成电路的电路设计、版图设计、工艺设计等训练课程。完成形式包括理论课程的实验课时、集成电路设计类课程和理论课程的上机实践等。

(4)科技创新实践实验室则向学生提供发挥他们才智的空间,为他们提供验证和实现自由命题或进行科研的软硬件条件,充分发挥他们的想象力,目的是培养学生的创新意识与能力,包括LED封装、测试与设计应用实训和光电技术创新实训。要求学生自己动手完成所设计器件或电路的研制并通过测试分析,制造出满足指标要求的器件或电路。目的是对学生进行理论联系实际的系统训练,加深对所需知识的接收与理解,初步掌握半导体器件与集成电路的设计方法和对工艺技术及流程的认知与感知。完成形式包括理论课程的实验课时、创新实践环节、生产实践、毕业设计、参与教师科研课题和部级、省级和校级的各类科技竞赛及课外科技学术活动等。

四、总结

本实验室以我国微电子科学与技术的人才需求为指引,遵循微电子科学的发展规律,通过实验教学来促进理论联系实际,培养学生的科学思维和创新意识,系统了解与掌握半导体材料、器件、集成电路的测试分析和半导体器件、集成电路的设计、工艺技术等技能,最终实现培养基础扎实、知识面宽、实践能力强、综合素质高、适应范围广的具有较强竞争力的微电子专门人才的目标,以满足我国国民经济发展和国防建设对微电子人才的迫切需求。

参考文献:

[1]刘瑞,伍登学.创建培养微电子人才教学实验基地的探索与实践[J].实验室研究与探索,2004,(5):6-9.

半导体材料设计范文第12篇

关键词:半导体物理实验;教学改革;专业实验

实验教学作为高校教学环节中的一个重要组成部分,不仅因为其是课堂教学的延伸,更由于通过实验教学,可以加深学生对理论知识的理解,培养学生的动手能力,拓展学生的创造思维[1,2]。实验教学分为基础实验和专业实验两部分[3,4]:基础实验面向全校学生,如大学物理实验、普通化学实验等,其主要任务是巩固学生对所学基础知识和规律的理解,旨在提高学生的观察、分析及解决问题的能力,提供知识储备[5,6];与基础实验不同,专业实验仅面向某一专业,是针对专业理论课程的具体学习要求设计的实验教学内容,对于学生专业方向能力的提高具有极强的促进作用[7~8]。通过专业实验教学使学生能够更好的理解、掌握和应用基础知识和专业知识,提高分析问题的能力并解决生活中涉及专业的实际问题,为学生开展专业创新实践活动打下坚实的基础[9~11]。

1半导体物理实验课程存在的问题与困难

半导体物理实验是物理学专业电子材料与器件工程方向必修的一门专业实验课,旨在培养学生对半导体材料和器件的制备及测试方法的实践操作能力,其教学效果直接影响着后续研究生阶段的学习和毕业工作实践。通过对前几年本专业毕业生的就业情况分析,发现该专业毕业生缺乏对领域内前沿技术的理解和掌握。由于没有经过相关知识的实验训练,不少毕业生就业后再学习过程较长,融入企事业单位较慢,因此提升空间受到限制。1.1教学内容简单陈旧。目前,国内高校在半导体物理实验课程教学内容的设置上大同小异,基础性实验居多,对于新能源、新型电子器件等领域的相关实验内容完全没有或涉及较少。某些高校还利用虚拟实验来进行实验教学,其实验效果远不如学生实际动手操作。我校的半导体物理实验原有教学内容主要参照上个世纪七、八十年代国家对半导体产业人才培养的要求所设置,受技术、条件所限,主要以传统半导体物理的基础类实验为主,实验内容陈旧。但是在实验内容中添加新能源、新型电子器件等领域的技术方法,对于增加学生对所学领域内最新前沿技术的了解,掌握现代技术中半导体材料特性相关的实验手段和测试技术是极为重要的。1.2仪器设备严重匮乏。半导体物理实验的教学目标是使学生熟练掌握半导体材料和器件的制备、基本物理参数以及物理性质的测试原理和表征方法,为半导体材料与器件的开发设计与研制奠定基础。随着科学技术的不断发展,专业实验的教学内容应随着专业知识的更新及行业的发展及时调整,从而能更好的完成课程教学目标的要求,培养新时代的人才。实验内容的调整和更新需要有新型的实验仪器设备做保障,但我校原有实验教学仪器设备绝大部分生产于上个世纪六七十年代,在长期实验教学过程中,不少仪器因无法修复的故障而处于待报废状态。由于仪器设备不能及时更新,致使个别实验内容无法正常进行,可运行的仪器设备也因为年代久远,实验误差大、重复性低,有时甚至会得到错误的实验结果,只能作学生“按部就班”的基础实验,难以进行实验内容的调整,将新技术新方法应用于教学中。因此,在改革之前半导体物理实验的实验设计以基础类实验为主,设计性、应用性、综合性等提高类实验较少,且无法开展创新类实验。缺少自主设计、创新、协作等实践能力的训练,不仅极大地降低学生对专业实验的兴趣,且不利于学生实践和创新创业能力的培养,半导体物理实验课程的改革势在必行。

2半导体物理实验课程改革的内容与举措

半导体物理实验开设时间为本科大四秋季学期,该实验课与专业理论课半导体物理学、半导体器件、薄膜物理学在同一学期进行。随着半导体技术日新月异发展的今天,对半导体物理实验的教学内容也提出了新的要求,因此,要求这门实验课程不仅能够通过对半导体材料某些重要参数和特性的观测,使学生掌握半导体材料和器件的制备及基本物理参数与物理性质的测试方法,而且可以在铺垫必备基础和实际操作技能的同时,拓展学生在电子材料与器件工程领域的科学前沿知识,为将来独立开展产品的研制和科学研究打下坚实的基础。2.1实验基础设施的建设。2013年年底,基于我校本科教学项目的资金支持,半导体物理实验教学团队通过调研国内外高校现行半导体物理实验教学资料,结合我校实验教学的自身特点,按照创新教育的要求重新设计了半导体物理实验内容,并根据所开设实验教学内容合理配置相应的实验仪器设备,新配置仪器设备具有一定的前瞻性,品质优良,数量合理,保证实验教学质量。由于作为一门专业实验课,每学年只有一个学期承担教学任务,为了提高仪器设备的利用率,做到实验设备资源的不浪费,计划成立一间半导体物理实验专属的实验室,用于陈放新购置的实验设备,在没有教学任务的学期,该实验室做为科研实验室和创新创业实验室使用。通过近三年的建设,半导体物理实验专属实验室———新能源材料与电子器件工程创新实验室建成并投入使用,该实验室为电子材料与器件工程方向的本科生毕业论文设计以及全院本科生的创新创业实验设计提供了基本保障,更为重要的是该实验室的建成极大地改善了半导体物理实验的原有教学条件,解决了实际困难,使得半导体物理实验教学效果显著提升。不仅加强了学生对专业核心知识理解和掌握,而且启发学生综合运用所学知识创造性地解决实际问题,有效提高学生的实践动手能力、创新能力和综合素质。2.2实验教学内容的更新。半导体物理实验是一门72学时的实验课,在专属实验室建成后,按照重视基础、突出综合、强调创新、提升能力的要求,逐步培养与提高学生的科学实验素质和创新能力,构建了“九—八—五”新的实验内容体系,包括如下三个层次(表1)。第一层次为“九”个基础型实验,涵盖对半导体材料的物理性质(结构、电学、光学)的测定,通过对物理量的测量验证物理规律,训练学生观察、分析和研究半导体物理实验现象的能力,掌握常用基本半导体物理实验仪器的原理、性能和测量方法等。第二层次为“八”个提高型实验(综合、应用性实验),学生通过第一层次的实验训练后,已掌握了基本的实验方法和技能,在此基础上,开展综合性实验,可以培养学生综合运用所学知识以及分析和解决问题的能力。通过应用性实验培养学生将来利用设备原理从事生产或者技术服务的能力。第三层次为“五”个设计创新型实验,学生需运用多学科知识、综合多学科内容,结合教师的科研项目进行创新研究,通过设计型实验可以锻炼学生组织和自主实验的能力,着力培养学生创新实践能力和基本的科研素质。每个基础型实验4学时,提高型实验8学时,创新型实验12学时,规定基础型为必修实验,提高型、创新型为选作实验。九个基础型实验全部完成后,学生可根据兴趣和毕业设计要求在提高型、创新型实验中各分别选做一定数量的实验,在开课学期结束时完成至少72个学时的实验并获得成绩方为合格。2.3实验教学方式的优化。在教学方式上,建立以学生为中心、学生自我训练为主的教学模式,充分调动学生的主观能动性。将之前老师实验前的讲解转变为学生代表讲解实验内容,然后老师提问并补充完善,在整个实验安排过程中,实验内容由浅入深、由简单到综合、逐步过渡至设计和研究创新型实验。三个层次的实验内容形成连贯的实验梯度教学体系,在充分激发学生学习兴趣的同时,培养学生自主学习、自发解决问题的能力。2.4实验考核机制的改革。目前大部分实验课的成绩由每次实验后的“实验报告”的平均成绩决定,然而单独一份实验报告并不能够完整反应学生的实际动手操作能力和对实验内容的熟悉程度。因此,本课程将此改革为总成绩由每次“实验”的平均成绩决定。每次实验成绩包括实验预习、实验操作和实验报告三部分,实验开始前通过问答以及学生讲解实验内容来给出实验预习成绩;实验操作成绩是个团队成绩反映每组实验学生在实验过程中的动手能力以及组员之间的相互协助情况;针对提高型和创新性实验,特别是创新性实验,要求以科技论文的形式来撰写实验报告,以此来锻炼本科生的科技论文写作能力。通过三部分综合来给出的实验成绩更注重对知识的掌握、能力的提高和综合素质的培养等方面的考核。

3半导体物理实验课程改革后的成效

半导体物理实验在我校本科教学项目的支持下,购置并更新了实验设备建立了专属实验室,构建了“九—八—五”新实验内容体系,并采用新的教学方式和考核机制,教师和学生普遍感觉到新实验教学体系的目的性、整体性和层次性都得到了极大的提高。教学内容和教学方式的调整,使学生理论联系实际的能力得到增强,提高了学生的积极性和主动性。实验中学生实际动手的机会增多,对知识的渴求程度明显加强,为了更好地完成创新设计实验,部分本科生还会主动去查阅研中英文科技文献,真正做到了自主自觉的学习。通过实验课程的教学,学生掌握了科技论文的基本格式,数据处理的图表制作,了解了科学研究的过程,具备了基本的科研能力,也为学生的毕业设计打下了良好的基础。与此同时,利用新购置的实验设备建立的实验室,在做为科研实验室和创新创业实验室使用时,也取得了优异的成绩。依托本实验室,2015年“部级大学生创新创业训练计划”立项3项,2016年“部级大学生创新创业训练计划”立项4项。

4结语

半导体材料设计范文第13篇

关键词:信息材料;案例教学

一、引言

信息材料是信息技术的基石,在现代材料科学中占有非常重要的地位,其研究和应用在进入21世纪后得到了蓬勃的发展。信息材料的涵盖非常广泛,包括信息的获取、处理、存储、显示整个信息链过程中涉及的各种材料。随着信息技术、材料技术的进步,信息材料处于越来越重要的地位,国内外一流大学,如美国麻省理工大学、哈佛大学,国内清华大学、上海交通大学、北京邮电大学等纷纷将信息材料类型课程纳入教学内容。信息材料的课程教学在研究生教育课程体系中,包含多门课程,如《功能材料》、《信息材料学》、《电子材料》、《半导体材料》等,形成了内容联系紧密的系列课程,占据了材料科学与工程教学课程体系中非常重要的部分。

信息材料紧贴信息技术,其学习过程中材料的成分、结构、工艺、性能教学主线必然要和相关的信息技术和电子器件密切结合。传统的信息材料相关课程课堂教学模式,以材料的基础理论的讲授为主,教学主线多围绕材料“成分-结构-工艺-性能”传统主线,与信息技术器件应用和最新科研成果的结合不够紧密,教学环节中的“应用性”、“研究性”、“探讨性”、“创新性”不够突出。

二、信息材料案例教学国内外研究现状

国外信息材料课程主要是适应近三十年来信息技术的突飞猛进,结合各自的科研特色所开设,其教学内容和教学模式多贴近各自科研实际和科研项目。如美国麻省理工学院(MIT)开设有《Electrical, Optical, and Magnetic Properties of Materials》和《Special Problems in Electronic, Photonic and Magnetic Materials》课程,哈佛大学开设有《An Introduction to Electronic Materials for Engineers》、奥克兰大学开设有《Electronic Materials and Their Applications》课程等。

国外案例教学的历史悠久。在古希腊、罗马时代,就萌发了原始形态的案例,产生了案例教学的雏形。著名的古希腊哲学家、教育家苏格拉底开创的“问答式"教学法,就带有创设问题情境引导学生思考如何解决问题的特点,这是案例教学的萌芽。19世纪后期,哈佛法学院在法学教育之中,使用的案例教学以法院判例为教学内容,在课堂上学生充分地参与讨论,考试是以假设的判例作为考试题目。这被认为是现代案例教学的开始。哈佛商学院于1921年正式推行案例教学。自此之后,案例教学在世界范围内受到了学术界和教育界的重视和支持,开始了近代对案例教学的研究。

在国外,信息材料课程在开设之初便引入了案例教学模式。美国麻省理工大学(MIT)在开设《Electrical, Optical, and Magnetic Properties of Materials》课程时,便在授课中采用了以电、光、磁特定电子器件的应用提出问题,从材料的结构分析问题,最终以材料的性能解答问题的教学模式。这便是案例教学组织教学内容的典型代表。奥克兰大学和哈佛大学都在教学课时中设置大量研讨课程,就具体案例进行针对性研讨,从中锻炼学生的自主思维和创新思维能力。由于案例教学的效果明显,而且国外大学在科研中成果突出,可借鉴的案例众多,促使国外各大学纷纷建设信息材料教学案例体系,用于辅助课程教学,成果显著。

国内的信息材料课程多在上世纪末才开始开设。如清华大学开设《电子材料导论》研究生课程,北京邮电大学开设《电子材料》研究生课程,上海交通大学开设《功能材料学》研究生课程等。国内各高校案例教学的推广较晚。国内最早的案例教学是在工商管理MBA教育中开展的。由于案例教学独特的教学效果,使得案例教学的功效日益为我国教育界所认同,近年来逐步纳入许多高校的教改计划,在许多学科教学中渐渐频繁运用,并取得一定成效。案例教学法成为教育理论界与实践界共同的“新宠”。但是,由于我国信息材料课程开设时间较短,且各学校信息材料课程多为门数较少,相互关联较弱,在案例教学引入时,往往只有较少的1-2个案例,作为课程的辅助部分,其案例教学的涵盖面太少,不成体系,效果并不明显。

三、信息材料案例教学体系设计思路

我国信息材料课程体系、课程案例教学、可采用的案例,较之国外大学还有较大的差距。主要问题在于信息材料课程不成体系、相互间联系不够密切、案例数目过少、没有系统的案例库。因此,在进行信息材料案例教学体系设计时,明确教学案例需要同时为涉及信息材料及其相关基础知识的多门课程提供支撑,如《材料物理》、《信息材料学》、《电子材料与器件》、《功能材料》等,建成可同时为多门课程提供案例教学素材的案例库。

在案例设计时,突出面向应用面向实践特色。信息材料的突出特色有以下两点:一是和信息技术以及电子器件的发展息息相关。二是和授课高校的科研实际密切相关。因此在信息材料的课程教学内容中必须突出面向应用,案例教学所采用的素材案例必须是最新并已经应用,在工业和生活中可见的技术及器件,此外应当结合本校科研实际,借助本校已有的科研条件,设计实践案例教学环节,让学生动手制备和表征信息材料,这样才能真正激发学生的兴趣,培养学生的创新能力和实际工程能力。

四、信息材料案例教学体系设计

(一)案例教学主线

围绕信息技术“信息获取-处理-存储-传递-显示信息链”主线,以每个信息链环节中涉及的典型器件为案例,再围绕材料的成分设计、制备工艺、应用特点、发展前景构建典型案例,形成案例体系,为信息材料系列课程案例教学服务。

信息材料教学内容围绕信息技术中所涉及的各种器件及其所用材料展开,因此按照信“信息链”主线组织案例教学体系是较好的教学模式。具体案例建设实例如围绕信息获取材料,建设红外辐射探测材料与器件、量子肼探测材料与器件、热探测材料与器件教学案例;围绕信息处理材料,建设半导体二极管集成电路材料、光子/声子晶体材料教学案例;围绕信息存储,建设铁氧体磁粉硬盘存储材料、硒碲化合物光盘存储材料教学案例;围绕信息传递材料,建设铝绞线电缆通信材料、石英光纤通信材料教学案例;围绕信息显示材料,建设电场发射显示材料、等离子激发显示材料、有机电子发光显示材料、液晶受光显示材料教学案例。每个案例按照材料的“成分-结构-工艺-性能-器件-应用”展开研讨式或者实验设计和实施实践教学。

(二)案例教学体系结构

信息材料系列课程,如《材料物理》、《信息材料学》、《电子材料与器件》、《功能材料》、《半导体材料》等,既有共叉教学内容,又根据授课目的各有侧重和区分,这是信息材料系列课程的固有特点。在案例教学体系中,既要争取同一案例素材可以为多门课程所用,又要针对各门课程,进行同一案例素材的特色建设。如半导体材料作为信息材料基石,典型半导体材料器件,如单晶硅p-n结,在《信息材料学》、《电子材料与器件》、《半导体材料》三门课程中都可以作为案例分析教学,但可根据课程特色,在同一个案例中分析教学侧重不同,按照侧重点为材料导电基本原理、材料成分结构分析、材料性能特点和材料器件应用特点细化建设案例,将之建设成为可以选择不同侧重点为不同课程服务。应当具体分析,明确可为多门课程服务的共性案例和为专门课程服务的特色案例之间的关系,两者在案例教学体系中所占比重应根据根据服务课程的体系结构设定。

(三)实践案例设置及比重

教学案例组成要素可分为三个:基础知识讲解、案例解析或研讨、案例实践。三者相互联系,只有三个要素各自在教学案例中所占权重合理,案例教学才能够收到较好的效果。现有的信息材料系列课程案例教学方法多以课堂授课、课堂研讨为主,不能很好的适应面向应用,注重工程实际的特点。因此,在案例教学体系设计中需要针对性重点开展实践案例建设。结合授课院校的现有科研条件、学生创新实践基地硬件条件和外部支撑条件(校企合作教学科研平台、各类重点实验室等),选取材料制备和应用难度较小的典型材料案例,如电介质材料及电容的制备、磁性材料的的制备及性能表征等,作为实践教学案例进行建设,分析实践环节中实验设计、实验实施、实验结果分析、实验和应用的联系评价四个环节在实践案例中的权重及相互关系,让学生自主研讨、设计材料成分、制备材料和简单器件、考核材料和器件性能、分析总结心得体会。通过实践案例教学更好的培养学生的动手、创新思维和面向应用的能力。实践案例在教学案例体系中所占比例应不低于30%。

五、信息材料案例教学体系建设办法

信息材料案例教学体系建设宜采用学习借鉴-结合科研-特色建设-研讨和实践结合的具体做法。第一,借鉴国外一流大学信息材料系列课程的案例,如麻省理工学院、奥克兰大学等学校信息材料教学案例,学习其组织形式、案例分析手段、教学目的和效果评价手段;第二,在进行案例建设前明确结合科研项目及科研方向指导思想,依托现有科研基础和科研条件建设课堂教学和实践教学案例;第三,建设过程中,结合高校自身信息材料系列课程的教学需求、人才培养需求和学科特色,突出教学案例体系特色建设;第四,在案例建设中,合理分配课堂研讨案例教学和动手实践案例教学的比例,重点建设实践案例教学,使案例体系更加符合面向应用需求。

六、结束语

案例教学已经成为我国高等院校信息材料系列课程教学的重要组成部分,但目前突出的问题是不成体系,效果不好。本文针对信息材料系列课程,论述了可同时服务多门课程的教学案例体系的设计基本思路、案例体系主线设计、体系结构设计、实践环节设置和建设办法。该教学案例体系可为多门信息材料课程教学服务,有助于强化课程与实际应用的联系,提高学生的科研能力、创新能力和解决实际问题的工程能力。

[参考文献]

[1]丁育林. 案例教学与创新人才培养[D]. 东南大学硕士学位论文, 2005。

[2]许丹. 案例教学中的学生行为分析[J]. 江西财经大学学报,2008, (6): 113-117。

半导体材料设计范文第14篇

【关键词】量子化学;电致发光材料;合成

0 引言

有机及配合物电致发光(EL)和非线性光学材料在高新技术中的广泛应用,受到人们的关注并得到积极的研究[1-3]。近30年来,随着量子化学计算方法和分子模拟技术、以及计算机技术的飞速发展,对材料科学的发展产生了深刻影响。利用量子化学计算方法方法研究EL材料的电子结构和光谱性质,以全自由度优化几何结构为基础,计算化合物的电子光谱。对研究此类材料的性质及合成有指导性意义计算结果是实验结果基本吻合。本文主要介绍量子化学在EL材料研究中的应用及进展。

1 量子化学研究EL材料的方法及原理

就量子化学的几种计算方法来看,从头算法虽然有严谨的理论支持,能得到较好的计算结果,但是当遇到诸如酶、聚合物、蛋白质等大分子体系时,计算很耗时,其计算代价无法承受[4]。为了在计算时间和计算精度上找到一个平衡点。采用量子化学半经验方法AMI进行了理论计算包括构型优化、振动分析电子光谱计算。科学家们以从头算法为基础,忽略一些计算量极大,但是对结果影响极小的积分,或者引用一些来自实验的参数,从而近似求解薛定谔方程,就诞生了半经验算法。如:AM1,PM3,MNDO,CNDO,ZDO 等[5,6]。目前,对多类EL材料的研究大部分都是基于量子化学的半经验方法。

2 光谱性能的量子化学半经验计算

EL材料的发光颜色与材料的荧光光谱有密切的关系,荧光即是电子由第一激发单重态跃迁回基态所产生的降级辐射。目前对光谱性能的量子化学计算多半基于量子化学半经验方法PM3和AM1,先对化合物的几何构型进行了全参数优化, 得到其稳定构型,再进行振动分析,在此基础上利用单激发态组态相互作用方法(CIS)计算它们的电子光谱。

比如苏宇,廖显威[7]等人采用量子化学半经验方法PM3对三种黄酮类化合物的荧光光谱进行了理论研究。对各化合物优化后的构型作了振动分析,均未出现虚频率。在此基础上,采用单激发组态相互作用方法(CIS) 计算荧光光谱,所有计算结果与实验值基本吻合。廖显威,李来才[8]采用单激发组态相互作用(CIS)方法,分别计算了4 种稠环芳烃的电子光谱,选了801个组态进行计算,所得结果与实验值基本吻合。他们还对几种含氮芳烃化合物有机EL材料,对FL-4、 FL-7、FL-10 和FL-12的光谱进行研究,计算结果与实验值基本相符合。薛照明,张宣军[9]等用PM3/SCI方法计算了三个分子的电子吸收光谱,测定了三个分子的电子吸收光谱和荧光光谱(DMF溶液)。结果表明理论计算值与实验值相当吻合。高洪泽,石绍庆等利用量子化学半经验AM1及INDO/SCI方法研究了B与8-羟基喹啉的螯合(LiBq4)的电子结构和光谱性质,计算得到基态到各激发态的垂直跃迁能和振子强度,获得电子光谱。分析出由于配体中苯酚环、吡啶环对不同前线轨道的贡献不一样,所以在吡啶环和苯酚环上引入取代基会对光谱发生影响,为分子设计提供理论指导。

3 量子化学对EL材料结构的分析

结构与性能的关系一直是量子化学的主要研究领域,它涉及的范围非常广泛,从无机小分子、有机分子到高聚物和生物大分子,从人为设计的理想模型分子到实用的药物分子和材料分子等[10]。通过结构与性能的研究,人们可以逐类地对一些化学现象进行统一的解释,得出一般性的规律,进而预言一新的化学事实,指导设计新的实验。目前国际上关心的课题主要有:重要新型无机分子、有机分子和原子簇化合物的化学键本质的研究;重金属、稀土元素化合物的成键规律;(半)导体材料、磁性材料、光电材料等。

高洪泽,石绍庆[11]等通过量子化学半经验方法研究了蓝色有机薄膜电致发光材料LiBq4 电子结构,国外研究人员在这方面已做了不少努力,合成了很多类型的蓝色发光材料并且制备了相关器件[12-15],但多数都没有获得突出的结果。由于LiBq4体系相对分子质量较大,迄今未见有对其进行理论研究的报道.他们通过计算结果表明,各个喹啉环基本保持各自的面共轭结构。计算得到的稳定几何结构和的主要键长。为探讨其发光机理及B和Li 元素在其中所起的作用及M ―N键的共价性、离子性对发光的影响,为进一步探索合成与设计具有优良性能的蓝色发光材料提供理论依据和指导。

4 振动分析

判断分子是否处于稳定构型的一个重要方法是看它的振动光谱是否出现虚频率[16]。刘芳玲,张红梅[17]等对萘及其卤代化合物在B3LYP /6-31G水平下优化了4种化合物的几何构型, 在振动分析中,其振动光谱均未出现虚频率, 说明构型优化基本合理性。

5 前景与展望

近些年来虽然量子化学在研究和分析EL材料方面,解释了一些实验现象,揭示了不少前期未被理解的机理,甚至预期了一些结构性能关系。但量子化学的应用远不止这些。随着量子化学理论不断发展和应用领域的逐渐拓宽,研究方法的不断创新,今后将对电致发光材料的合成和选择提供更好的理论依据和指导。将量子化学与EL材料的性质分析结合起来,才能更好的选择EL材料的构成,合成性能更好的EL材料。

【参考文献】

[1]D.B.Mitzi.Synthesis, structure and properties of organic-inorganic perovskites and related materials[J].Prog.I norg.Chem.,1999,48:123.

[2]O.M.Yag hi, H.Li, C.Davis, D.Richardson, T.L.Groy. Synthetic structure, patterns and emerging properties in the chemistry of modular porous solids[J].Acc.Chem.Res.,1998,31:474.

[3]W.Su, M.C.Hong, J.B.Weng, R.Cao, S.F.Lu.A semiconducting lamella polymer[Ag(C5H4NS)ln] with a graphite-likeanay of silver(Ⅰ)ions and its analogue with a layered structure[J].Angew. Chem. Int. Ed., 2000,39:2911.

[4]张勇.生物活性分子的结构和相互作用的理论研究[D].郑州大学,2005.

[5]笪良国,张倩茹.量子化学计算方法及其在结构化学中的应用[J].淮南师范学院学报,07,9(3):101.

[6]Dewar M. J. S,The semipirical Approach to Chemistry[J]. Int J Quantum Chem,1992,44:427.

[7]苏宇,廖显威,刘珊,邓嘉莉.光谱学与光谱分析[J].2006,26(6).

[8]廖显威,李来才.几种稠环芳烃EL材料的量子化学研究[J].1999,12(6).

[9]薛照明,张宣军,田玉鹏,吩噻嗪衍生物EL材料的结构、光谱研究及量子化学计算[J].2002,19(3).

[10]徐昕,王南钦,吕鑫,张乾.二量子化学的研究现状发展趋势与展望[J].1996,8(1).

[11]高洪泽,石绍庆,阚玉和.蓝色有机薄膜电致发光材料LiBq4电子结构与电子光谱的量子化学研究[J].2005,37(3).

[12]Adachi C, Tsutsui T, Sai to S. Blue lith t-emit ting organic elect roluminescent devices[J].Appl Phys Lett, 1990,56(9):293-296.

[13]张晓宏,吴世康,高志强,等.几种吡啉衍生物的光致发光和电致发光特性研究[J].化学学报,1999,58(3):293-296.

[14]Tao X T, Suzuki H, Wada T ,et al.Highly effi cient blue electroluminescence lithium tetra -(2 -methyl-8 -hyd roxy -quinolinat o) boron[J].J Am Chem Soc, 1999,121(40):9447-9448.

[15]Gao Z Q , Lee C S , Lee S T , et al.Brigh t-blue elect roluminescence from a silyl -subst itut ed t er -(phenylene[Z].

半导体材料设计范文第15篇

从半导体产业周期的规律来看,2007年下半年已经出现疲软。由于windows Vista销售不如预期,整个存储器产业出现严重的供过于求。再加上经济危机的影响,使得原来减缓的供过于求的状况再次恶化,造成了半导体下行周期延长。

从最新的半导体各大分析公司对2009年的预测来看,2009年的成长幅度基本在-20%左右。SIA6月份刚刚公布的数据为-21%。

我们回顾一下2001年互联网泡沫对半导体产业的影响。2000年的时候整个半导体产业增长幅度达37%,2001全球互联网泡沫的时候,整个半导体产业从2040亿美元下跌至1390亿美元,下降幅度达到32%。反观2008年全球经济危机,半导体产业并没有出现2000年那种大幅增长的情况,而是在连续6年的稳步增长之后2008年首次出现负增长。2001年的下滑仅限于高科技及IT产业,而2008年则覆盖了全球各大主要行业,此次金融危机也促使各国政府共同努力以促成经济的恢复。台积电张忠谋曾说过一句话“对台积电的影响不会比2001年深,但可能持续的时间更长。”可见此次金融危机对半导体产业的影响与2001年大萧条的情况并不相同。 如果以之前各大公司预测的下滑20%来看,2009年半导体市场约为2000亿美元。

图1是全球半导体及引线框架三个月平均出货量的状况。可以看出,整个2008年前三个季度出货量都还不错,但是在11月份,开始出现了快速的下滑。整个下滑速度之快出人意料。引线框架09年第一季度的出货量相比08年第四季度下滑了39%,但是3月份比2月份明显上升14%,4月份比3月份又上升27%。就半导体出货量来看,09年第一季度比08年第四季度下降了17%,但是3月份比2月份明显上升4.5%,4月份比3月份又再次上升了12%。

因此从引线框架及半导体出货量数据来看,已经有连续2个月的回升。

如果从日月光,矽品,台积电,联电这几大全球领先的半导体代工企业的月销售额数据来看,趋势与全球半导体及引线框架出货量的趋势相似。08年第四季同样出现了明显的下滑,从数值上看,08年第四季度基本回到了03年的水准。但是09年4月份较09年3月份,上升了41%。整个半导体产业已经触底并有比较明显的回升迹象。

相较之前业界普遍的订单多属于短单,急单,能见度仅到第三季而言,目前部分订单已经转为长单,也表明产业信心正在恢复。以产能利用率来说,08年前三季平均产能利用率约为88%,08年12月份下滑到了60%。09年第一季度在50%左右。4月份也重新恢复到了60%。目前库存也已经处在比较低的水准。越来越多的数据显示出了半导体产业正在复苏的迹象。

半导体设备业是整个半导体产业的重灾区,受金融危机冲击最为严重。08年整体设备市场相比07年下降了31%。全球经济的不确定性, 存储器供过于求,消费电子市场低靡导致2009年各大半导体厂商都计划大幅减少资本支出, 三星资本支出预计为25亿美元,比08年下降60%,台积电资本支出减少20%,东芝资本支出减少48%,这些都直接影响到了对设备的投资。预计09年整体半导体设备市场将下降50%或者更多一点。

全球集成电路封测设备市场07年为28.4亿美元,08年为20.4亿美元,下降幅度达28.2%。

但是同时整体中国区域集成电路封测设备占全球市场份额由07年的21%上升为08年的22%,成为全球最大的封测设备市场。中国与东南亚是封测设备成长最快的两个区域。

北美半导体设备厂商的4月的3个月平均全球订单为2亿5300万美元,比3月的2亿4500万美元上升了3%,但是与08年4月份相比,仍然下降了77%。4月份的3个月平均出货金额约3亿8000万美元,比09年的3月4亿3830万美元下降了11%,与08年4月份的13亿4000万美元相比,下降比例为71%。整个设备订单减少的趋势已经减缓并维持在低档水准。全球封测设备的趋势与整个设备的状况类似,在08年6月开始,整个封测设备的订单出现快速下滑。09年3月份的数据显示为3100万美元,相比08年3月份下滑了84%,整个金融危机对半导体设备的冲击也是非常大。但是就4月份数据相比较3月份而言,封装设备订单回升了30%。总体来讲,设备业订单已经稳定在一个非常低的水准,关键在于何时开始真正恢复。

材料的使用量与整个半导体的出货量是紧密相关的。生产的越多,材料消耗就越多。材料的成长率与半导体的成长率有着极高的相关性。由于材料市场与整个半导体产业的市场趋势基本一致,当整个芯片需求减少的时候也导致了整个材料业的下滑。09年整个材料市场,乐观的估计为下滑15%,有可能下滑20%甚至更多。如果单纯看封测材料的部分,08年封装材料市场达186亿美元.东南亚仍然是全球最大的封测材料市场。全球封装材料市场09年预计下降14%,为162亿美元。中国预计下降10%左右,为全球下降幅度最小的区域.

综上分析,受金融危机的影响,全球整个半导体产业在08年出现了负增长,并且09年第一季度整个行业下滑的趋势仍在继续。但是就引线框架出货量,半导体出货量,国际领先代工企业销售额,订单能见度,产能利用率,库存等数据来看,半导体产业已经触底,第二季度开始已经有回升的迹象。

究其原因,主要来自以下2个:

第一个原因是整个电脑及手机的销售好于预期,而这两块的芯片占到全球芯片的60%。上网本,智能手机等一些终端电子产品的销量加速推动了整个市场的回复。

第二个原因主要来自于库存的回补。

目前值得考量的是产业究竟是U型回升还是V型回升?但无论是U还是V,最大的问题是今年下半年最终能回升多少。

2中国封测市场概况

受金融危机影响,去年英特尔宣布关闭上海的封装工厂,产能转移至成都。美国国家半导体宣布关闭苏州的封装工厂。但是近期的两个封测投资案在当前形势下的意义显得并不一般。一个就是海力士宣布投资3亿5000万美元设立封测工厂,达成月封装12万片的规模 。一个是英飞凌投资1亿5000万美元用于扩充后段产能。另外日月光计划在上海金桥设立新的封装工厂,封装形式为QFP, BGA和SOIC等中高阶封装。Amkor在上海新设立的凸块生产线,星科金鹏在上海的覆晶封装线等高端封装线状况也很好。这些情况说明了中国的封测业机会仍然很好。

从中国整个IC的供需来看,08年本土IC供应量为56亿美元,本土IC需求量为800亿美元,中国本土IC仅可供应7%的市场需求,可见其供需之间存在巨大的差距。这巨大的差距也给予了中国半导体产业广阔的发展空间。预计2011年本土IC供应量达到7.3%。

CSIA的数据显示08年中国封测业占到了中国集成电路产业的50%,为90亿6000万美元。受金融危机影响08年中国封装业相比07年下降了-1.4%。2009年一季度中国集成电路产业实现销售收入202.74亿元,同比下降了34.1%。集成电路产量为73.1亿块,同比下降了18.5%。一季度芯片制造业销售收入56.11亿元,同比下降了38.1%;封装测试业销售收入90.16亿元,同比下降了45.5%。从中也可以看出中国的集成电路产业受金融危机影响也很大,整体趋势与全球相同,09年第一季亦出现了大幅下滑。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

从08年1月至今的中国封装设备的订单出货比来看,中国与全球趋势基本一样。从08年6月份开始订单一路下滑,2009年2月份降至最低。但是中国3月份订单已经比2月份增长了14%,4月份订单比3月份增长了32%.已经连续2个月上升。中国的封装设备市场从05年的2.9亿美元增长至08年的4.5亿美元。虽然08年相比07年回落了23%,但是占全球封装设备的市场百分比一直在稳步上升。2007年中国封装设备占全球20.7%,2008年则上升至22%,可见08年中国的封测市场好于全球平均水平。

其原因主要来自于2个方面:

一方面在于全球封测产业向中国及东南亚转移的趋势仍在持续.

另一方面在于中国本土广大的市场需求使得中国本土封测业者快速发展:如江阴长电,南通富士通,天水华天等一批国内领先的封装企业先后上市,并积极涉及高端封测领域。

中国的材料市场09年整体市场预计下滑10%,10年将比09年有16%的增长。

中国IC载板市场在03年的时候仅有2500万美元,到了08年就已经达到5亿7000万美元,年复合增长率达到了87%。这说明了应用IC载板的高端封装在中国的发展非常迅速,而这些发展几乎全部来自于外资。从金额的绝对值来看,与引线框架的6亿美元市场很接近。

相比中国整个封装材料在09年10%的衰退,IC载板在09年预计仅有1.7%的衰退。

同时中国载板市场占全球的比重一直在持续上升,预计在2010年中国的IC载板市场将达到全球的9%。这说明了国际领先的半导体企业在持续的将更多的以IC载板为基础的中高阶封装转移至中国。

在引线框架部分,中国引线框架占全球比重预计将持续增加,08年占全球的20%。虽然全球经济衰退,但是中国的引线框架市场比重预计仍然会增加,预计在09年比重将达到21%,10年将达到23%。而日本和韩国的引线框架比重预计将有所下降。

中国引线框架市场占全球比重的持续增加是因为中国台湾封测企业对大陆的持续投资和日本韩国将低脚数的引线框架封装转移至中国,在日本及韩国本土则保留着大量高阶的封装产能。

在高端封测方面,以WLCSP/bumping 生产线为例,目前中国的WLCSP/bumping生产线已经能够提供125mm-300mm等不同尺寸晶圆的加工服务,同时也可以提供 金,锡,铜材料的凸块服务。3月份FCI宣布将与中芯国际共同推进中芯国际在上海的300mm凸块生产线。这也说明了中国高端封测在将来必定迎来快速发展。预计未来中国的驱动市场将持续增长,其动力主要来自于大量的高端市场需求以及LCD驱动IC(金凸块)。从中国的封装材料的发展来看,有几点值得一提:

(下转第87页)

1)目前涌现出4个代表性的IC载板厂商:日月光,美维,健鼎以及本土的方正集团与以色列合资在珠海设立了越亚基板。本土的IC载板供应初具雏形。08年中国的IC载板厂商销售额达到了2亿4000万美元。

2) 在引线框架部分,新潮集团与康强电子在江阴合资成立引线框架工厂。三井高科在上海设立了蚀刻生产线,康强电子也新建一条蚀刻生产线,使得中国之前大部分是冲压制造引线框架的格局有了改善。

未来高阶封装在中国将成为主流,这主要来自于外来企业在中国持续将高阶封装产能转移至中国,同时在02专项的支持下以及整个供应链的完善将促使中国本土高阶封测快速的发展。

综上所述,经济危机对中国的半导体封测产业确实造成了一定的影响。但是,无论是整体状况,还是封测设备,材料的状况,中国都好于全球平均水平。大的封测投资项目仍在继续,高端封测的发展也非常迅速。

3总结

经济危机确实对整个半导体产业,包含中国区域在内,造成了极大的冲击,尤其在08年第四季至09年第一季度的快速下滑。中国的封测市场在08年也出现了负增长,趋势与全球类似,但是整体情况要好于全球平均水平。目前许多的信息,数据都已经表明,半导体产业已经触底,后续的回升可以预期。

集成电路产业作为战略性产业,其地位极其重要。中国政府也一直非常重视集成电路产业的发展。从08年至20年,将投入300亿美元用于发展集成电路及软件产业。

另外,中国有着发展集成电路产业良好的机会。比如4万亿扩大内需,家电下乡,以旧换新等。同时,中国的3G 市场已经开始启动。再者,台湾经济部7月起将研究产业类别松绑赴大陆投资,其中就包含了高端封测部分,这将加速台湾的高端封测技术转移至大陆。

基于上述原因,我个人认为中国的半导体产业将首先走出经济危机的影响,中国的封测市场将在今年第三季正式开始回升。个人观点,不一定对,仅供参考。不对之处望各位批评指正。

友情链接