美章网 精品范文 加密技术论文范文

加密技术论文范文

加密技术论文

加密技术论文范文第1篇

但我们必需清楚地认识到,这一切一切的安全问题我们不可一下全部找到解决方案,况且有的是根本无法找到彻底的解决方案,如病毒程序,因为任何反病毒程序都只能在新病毒发现之后才能开发出来,目前还没有哪能一家反病毒软件开发商敢承诺他们的软件能查杀所有已知的和未知的病毒,所以我们不能有等网络安全了再上网的念头,因为或许网络不能有这么一日,就象“矛”与“盾”,网络与病毒、黑客永远是一对共存体。

现代的电脑加密技术就是适应了网络安全的需要而应运产生的,它为我们进行一般的电子商务活动提供了安全保障,如在网络中进行文件传输、电子邮件往来和进行合同文本的签署等。其实加密技术也不是什么新生事物,只不过应用在当今电子商务、电脑网络中还是近几年的历史。下面我们就详细介绍一下加密技术的方方面面,希望能为那些对加密技术还一知半解的朋友提供一个详细了解的机会!

一、加密的由来

加密作为保障数据安全的一种方式,它不是现在才有的,它产生的历史相当久远,它是起源于要追溯于公元前2000年(几个世纪了),虽然它不是现在我们所讲的加密技术(甚至不叫加密),但作为一种加密的概念,确实早在几个世纪前就诞生了。当时埃及人是最先使用特别的象形文字作为信息编码的,随着时间推移,巴比伦、美索不达米亚和希腊文明都开始使用一些方法来保护他们的书面信息。

近期加密技术主要应用于军事领域,如美国独立战争、美国内战和两次世界大战。最广为人知的编码机器是GermanEnigma机,在第二次世界大战中德国人利用它创建了加密信息。此后,由于AlanTuring和Ultra计划以及其他人的努力,终于对德国人的密码进行了破解。当初,计算机的研究就是为了破解德国人的密码,人们并没有想到计算机给今天带来的信息革命。随着计算机的发展,运算能力的增强,过去的密码都变得十分简单了,于是人们又不断地研究出了新的数据加密方式,如利用ROSA算法产生的私钥和公钥就是在这个基础上产生的。

二、加密的概念

数据加密的基本过程就是对原来为明文的文件或数据按某种算法进行处理,使其成为不可读的一段代码,通常称为“密文”,使其只能在输入相应的密钥之后才能显示出本来内容,通过这样的途径来达到保护数据不被非法人窃取、阅读的目的。该过程的逆过程为解密,即将该编码信息转化为其原来数据的过程。

三、加密的理由

当今网络社会选择加密已是我们别无选择,其一是我们知道在互联网上进行文件传输、电子邮件商务往来存在许多不安全因素,特别是对于一些大公司和一些机密文件在网络上传输。而且这种不安全性是互联网存在基础——TCP/IP协议所固有的,包括一些基于TCP/IP的服务;另一方面,互联网给众多的商家带来了无限的商机,互联网把全世界连在了一起,走向互联网就意味着走向了世界,这对于无数商家无疑是梦寐以求的好事,特别是对于中小企业。为了解决这一对矛盾、为了能在安全的基础上大开这通向世界之门,我们只好选择了数据加密和基于加密技术的数字签名。

加密在网络上的作用就是防止有用或私有化信息在网络上被拦截和窃取。一个简单的例子就是密码的传输,计算机密码极为重要,许多安全防护体系是基于密码的,密码的泄露在某种意义上来讲意味着其安全体系的全面崩溃。

通过网络进行登录时,所键入的密码以明文的形式被传输到服务器,而网络上的窃听是一件极为容易的事情,所以很有可能黑客会窃取得用户的密码,如果用户是Root用户或Administrator用户,那后果将是极为严重的。

还有如果你公司在进行着某个招标项目的投标工作,工作人员通过电子邮件的方式把他们单位的标书发给招标单位,如果此时有另一位竞争对手从网络上窃取到你公司的标书,从中知道你公司投标的标的,那后果将是怎样,相信不用多说聪明的你也明白。

这样的例子实在是太多了,解决上述难题的方案就是加密,加密后的口令即使被黑客获得也是不可读的,加密后的标书没有收件人的私钥也就无法解开,标书成为一大堆无任何实际意义的乱码。总之无论是单位还是个人在某种意义上来说加密也成为当今网络社会进行文件或邮件安全传输的时代象征!

数字签名就是基于加密技术的,它的作用就是用来确定用户是否是真实的。应用最多的还是电子邮件,如当用户收到一封电子邮件时,邮件上面标有发信人的姓名和信箱地址,很多人可能会简单地认为发信人就是信上说明的那个人,但实际上伪造一封电子邮件对于一个通常人来说是极为容易的事。在这种情况下,就要用到加密技术基础上的数字签名,用它来确认发信人身份的真实性。

类似数字签名技术的还有一种身份认证技术,有些站点提供入站FTP和WWW服务,当然用户通常接触的这类服务是匿名服务,用户的权力要受到限制,但也有的这类服务不是匿名的,如某公司为了信息交流提供用户的合作伙伴非匿名的FTP服务,或开发小组把他们的Web网页上载到用户的WWW服务器上,现在的问题就是,用户如何确定正在访问用户的服务器的人就是用户认为的那个人,身份认证技术就是一个好的解决方案。

在这里需要强调一点的就是,文件加密其实不只用于电子邮件或网络上的文件传输,其实也可应用静态的文件保护,如PIP软件就可以对磁盘、硬盘中的文件或文件夹进行加密,以防他人窃取其中的信息。

四、两种加密方法

加密技术通常分为两大类:“对称式”和“非对称式”。

对称式加密就是加密和解密使用同一个密钥,通常称之为“SessionKey”这种加密技术目前被广泛采用,如美国政府所采用的DES加密标准就是一种典型的“对称式”加密法,它的SessionKey长度为56Bits。

非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用,否则不能打开加密文件。这里的“公钥”是指可以对外公布的,“私钥”则不能,只能由持有人一个人知道。它的优越性就在这里,因为对称式的加密方法如果是在网络上传输加密文件就很难把密钥告诉对方,不管用什么方法都有可能被别窃听到。而非对称式的加密方法有两个密钥,且其中的“公钥”是可以公开的,也就不怕别人知道,收件人解密时只要用自己的私钥即可以,这样就很好地避免了密钥的传输安全性问题。

五、加密技术中的摘要函数(MAD、MAD和MAD)

摘要是一种防止改动的方法,其中用到的函数叫摘要函数。这些函数的输入可以是任意大小的消息,而输出是一个固定长度的摘要。摘要有这样一个性质,如果改变了输入消息中的任何东西,甚至只有一位,输出的摘要将会发生不可预测的改变,也就是说输入消息的每一位对输出摘要都有影响。总之,摘要算法从给定的文本块中产生一个数字签名(fingerprint或messagedigest),数字签名可以用于防止有人从一个签名上获取文本信息或改变文本信息内容和进行身份认证。摘要算法的数字签名原理在很多加密算法中都被使用,如SO/KEY和PIP(prettygoodprivacy)。

现在流行的摘要函数有MAD和MAD,但要记住客户机和服务器必须使用相同的算法,无论是MAD还是MAD,MAD客户机不能和MAD服务器交互。

MAD摘要算法的设计是出于利用32位RISC结构来最大其吞吐量,而不需要大量的替换表(substitutiontable)来考虑的。

MAD算法是以消息给予的长度作为输入,产生一个128位的"指纹"或"消息化"。要产生两个具有相同消息化的文字块或者产生任何具有预先给定"指纹"的消息,都被认为在计算上是不可能的。

MAD摘要算法是个数据认证标准。MAD的设计思想是要找出速度更快,比MAD更安全的一种算法,MAD的设计者通过使MAD在计算上慢下来,以及对这些计算做了一些基础性的改动来解决安全性这一问题,是MAD算法的一个扩展。六、密钥的管理

密钥既然要求保密,这就涉及到密钥的管理问题,管理不好,密钥同样可能被无意识地泄露,并不是有了密钥就高枕无忧,任何保密也只是相对的,是有时效的。要管理好密钥我们还要注意以下几个方面:

1、密钥的使用要注意时效和次数

如果用户可以一次又一次地使用同样密钥与别人交换信息,那么密钥也同其它任何密码一样存在着一定的安全性,虽然说用户的私钥是不对外公开的,但是也很难保证私钥长期的保密性,很难保证长期以来不被泄露。如果某人偶然地知道了用户的密钥,那么用户曾经和另一个人交换的每一条消息都不再是保密的了。另外使用一个特定密钥加密的信息越多,提供给窃听者的材料也就越多,从某种意义上来讲也就越不安全了。

因此,一般强调仅将一个对话密钥用于一条信息中或一次对话中,或者建立一种按时更换密钥的机制以减小密钥暴露的可能性。

2、多密钥的管理

假设在某机构中有100个人,如果他们任意两人之间可以进行秘密对话,那么总共需要多少密钥呢?每个人需要知道多少密钥呢?也许很容易得出答案,如果任何两个人之间要不同的密钥,则总共需要4950个密钥,而且每个人应记住99个密钥。如果机构的人数是1000、10000人或更多,这种办法就显然过于愚蠢了,管理密钥将是一件可怕的事情。

Kerberos提供了一种解决这个较好方案,它是由MIT发明的,使保密密钥的管理和分发变得十分容易,但这种方法本身还存在一定的缺点。为能在因特网上提供一个实用的解决方案,Kerberos建立了一个安全的、可信任的密钥分发中心(KeyDistributionCenter,KDC),每个用户只要知道一个和KDC进行会话的密钥就可以了,而不需要知道成百上千个不同的密钥。

假设用户甲想要和用户乙进行秘密通信,则用户甲先和KDC通信,用只有用户甲和KDC知道的密钥进行加密,用户甲告诉KDC他想和用户乙进行通信,KDC会为用户甲和用户乙之间的会话随机选择一个对话密钥,并生成一个标签,这个标签由KDC和用户乙之间的密钥进行加密,并在用户甲启动和用户乙对话时,用户甲会把这个标签交给用户乙。这个标签的作用是让用户甲确信和他交谈的是用户乙,而不是冒充者。因为这个标签是由只有用户乙和KDC知道的密钥进行加密的,所以即使冒充者得到用户甲发出的标签也不可能进行解密,只有用户乙收到后才能够进行解密,从而确定了与用户甲对话的人就是用户乙。

当KDC生成标签和随机会话密码,就会把它们用只有用户甲和KDC知道的密钥进行加密,然后把标签和会话钥传给用户甲,加密的结果可以确保只有用户甲能得到这个信息,只有用户甲能利用这个会话密钥和用户乙进行通话。同理,KDC会把会话密码用只有KDC和用户乙知道的密钥加密,并把会话密钥给用户乙。

用户甲会启动一个和用户乙的会话,并用得到的会话密钥加密自己和用户乙的会话,还要把KDC传给它的标签传给用户乙以确定用户乙的身份,然后用户甲和用户乙之间就可以用会话密钥进行安全的会话了,而且为了保证安全,这个会话密钥是一次性的,这样黑客就更难进行破解了。同时由于密钥是一次性由系统自动产生的,则用户不必记那么多密钥了,方便了人们的通信。

七、数据加密的标准

最早、最著名的保密密钥或对称密钥加密算法DES(DataEncryptionStandard)是由IBM公司在70年展起来的,并经政府的加密标准筛选后,于1976年11月被美国政府采用,DES随后被美国国家标准局和美国国家标准协会(AmericanNationalStandardInstitute,ANSI)承认。DES使用56位密钥对64位的数据块进行加密,并对64位的数据块进行16轮编码。与每轮编码时,一个48位的"每轮"密钥值由56位的完整密钥得出来。DES用软件进行解码需用很长时间,而用硬件解码速度非常快。幸运的是,当时大多数黑客并没有足够的设备制造出这种硬件设备。在1977年,人们估计要耗资两千万美元才能建成一个专门计算机用于DES的解密,而且需要12个小时的破解才能得到结果。当时DES被认为是一种十分强大的加密方法。

随着计算机硬件的速度越来越快,制造一台这样特殊的机器的花费已经降到了十万美元左右,而用它来保护十亿美元的银行,那显然是不够保险了。另一方面,如果只用它来保护一台普通服务器,那么DES确实是一种好的办法,因为黑客绝不会仅仅为入侵一个服务器而花那么多的钱破解DES密文。

另一种非常著名的加密算法就是RSA了,RSA(Rivest-Shamir-Adleman)算法是基于大数不可能被质因数分解假设的公钥体系。简单地说就是找两个很大的质数。一个对外公开的为“公钥”(Prblickey),另一个不告诉任何人,称为"私钥”(Privatekey)。这两个密钥是互补的,也就是说用公钥加密的密文可以用私钥解密,反过来也一样。

假设用户甲要寄信给用户乙,他们互相知道对方的公钥。甲就用乙的公钥加密邮件寄出,乙收到后就可以用自己的私钥解密出甲的原文。由于别人不知道乙的私钥,所以即使是甲本人也无法解密那封信,这就解决了信件保密的问题。另一方面,由于每个人都知道乙的公钥,他们都可以给乙发信,那么乙怎么确信是不是甲的来信呢?那就要用到基于加密技术的数字签名了。

甲用自己的私钥将签名内容加密,附加在邮件后,再用乙的公钥将整个邮件加密(注意这里的次序,如果先加密再签名的话,别人可以将签名去掉后签上自己的签名,从而篡改了签名)。这样这份密文被乙收到以后,乙用自己的私钥将邮件解密,得到甲的原文和数字签名,然后用甲的公钥解密签名,这样一来就可以确保两方面的安全了。

八、加密技术的应用

加密技术的应用是多方面的,但最为广泛的还是在电子商务和VPN上的应用,下面就分别简叙。

1、在电子商务方面的应用

电子商务(E-business)要求顾客可以在网上进行各种商务活动,不必担心自己的信用卡会被人盗用。在过去,用户为了防止信用卡的号码被窃取到,一般是通过电话订货,然后使用用户的信用卡进行付款。现在人们开始用RSA(一种公开/私有密钥)的加密技术,提高信用卡交易的安全性,从而使电子商务走向实用成为可能。

许多人都知道NETSCAPE公司是Internet商业中领先技术的提供者,该公司提供了一种基于RSA和保密密钥的应用于因特网的技术,被称为安全插座层(SecureSocketsLayer,SSL)。

也许很多人知道Socket,它是一个编程界面,并不提供任何安全措施,而SSL不但提供编程界面,而且向上提供一种安全的服务,SSL3.0现在已经应用到了服务器和浏览器上,SSL2.0则只能应用于服务器端。

SSL3.0用一种电子证书(electriccertificate)来实行身份进行验证后,双方就可以用保密密钥进行安全的会话了。它同时使用“对称”和“非对称”加密方法,在客户与电子商务的服务器进行沟通的过程中,客户会产生一个SessionKey,然后客户用服务器端的公钥将SessionKey进行加密,再传给服务器端,在双方都知道SessionKey后,传输的数据都是以SessionKey进行加密与解密的,但服务器端发给用户的公钥必需先向有关发证机关申请,以得到公证。

基于SSL3.0提供的安全保障,用户就可以自由订购商品并且给出信用卡号了,也可以在网上和合作伙伴交流商业信息并且让供应商把订单和收货单从网上发过来,这样可以节省大量的纸张,为公司节省大量的电话、传真费用。在过去,电子信息交换(ElectricDataInterchange,EDI)、信息交易(informationtransaction)和金融交易(financialtransaction)都是在专用网络上完成的,使用专用网的费用大大高于互联网。正是这样巨大的诱惑,才使人们开始发展因特网上的电子商务,但不要忘记数据加密。

2、加密技术在VPN中的应用

加密技术论文范文第2篇

一:数据加密方法

在传统上,我们有几种方法来加密数据流。所有这些方法都可以用软件很容易的实现,但是当我们只知道密文的时候,是不容易破译这些加密算法的(当同时有原文和密文时,破译加密算法虽然也不是很容易,但已经是可能的了)。最好的加密算法对系统性能几乎没有影响,并且还可以带来其他内在的优点。例如,大家都知道的pkzip,它既压缩数据又加密数据。又如,dbms的一些软件包总是包含一些加密方法以使复制文件这一功能对一些敏感数据是无效的,或者需要用户的密码。所有这些加密算法都要有高效的加密和解密能力。

幸运的是,在所有的加密算法中最简单的一种就是“置换表”算法,这种算法也能很好达到加密的需要。每一个数据段(总是一个字节)对应着“置换表”中的一个偏移量,偏移量所对应的值就输出成为加密后的文件。加密程序和解密程序都需要一个这样的“置换表”。事实上,80x86cpu系列就有一个指令‘xlat’在硬件级来完成这样的工作。这种加密算法比较简单,加密解密速度都很快,但是一旦这个“置换表”被对方获得,那这个加密方案就完全被识破了。更进一步讲,这种加密算法对于黑客破译来讲是相当直接的,只要找到一个“置换表”就可以了。这种方法在计算机出现之前就已经被广泛的使用。

对这种“置换表”方式的一个改进就是使用2个或者更多的“置换表”,这些表都是基于数据流中字节的位置的,或者基于数据流本身。这时,破译变的更加困难,因为黑客必须正确的做几次变换。通过使用更多的“置换表”,并且按伪随机的方式使用每个表,这种改进的加密方法已经变的很难破译。比如,我们可以对所有的偶数位置的数据使用a表,对所有的奇数位置使用b表,即使黑客获得了明文和密文,他想破译这个加密方案也是非常困难的,除非黑客确切的知道用了两张表。

与使用“置换表”相类似,“变换数据位置”也在计算机加密中使用。但是,这需要更多的执行时间。从输入中读入明文放到一个buffer中,再在buffer中对他们重排序,然后按这个顺序再输出。解密程序按相反的顺序还原数据。这种方法总是和一些别的加密算法混合使用,这就使得破译变的特别的困难,几乎有些不可能了。例如,有这样一个词,变换起字母的顺序,slient可以变为listen,但所有的字母都没有变化,没有增加也没有减少,但是字母之间的顺序已经变化了。

但是,还有一种更好的加密算法,只有计算机可以做,就是字/字节循环移位和xor操作。如果我们把一个字或字节在一个数据流内做循环移位,使用多个或变化的方向(左移或右移),就可以迅速的产生一个加密的数据流。这种方法是很好的,破译它就更加困难!而且,更进一步的是,如果再使用xor操作,按位做异或操作,就就使破译密码更加困难了。如果再使用伪随机的方法,这涉及到要产生一系列的数字,我们可以使用fibbonaci数列。对数列所产生的数做模运算(例如模3),得到一个结果,然后循环移位这个结果的次数,将使破译次密码变的几乎不可能!但是,使用fibbonaci数列这种伪随机的方式所产生的密码对我们的解密程序来讲是非常容易的。

在一些情况下,我们想能够知道数据是否已经被篡改了或被破坏了,这时就需要产生一些校验码,并且把这些校验码插入到数据流中。这样做对数据的防伪与程序本身都是有好处的。但是感染计算机程序的病毒才不会在意这些数据或程序是否加过密,是否有数字签名。所以,加密程序在每次load到内存要开始执行时,都要检查一下本身是否被病毒感染,对与需要加、解密的文件都要做这种检查!很自然,这样一种方法体制应该保密的,因为病毒程序的编写者将会利用这些来破坏别人的程序或数据。因此,在一些反病毒或杀病毒软件中一定要使用加密技术。

循环冗余校验是一种典型的校验数据的方法。对于每一个数据块,它使用位循环移位和xor操作来产生一个16位或32位的校验和,这使得丢失一位或两个位的错误一定会导致校验和出错。这种方式很久以来就应用于文件的传输,例如xmodem-crc。这是方法已经成为标准,而且有详细的文档。但是,基于标准crc算法的一种修改算法对于发现加密数据块中的错误和文件是否被病毒感染是很有效的。二.基于公钥的加密算法

一个好的加密算法的重要特点之一是具有这种能力:可以指定一个密码或密钥,并用它来加密明文,不同的密码或密钥产生不同的密文。这又分为两种方式:对称密钥算法和非对称密钥算法。所谓对称密钥算法就是加密解密都使用相同的密钥,非对称密钥算法就是加密解密使用不同的密钥。非常著名的pgp公钥加密以及rsa加密方法都是非对称加密算法。加密密钥,即公钥,与解密密钥,即私钥,是非常的不同的。从数学理论上讲,几乎没有真正不可逆的算法存在。例如,对于一个输入‘a’执行一个操作得到结果‘b’,那么我们可以基于‘b’,做一个相对应的操作,导出输入‘a’。在一些情况下,对于每一种操作,我们可以得到一个确定的值,或者该操作没有定义(比如,除数为0)。对于一个没有定义的操作来讲,基于加密算法,可以成功地防止把一个公钥变换成为私钥。因此,要想破译非对称加密算法,找到那个唯一的密钥,唯一的方法只能是反复的试验,而这需要大量的处理时间。

rsa加密算法使用了两个非常大的素数来产生公钥和私钥。即使从一个公钥中通过因数分解可以得到私钥,但这个运算所包含的计算量是非常巨大的,以至于在现实上是不可行的。加密算法本身也是很慢的,这使得使用rsa算法加密大量的数据变的有些不可行。这就使得一些现实中加密算法都基于rsa加密算法。pgp算法(以及大多数基于rsa算法的加密方法)使用公钥来加密一个对称加密算法的密钥,然后再利用一个快速的对称加密算法来加密数据。这个对称算法的密钥是随机产生的,是保密的,因此,得到这个密钥的唯一方法就是使用私钥来解密。

我们举一个例子:假定现在要加密一些数据使用密钥‘12345’。利用rsa公钥,使用rsa算法加密这个密钥‘12345’,并把它放在要加密的数据的前面(可能后面跟着一个分割符或文件长度,以区分数据和密钥),然后,使用对称加密算法加密正文,使用的密钥就是‘12345’。当对方收到时,解密程序找到加密过的密钥,并利用rsa私钥解密出来,然后再确定出数据的开始位置,利用密钥‘12345’来解密数据。这样就使得一个可靠的经过高效加密的数据安全地传输和解密。

一些简单的基于rsa算法的加密算法可在下面的站点找到:

ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa

三.一个崭新的多步加密算法

现在又出现了一种新的加密算法,据说是几乎不可能被破译的。这个算法在1998年6月1日才正式公布的。下面详细的介绍这个算法:

使用一系列的数字(比如说128位密钥),来产生一个可重复的但高度随机化的伪随机的数字的序列。一次使用256个表项,使用随机数序列来产生密码转表,如下所示:

把256个随机数放在一个距阵中,然后对他们进行排序,使用这样一种方式(我们要记住最初的位置)使用最初的位置来产生一个表,随意排序的表,表中的数字在0到255之间。如果不是很明白如何来做,就可以不管它。但是,下面也提供了一些原码(在下面)是我们明白是如何来做的。现在,产生了一个具体的256字节的表。让这个随机数产生器接着来产生这个表中的其余的数,以至于每个表是不同的。下一步,使用"shotguntechnique"技术来产生解码表。基本上说,如果a映射到b,那么b一定可以映射到a,所以b[a[n]]=n.(n是一个在0到255之间的数)。在一个循环中赋值,使用一个256字节的解码表它对应于我们刚才在上一步产生的256字节的加密表。

使用这个方法,已经可以产生这样的一个表,表的顺序是随机,所以产生这256个字节的随机数使用的是二次伪随机,使用了两个额外的16位的密码.现在,已经有了两张转换表,基本的加密解密是如下这样工作的。前一个字节密文是这个256字节的表的索引。或者,为了提高加密效果,可以使用多余8位的值,甚至使用校验和或者crc算法来产生索引字节。假定这个表是256*256的数组,将会是下面的样子:crypto1=a[crypto0][value]

变量''''crypto1''''是加密后的数据,''''crypto0''''是前一个加密数据(或着是前面几个加密数据的一个函数值)。很自然的,第一个数据需要一个“种子”,这个“种子”是我们必须记住的。如果使用256*256的表,这样做将会增加密文的长度。或者,可以使用你产生出随机数序列所用的密码,也可能是它的crc校验和。顺便提及的是曾作过这样一个测试:使用16个字节来产生表的索引,以128位的密钥作为这16个字节的初始的"种子"。然后,在产生出这些随机数的表之后,就可以用来加密数据,速度达到每秒钟100k个字节。一定要保证在加密与解密时都使用加密的值作为表的索引,而且这两次一定要匹配。

加密时所产生的伪随机序列是很随意的,可以设计成想要的任何序列。没有关于这个随机序列的详细的信息,解密密文是不现实的。例如:一些ascii码的序列,如“eeeeeeee"可能被转化成一些随机的没有任何意义的乱码,每一个字节都依赖于其前一个字节的密文,而不是实际的值。对于任一个单个的字符的这种变换来说,隐藏了加密数据的有效的真正的长度。

如果确实不理解如何来产生一个随机数序列,就考虑fibbonacci数列,使用2个双字(64位)的数作为产生随机数的种子,再加上第三个双字来做xor操作。这个算法产生了一系列的随机数。算法如下:

unsignedlongdw1,dw2,dw3,dwmask;

inti1;

unsignedlongarandom[256];

dw1={seed#1};

dw2={seed#2};

dwmask={seed#3};

//thisgivesyou332-bit"seeds",or96bitstotal

for(i1=0;i1<256;i1++)

{

dw3=(dw1+dw2)^dwmask;

arandom[i1]=dw3;

dw1=dw2;

dw2=dw3;

}

如果想产生一系列的随机数字,比如说,在0和列表中所有的随机数之间的一些数,就可以使用下面的方法:

int__cdeclmysortproc(void*p1,void*p2)

{

unsignedlong**pp1=(unsignedlong**)p1;

unsignedlong**pp2=(unsignedlong**)p2;

if(**pp1<**pp2)

return(-1);

elseif(**pp1>*pp2)

return(1);

return(0);

}

...

inti1;

unsignedlong*aprandom[256];

unsignedlongarandom[256];//samearrayasbefore,inthiscase

intaresult[256];//resultsgohere

for(i1=0;i1<256;i1++)

{

aprandom[i1]=arandom+i1;

}

//nowsortit

qsort(aprandom,256,sizeof(*aprandom),mysortproc);

//finalstep-offsetsforpointersareplacedintooutputarray

for(i1=0;i1<256;i1++)

{

aresult[i1]=(int)(aprandom[i1]-arandom);

}

...

变量''''aresult''''中的值应该是一个排过序的唯一的一系列的整数的数组,整数的值的范围均在0到255之间。这样一个数组是非常有用的,例如:对一个字节对字节的转换表,就可以很容易并且非常可靠的来产生一个短的密钥(经常作为一些随机数的种子)。这样一个表还有其他的用处,比如说:来产生一个随机的字符,计算机游戏中一个物体的随机的位置等等。上面的例子就其本身而言并没有构成一个加密算法,只是加密算法一个组成部分。

作为一个测试,开发了一个应用程序来测试上面所描述的加密算法。程序本身都经过了几次的优化和修改,来提高随机数的真正的随机性和防止会产生一些短的可重复的用于加密的随机数。用这个程序来加密一个文件,破解这个文件可能会需要非常巨大的时间以至于在现实上是不可能的。

四.结论:

由于在现实生活中,我们要确保一些敏感的数据只能被有相应权限的人看到,要确保信息在传输的过程中不会被篡改,截取,这就需要很多的安全系统大量的应用于政府、大公司以及个人系统。数据加密是肯定可以被破解的,但我们所想要的是一个特定时期的安全,也就是说,密文的破解应该是足够的困难,在现实上是不可能的,尤其是短时间内。

参考文献:

1.pgp!/

cyberknights(newlink)/cyberkt/

(oldlink:/~merlin/knights/)

2.cryptochamberjyu.fi/~paasivir/crypt/

3.sshcryptographa-z(includesinfoonsslandhttps)ssh.fi/tech/crypto/

4.funet''''cryptologyftp(yetanotherfinlandresource)ftp://ftp.funet.fi/pub/crypt/

agreatenigmaarticle,howthecodewasbrokenbypolishscientists

/nbrass/1enigma.htm

5.ftpsiteinukftp://sable.ox.ac.uk/pub/crypto/

6.australianftpsiteftp://ftp.psy.uq.oz.au/pub/

7.replayassociatesftparchiveftp://utopia.hacktic.nl/pub/replay/pub/crypto/

8.rsadatasecurity(whynotincludethemtoo!)/

加密技术论文范文第3篇

一:数据加密方法

在传统上,我们有几种方法来加密数据流。所有这些方法都可以用软件很容易的实现,但是当我们只知道密文的时候,是不容易破译这些加密算法的(当同时有原文和密文时,破译加密算法虽然也不是很容易,但已经是可能的了)。最好的加密算法对系统性能几乎没有影响,并且还可以带来其他内在的优点。例如,大家都知道的pkzip,它既压缩数据又加密数据。又如,dbms的一些软件包总是包含一些加密方法以使复制文件这一功能对一些敏感数据是无效的,或者需要用户的密码。所有这些加密算法都要有高效的加密和解密能力。

幸运的是,在所有的加密算法中最简单的一种就是“置换表”算法,这种算法也能很好达到加密的需要。每一个数据段(总是一个字节)对应着“置换表”中的一个偏移量,偏移量所对应的值就输出成为加密后的文件。加密程序和解密程序都需要一个这样的“置换表”。事实上,80x86cpu系列就有一个指令‘xlat’在硬件级来完成这样的工作。这种加密算法比较简单,加密解密速度都很快,但是一旦这个“置换表”被对方获得,那这个加密方案就完全被识破了。更进一步讲,这种加密算法对于黑客破译来讲是相当直接的,只要找到一个“置换表”就可以了。这种方法在计算机出现之前就已经被广泛的使用。

对这种“置换表”方式的一个改进就是使用2个或者更多的“置换表”,这些表都是基于数据流中字节的位置的,或者基于数据流本身。这时,破译变的更加困难,因为黑客必须正确的做几次变换。通过使用更多的“置换表”,并且按伪随机的方式使用每个表,这种改进的加密方法已经变的很难破译。比如,我们可以对所有的偶数位置的数据使用a表,对所有的奇数位置使用b表,即使黑客获得了明文和密文,他想破译这个加密方案也是非常困难的,除非黑客确切的知道用了两张表。

与使用“置换表”相类似,“变换数据位置”也在计算机加密中使用。但是,这需要更多的执行时间。从输入中读入明文放到一个buffer中,再在buffer中对他们重排序,然后按这个顺序再输出。解密程序按相反的顺序还原数据。这种方法总是和一些别的加密算法混合使用,这就使得破译变的特别的困难,几乎有些不可能了。例如,有这样一个词,变换起字母的顺序,slient可以变为listen,但所有的字母都没有变化,没有增加也没有减少,但是字母之间的顺序已经变化了。

但是,还有一种更好的加密算法,只有计算机可以做,就是字/字节循环移位和xor操作。如果我们把一个字或字节在一个数据流内做循环移位,使用多个或变化的方向(左移或右移),就可以迅速的产生一个加密的数据流。这种方法是很好的,破译它就更加困难!而且,更进一步的是,如果再使用xor操作,按位做异或操作,就就使破译密码更加困难了。如果再使用伪随机的方法,这涉及到要产生一系列的数字,我们可以使用fibbonaci数列。对数列所产生的数做模运算(例如模3),得到一个结果,然后循环移位这个结果的次数,将使破译次密码变的几乎不可能!但是,使用fibbonaci数列这种伪随机的方式所产生的密码对我们的解密程序来讲是非常容易的。

在一些情况下,我们想能够知道数据是否已经被篡改了或被破坏了,这时就需要产生一些校验码,并且把这些校验码插入到数据流中。这样做对数据的防伪与程序本身都是有好处的。但是感染计算机程序的病毒才不会在意这些数据或程序是否加过密,是否有数字签名。所以,加密程序在每次load到内存要开始执行时,都要检查一下本身是否被病毒感染,对与需要加、解密的文件都要做这种检查!很自然,这样一种方法体制应该保密的,因为病毒程序的编写者将会利用这些来破坏别人的程序或数据。因此,在一些反病毒或杀病毒软件中一定要使用加密技术。

循环冗余校验是一种典型的校验数据的方法。对于每一个数据块,它使用位循环移位和xor操作来产生一个16位或32位的校验和,这使得丢失一位或两个位的错误一定会导致校验和出错。这种方式很久以来就应用于文件的传输,例如xmodem-crc。这是方法已经成为标准,而且有详细的文档。但是,基于标准crc算法的一种修改算法对于发现加密数据块中的错误和文件是否被病毒感染是很有效的。

二.基于公钥的加密算法

一个好的加密算法的重要特点之一是具有这种能力:可以指定一个密码或密钥,并用它来加密明文,不同的密码或密钥产生不同的密文。这又分为两种方式:对称密钥算法和非对称密钥算法。所谓对称密钥算法就是加密解密都使用相同的密钥,非对称密钥算法就是加密解密使用不同的密钥。非常著名的pgp公钥加密以及rsa加密方法都是非对称加密算法。加密密钥,即公钥,与解密密钥,即私钥,是非常的不同的。从数学理论上讲,几乎没有真正不可逆的算法存在。例如,对于一个输入‘a’执行一个操作得到结果‘b’,那么我们可以基于‘b’,做一个相对应的操作,导出输入‘a’。在一些情况下,对于每一种操作,我们可以得到一个确定的值,或者该操作没有定义(比如,除数为0)。对于一个没有定义的操作来讲,基于加密算法,可以成功地防止把一个公钥变换成为私钥。因此,要想破译非对称加密算法,找到那个唯一的密钥,唯一的方法只能是反复的试验,而这需要大量的处理时间。

rsa加密算法使用了两个非常大的素数来产生公钥和私钥。即使从一个公钥中通过因数分解可以得到私钥,但这个运算所包含的计算量是非常巨大的,以至于在现实上是不可行的。加密算法本身也是很慢的,这使得使用rsa算法加密大量的数据变的有些不可行。这就使得一些现实中加密算法都基于rsa加密算法。pgp算法(以及大多数基于rsa算法的加密方法)使用公钥来加密一个对称加密算法的密钥,然后再利用一个快速的对称加密算法来加密数据。这个对称算法的密钥是随机产生的,是保密的,因此,得到这个密钥的唯一方法就是使用私钥来解密。

我们举一个例子:假定现在要加密一些数据使用密钥‘12345’。利用rsa公钥,使用rsa算法加密这个密钥‘12345’,并把它放在要加密的数据的前面(可能后面跟着一个分割符或文件长度,以区分数据和密钥),然后,使用对称加密算法加密正文,使用的密钥就是‘12345’。当对方收到时,解密程序找到加密过的密钥,并利用rsa私钥解密出来,然后再确定出数据的开始位置,利用密钥‘12345’来解密数据。这样就使得一个可靠的经过高效加密的数据安全地传输和解密。

一些简单的基于rsa算法的加密算法可在下面的站点找到:

ftp://ftp.funet.fi/pub/crypt/cryptography/asymmetric/rsa

三.一个崭新的多步加密算法

现在又出现了一种新的加密算法,据说是几乎不可能被破译的。这个算法在1998年6月1日才正式公布的。下面详细的介绍这个算法:

使用一系列的数字(比如说128位密钥),来产生一个可重复的但高度随机化的伪随机的数字的序列。一次使用256个表项,使用随机数序列来产生密码转表,如下所示:

把256个随机数放在一个距阵中,然后对他们进行排序,使用这样一种方式(我们要记住最初的位置)使用最初的位置来产生一个表,随意排序的表,表中的数字在0到255之间。如果不是很明白如何来做,就可以不管它。但是,下面也提供了一些原码(在下面)是我们明白是如何来做的。现在,产生了一个具体的256字节的表。让这个随机数产生器接着来产生这个表中的其余的数,以至于每个表是不同的。下一步,使用"shotguntechnique"技术来产生解码表。基本上说,如果a映射到b,那么b一定可以映射到a,所以b[a[n]]=n.(n是一个在0到255之间的数)。在一个循环中赋值,使用一个256字节的解码表它对应于我们刚才在上一步产生的256字节的加密表。

使用这个方法,已经可以产生这样的一个表,表的顺序是随机,所以产生这256个字节的随机数使用的是二次伪随机,使用了两个额外的16位的密码.现在,已经有了两张转换表,基本的加密解密是如下这样工作的。前一个字节密文是这个256字节的表的索引。或者,为了提高加密效果,可以使用多余8位的值,甚至使用校验和或者crc算法来产生索引字节。假定这个表是256*256的数组,将会是下面的样子:

crypto1=a[crypto0][value]

变量''''crypto1''''是加密后的数据,''''crypto0''''是前一个加密数据(或着是前面几个加密数据的一个函数值)。很自然的,第一个数据需要一个“种子”,这个“种子”是我们必须记住的。如果使用256*256的表,这样做将会增加密文的长度。或者,可以使用你产生出随机数序列所用的密码,也可能是它的crc校验和。顺便提及的是曾作过这样一个测试:使用16个字节来产生表的索引,以128位的密钥作为这16个字节的初始的"种子"。然后,在产生出这些随机数的表之后,就可以用来加密数据,速度达到每秒钟100k个字节。一定要保证在加密与解密时都使用加密的值作为表的索引,而且这两次一定要匹配。

加密时所产生的伪随机序列是很随意的,可以设计成想要的任何序列。没有关于这个随机序列的详细的信息,解密密文是不现实的。例如:一些ascii码的序列,如“eeeeeeee"可能被转化成一些随机的没有任何意义的乱码,每一个字节都依赖于其前一个字节的密文,而不是实际的值。对于任一个单个的字符的这种变换来说,隐藏了加密数据的有效的真正的长度。

如果确实不理解如何来产生一个随机数序列,就考虑fibbonacci数列,使用2个双字(64位)的数作为产生随机数的种子,再加上第三个双字来做xor操作。这个算法产生了一系列的随机数。算法如下:

unsignedlongdw1,dw2,dw3,dwmask;

inti1;

unsignedlongarandom[256];

dw1={seed#1};

dw2={seed#2};

dwmask={seed#3};

//thisgivesyou332-bit"seeds",or96bitstotal

for(i1=0;i1<256;i1++)

{

dw3=(dw1+dw2)^dwmask;

arandom[i1]=dw3;

dw1=dw2;

dw2=dw3;

}

如果想产生一系列的随机数字,比如说,在0和列表中所有的随机数之间的一些数,就可以使用下面的方法:

int__cdeclmysortproc(void*p1,void*p2)

{

unsignedlong**pp1=(unsignedlong**)p1;

unsignedlong**pp2=(unsignedlong**)p2;

if(**pp1<**pp2)

return(-1);

elseif(**pp1>*pp2)

return(1);

return(0);

}

...

inti1;

unsignedlong*aprandom[256];

unsignedlongarandom[256];//samearrayasbefore,inthiscase

intaresult[256];//resultsgohere

for(i1=0;i1<256;i1++)

{

aprandom[i1]=arandom+i1;

}

//nowsortit

qsort(aprandom,256,sizeof(*aprandom),mysortproc);

//finalstep-offsetsforpointersareplacedintooutputarray

for(i1=0;i1<256;i1++)

{

aresult[i1]=(int)(aprandom[i1]-arandom);

}

...

变量''''aresult''''中的值应该是一个排过序的唯一的一系列的整数的数组,整数的值的范围均在0到255之间。这样一个数组是非常有用的,例如:对一个字节对字节的转换表,就可以很容易并且非常可靠的来产生一个短的密钥(经常作为一些随机数的种子)。这样一个表还有其他的用处,比如说:来产生一个随机的字符,计算机游戏中一个物体的随机的位置等等。上面的例子就其本身而言并没有构成一个加密算法,只是加密算法一个组成部分。

作为一个测试,开发了一个应用程序来测试上面所描述的加密算法。程序本身都经过了几次的优化和修改,来提高随机数的真正的随机性和防止会产生一些短的可重复的用于加密的随机数。用这个程序来加密一个文件,破解这个文件可能会需要非常巨大的时间以至于在现实上是不可能的。

四.结论:

由于在现实生活中,我们要确保一些敏感的数据只能被有相应权限的人看到,要确保信息在传输的过程中不会被篡改,截取,这就需要很多的安全系统大量的应用于政府、大公司以及个人系统。数据加密是肯定可以被破解的,但我们所想要的是一个特定时期的安全,也就是说,密文的破解应该是足够的困难,在现实上是不可能的,尤其是短时间内。

参考文献:

1.pgp!/

cyberknights(newlink)/cyberkt/

(oldlink:/~merlin/knights/)

2.cryptochamberjyu.fi/~paasivir/crypt/

3.sshcryptographa-z(includesinfoonsslandhttps)ssh.fi/tech/crypto/

4.funet''''cryptologyftp(yetanotherfinlandresource)ftp://ftp.funet.fi/pub/crypt/

agreatenigmaarticle,howthecodewasbrokenbypolishscientists

/nbrass/1enigma.htm

5.ftpsiteinukftp://sable.ox.ac.uk/pub/crypto/

6.australianftpsiteftp://ftp.psy.uq.oz.au/pub/

7.replayassociatesftparchiveftp://utopia.hacktic.nl/pub/replay/pub/crypto/

8.rsadatasecurity(whynotincludethemtoo!)/

加密技术论文范文第4篇

首先是对称加密技术。对称加密技术是用相同的钥匙对信息进行加密和解锁,换言之就是一把钥匙开一把锁。这种加密方法使加密过程得到了简化,交换信息的双方不需要互相交换和研究专用的加密方法。在交换阶段一定要确保私有钥匙没有被泄漏,才可以保证报文的机密性和完整性。但是这种技术还是存在一些不足,如假设交换的一方对应的是多个交换对象,那么他就一定要维护多把钥匙。其次是非对称加密技术。密钥在非对称加密中被分解成私有密钥和公开密钥。这种技术当前被广泛的应用在了身份确认和数据签名等领域。

2网络安全技术发展呈现出的现状

2.1我国不具备自主研发的软件核心技术

数据库、操作系统以及CPU是网络安全核心其中最为主要的三个部分。现阶段,虽然大多数企业都已经在建设和维护网络安全方面消耗了大量的资金,但是,由于大部分的网络设备及软件都不是我国自主研发的,而是从国外进口的,这就导致我国的网络安全技术难以跟上时展的脚步,在处于这种竞争劣势下,就极易成为别国窃听和打击的对象。除此之外,国外一些杀毒系统和操作系统的开发商几乎已经在将中国的软件市场垄断。基于上述这些情况,我国一定要进一步加快研发软件核心技术的速度,根据我国发展的实际情况,将能够确保我国网络安全运营的软件技术有效地开发出来。

2.2安全技术不具备较高的防护能力

我国的各个企事业单位在现阶段都几乎已经建立起了专属网站,并且,电子商务也正处在快速发展的状态之中。但是,所应用的系统大部分都处在没有设防的状态中,所以很有可能会埋下各种各样的安全隐患。并且在进行网络假设的过程中,大多数企业没有及时采取各种技术防范措施来确保网络的安全。

2.3高素质的技术人才比较欠缺

由于互联网通信成本相对较低,因此,服务器和配置器的种类变得越来越多,功能也变得更加完善,性能也变得更好。但是,不管是人才数量方面或者是专业水平方面,其专业技术人员都难以对当今的网络安全需要形成更好的适应性。此外,网络管理人员不具备较强的安全管理导向能力,如,当计算机系统出现崩溃的情况时,网络管理人员难以及时有效地提出有效的解决对策。

3网络安全技术的发展趋势

3.1深度分析计算机网络安全内容

各种类型不同的网络安全威胁因素随着互联网络技术的不断发展而出现。相应地网络安全技术也一定要不断获得提升和发展。加强识别网络安全技术的方法主要包括以下几点:第一,要以安全防护的相关内容为出发点,加强分析网络安全技术深度防护的力度,主要是对网络安全行为的内容和网络安全防护的匹配这两个方面进行分析。基于特征库签名的深度报文的特征匹配是当前比较常用的一种安全防护分析方法,即根据报文的深度内容展开有针对性的分析,利用这种途径来获取网络安全攻击的特征,并利用特征库对匹配的网络攻击内容进行搜索,同时还要及时采取相应的防御措施。还有,基于安全防护的职能分析以及基于网络行为的模型学习也同样是一种较好的网络安全技术手段,即通过模拟具有特征性的网络行为以及分析网络行为的特征获取网络攻击行为的提前预警,这样就可以为保护计算机网络系统有力的条件。

3.2把网络安全产业链转变成生态环境

产业价值链在近几年时间里随着不断发展的计算机技术及行业也相应的发生了巨大的变化,它的价值链变得越来越复杂。此外,生态环境的变化速度已经在很大程度上超过了预期环境的变化速度,按照这种趋势发展下去,在未来网络技术发展的过程中,各个参与方一定要加强自身对市场要求的适应能力。

3.3网络安全技术将会朝着自动化和智能化的方向发展

我国现阶段的网络安全技术要得到优化需要经历一个长期的过程,它贯穿于网络发展的始终。此外,智能化的网络优化手段已经开始逐步取代人工化的网络优化手段。同时,还可以将网络优化知识库建立起来,进而针对一些存在于网络运行中的质量问题,将更多切实可行的解决措施提供给网络管理者。所以,国内网络安全技术在未来几年时间里会在IMS的基础上将固定的NGN技术研制出来。这项技术的成功研制能够给企事业的发展提供更丰富的业务支持。

3.4朝着网络大容量的方向发展

国内互联网的业务量在近几年时间里呈现出迅猛增长的态势,尤其是针对那些IP为主的数据业务而言,对交换机以及路由器的处理能力均提出了较高的要求。因为想要对语音、图像等业务需求形成更好的满足,因此,要求IP网络一定要具备较强的包转发和处理能力,那么,未来的网络在不出意外的情况下一定会朝着大容量的方向发展。国内网络在今后发展的过程中,一定要广泛应用硬件交换、分组转发引擎,促使网络系统的整体性能得到切实提升。

4结语

加密技术论文范文第5篇

计算机网络安全的威胁的形式多种多样,主要包括:①来源威胁。现在的计算机操作系统、网络系统几乎都是从国外引进的,具有一定的安全威胁。②环境威胁。我国关于网络治安的法律还不完善,网络技术本身也有很多不完善的地方。③病毒威胁。计算机病毒具有很强的破坏性,对计算机网络安全来说是一个很大的威胁。④网络人员威胁。网络管理员是离网络机密最近的人,他们的素质和人品对计算机网络安全有很大的影响。⑤设备故障威胁。设备故障通信就会中断,这对网络系统的安全也会产生很大的影响⑥传输渠道威胁。网络信息在传输过程中有被窃取、篡改、伪造的危险。计算机网络安全中主要存在三种隐患:①电子邮件隐患。电子邮件在我们的生活中应用非常广泛,但是,其中隐藏着非常大的隐患。网络黑客们很可能会通过发垃圾邮件的方式,使用户的邮箱爆满,影响用户邮箱的正常使用。②口令入侵隐患。口令入侵隐患是指网络黑客们通过非法途径入侵用户的口令,对用户的电脑实行攻击。③网址欺骗隐患。网络欺骗隐患是指网络黑客们通过篡改网页和网址的信息,使用户访问网站的时候出现网络安全漏洞,然后,网络黑客们就会利用这些网络安全漏洞对用户的电脑实行攻击。

2计算机网络安全技术的分析

2.1加密技术

加密技术是计算机网络安全技术的重要组成部分,一般分为对称加密技术、非对称加密技术和RSA算法三种。对称加密技术中信息的加密和解密使用的钥匙是相同的,一般称为“SessionKey”。只要在交换阶段不泄露自己的私有密匙,就可以保证计算机系统的机密性。但是,这种加密技术也存在着不足之处,交换双方共有使用一把私有密匙,所有的信息都是通过这把私有密匙传递的,不是很安全。在飞对称加密技术中,密匙分为公开密匙和私有密匙两个,公开密匙用来加密,私有密匙用来解密。公开密匙可以公布,私有密匙只有交换双方知道,安全性更有保证。RSA算法是Rivest、Shamir和Adleman提出出的第一个完整的公钥密码体制,至今为止,还没人找到一个有效的算法来分解两大素数之积,安全性有保障。

2.2防病毒技术

计算机病毒是网络系统中最大的攻击者,具有很强的传染性和破坏力。而且,一旦计算机病毒发动攻击,就会造成很大的影响。防病毒技术主要包括三种:预防技术、检测技术和消除技术。预防技术主要是指在利用一定的安全技术手段防御病毒破坏计算机系统,包括对未知病毒和已知病毒的预防,主要包括读写控制技术、系统监控技术、加密可执行程序等等。检测技术主要是指利用计算机安全技术检测计算机技术的一种技术,主要包括检测计算机病毒特征的检测技术和检测文件自身的技术两种计算机检测技术。消除技术主要是指通过分析计算机病毒,开发出消除计算机病毒并恢复原文件的一种技术。

2.3PKI技术

PKI技术是PublieKeyInfrastueture,即公钥基础设施的意思。PKI技术主要是指使用数字证书和公开密匙两种方式对网络系统安全进行双重保护,而且还会对数字证书持有者进行验证的一种技术。。PKI技术会提供认证、加密、完整、安全通信、特权管理、密钥管理等服务。PKI技术是计算机网络安全技术的核心,在电子商务中也得到广泛的应用。

2.4防火墙技术

防火墙主要是指设置在不懂网络安全区域之间的唯一出入口,防火墙本身具有很强的抗攻击能力,为计算机系统提供信息安全服务,抗御网络黑客们的入侵。防火墙的形式各种各样,但是,防火墙主要可以分为两大类:“包过滤型”和“应用型”。“包过滤型”是对数据包的包头源地址、目的地址、端口号和协议类型等进行过滤,通过的就转发到与之相对应的目的地,未通过的就丢弃“。应用型”是先对网络信息流进行阻断,然后利用专用的程序对网络信息流进行监视和控制。

2.5安全隔离技术

安全隔离技术主要是指将计算机网络中的有害攻击阻隔在可信的网络区域之外,在确信计算机网络可信区域内部的信息不泄露的情况下,进行计算机网络之间的信息交换的技术。安全隔离技术发展到现在,一共经历五个阶段:完全的隔离、硬件卡隔离、数据转播隔离、空气开关隔离、安全通道隔离。其中安全通道隔离是现代安全隔离技术发展的主要方向。

3结束语

加密技术论文范文第6篇

近日,有媒体报道每年有数万个境外IP地址作为木马,参与控制了我国境内近千万台主机,如此庞大的数据让我们触目惊心。而最近众多“泄密门”“后门”事件的发生,更让我们看到企业的信息安全状况不容乐观。很多企业都意识到解决企业信息安全问题迫在眉睫,有的企业在大力加强企业信息安全体系的建设,针对信息安全设备进行全面检查,并且做出了相应的措施。2005年中国昆仑工程公司信息管理部为保障数据安全曾对某重点专业部门的台式电脑进行改造,全部升级为无盘工作站,拆除了所有个人用户电脑中的硬盘,电脑系统以及所有数据都在数据中心的服务器中运行和存储,从而保证数据的安全性,获得较好效果,并且获得省部级奖项。无盘工作站的工作方式就是在数据中心部署一台服务器,这台服务器作为系统搭建的平台,个人终端通过网络连接到服务器上。个人终端只有如主板、内存、电源等必备硬件却没有硬盘,网卡必须带有可引导芯片。在无盘工作站启动时网卡上的可引导芯片从系统服务器中取回所需数据供用户使用。所以,无盘工作站其实就是把硬盘和主机分离,无盘工作站只执行操作不执行存储,故不会对文件造成窃取或者遗失。由于无盘工作站不需要硬盘等存储设备,减少了硬件的投入与维护,启动和运行速度快,系统不被破坏、能自动还原、无需重装系统。但是无盘工作站则完全依赖网络和服务器的支持,一旦网络或服务器中毒或因为某些原因无法运行,将会导致全网瘫痪。并且存在个人隐私得不到保障、服务器成本投入过高、对网络质量要求高、占用过多网络带宽等缺点。

2文件加密技术在企业中的应用

为了避免企业局域网出现信息泄密,造成严重的损失。很多企业都对文件做出了严格的管理制度以及多种监控手段,其中对数据传输与载体的管控成为最广泛最简单的措施。近年来一直使用的包括无盘工作站,封锁USB口,封锁光驱,网络控制等等方式都是以切断数据传输以及管控数据载体为手段的技术办法,但是这种物理隔绝的信息保护机制非常落后,“一刀切”的方式不仅改变了用户操作习惯,还严重影响了非机密数据的传输,导致工作流程繁琐。在这种情况下我们决定尝试采取特定文件全自动加密技术,这种加密方式不会改变用户的操作习惯,并且能够做到强制性加密。当用户打开或编辑指定文件时,系统将自动对未加密的文件进行加密,对已加密的文件自动解密。不需要对文件的传输做任何限制,也不用担心文件通过任何方式被复制到别的地方。因为文件在任何载体上都是以密文的形式存在,只有在加密系统的硬件内存中是明文形式,所以一旦离开终端用户的电脑系统,加密文件无法得到自动解密的服务而无法打开,起到保护文件的效果。全自动文件加密系统主要分为服务器端和客户端,服务器端主要是记录用户资料、给用户分配权限以及管理用户文件的密钥信息等。客户端主要负责与服务器进行交互,对登录系统的用户进行身份认证、获取文件加/解密密钥及生成控制文件等,同时将客户端处理的信息交给服务器。全自动文件加密系统能够自动识别每一个登录到局域网内部的用户并进行身份验证,只有具有权限的用户才能操作文件。因为机密文件在电脑的硬盘上是以密文形式存在的,只有用户拥有操作文件的权限才可以看到明文信息,否则将会是乱码。该系统具有加密制定程序生成的文件、泄密控制、审批管理、离线文档管理、外发文档管理、用户/鉴权管理、审计管理、自我保护等功能。2013年10月已在某专业设计部小网中部署了该文件加密系统并已使用,今年计划在全网部署该系统。目前的加密策略为自动加密+全盘扫描,加密的文件类型为CAD,Word,PDF,Excel。即后台扫描该电脑部署文档机密系统前的所有历史相关类型文件并进行强制自动加密,对于新文件,打开相关类型的文件也会自动加密,有效实现了公司数据的保密,增强了信息系统的数据安全性。

3结语

加密技术论文范文第7篇

关键词:科技期刊 保密 对策

当今世界各国综合国力的竞争实际上就是科学技术的竞争,谁先掌握先进的科学技术谁就会在激烈竞争中占得主动。在科技竞争的大背景下,科技安全保密就显得越来越重要。科技期刊是科学技术的重要载体,承载着大量科技信息,保守国家科学技术秘密,是科技期刊编辑的首要任务,也是科技期刊健康发展的保证。

一、做好科技期刊保密工作的重要性

科技期刊是展示科研和学术成果的窗口,是科研工作者进行学术交流的桥梁和纽带。科技期刊的积极作用是传播信息、交流技术,促进科技成果向生产力的转换,推动科技进步。然而,科技期刊在促进科技进步的同时,一旦放松警惕,保密把关不严,发生失泄密事件,就会给国家造成无法估量和无法挽回的损失。科技期刊曾发生过几起失泄密事件,给国家造成了损失,教训深刻,科技期刊要引以为戒,加强保密工作。近几年,随着我国经济社会的迅猛发展,综合国力的不断提高,敌对势力对我国关注程度不断提高,妄图窃取我国的科技秘密。新形势新情况给科技期刊带来了新的挑战,为此,科技期刊要提高警惕,防止失泄密事件的发生。

二、科技期刊失泄密风险剖析

(一)保密制度不健全,落实不到位。在激烈的竞争市场中,期刊出版单位往往重视论文的学术质量而忽略保密问题,没有建立健全严格的保密制度或者保密制度落实不到位,存在失泄密风险。大多数科技期刊稿约中保密条款设置过于简单,要求不细;对论文保密审查要求不严,没有严格执行先审密后审稿制度,在审稿过程中易失泄密;编辑保密意识不强,没有把好保密防线,没有重视作者自然信息刊载、参考文献引用、基金项目标注存在的关联泄密隐患。

(二)作者保密意识不强,认识不到位。我国晋升职称、攻读学位的政策要求要有一定的学术成果,作者为提高投稿的命中率,往往只重视论文的科技含量而忽视了保密问题,把研究成果的关键步骤、原理、工艺过程、技术数据等描述得十分详尽,存在失泄密风险。

(三)科学技术专业面广,不易分辨。随着科学技术的迅猛发展,科技论文涉及的专业面、技术领域越来越广,而保密管理部门工作人员、审稿专家、编辑人员所从事或熟悉的专业知识领域有限,有时分辨不出论文是否而轻易放过,造成失泄密后果。

(四)信息技术的发展,带来泄密风险。随着科技期刊网络化进程的推进和办公自动化的实现,网络泄密风险增大。有的作者直接通过互联网将稿件发给科技期刊编辑部,编辑部为提高工作效率,往往通过互联网与审稿专家、作者联系,在网络上互传稿件,使未经审查和技术处理的稿件流入网络。敌对势力为窃取科技秘密,利用网络攻击、植入木马病毒等手段,窃取科技期刊编辑部计算机信息。另外,权威信息机构,如中国期刊网、万方数字化期刊群等机构,一般是完全依据期刊编辑部提供的全文数据完整地、不加甄别地置于网上,易扩大泄密范围,或造成某一技术相关信息的泄露,引发关联失泄密。

三、科技期刊防止失泄密的对策

(一)管理部门要加强组织领导。1.期刊管理部门应加强对保密工作的领导与管理。期刊管理部门应前移保密管理工作,狠抓保密教育、保密检查,努力提高编辑出版单位的保密意识。如定期举办保密教育培训班、经验交流会、知识竞赛等活动;定期以简报的形式通报保密工作的形势和任务,剖析典型事例,做到警钟长鸣,提高编辑人员的保密意识和业务识别能力。同时,期刊管理部门应随时检查期刊出版单位对保密工作的落实情况,以检查促工作,提高编辑人员的保密责任心。

2.作者单位应加强保密管理。作者单位应建立健全专门负责保密工作的机构,积极开展安全保密的宣传、教育、培训工作,提高所属人员的安全保密意识和责任心;建章立制,严格管理科研成果,对所属人员拟公开发表的学术成果进行严格的保密审查。

3.主管主办单位应重视期刊的保密工作。一般来说,期刊主管及主办单位对期刊的学术质量和社会影响比较重视,而对期刊的保密工作关注甚少。其实保密工作是科技期刊的首要大事,出了问题就会“一票否决”,受到严厉处罚。为此,科技期刊主管及主办单位要高度重视期刊的安全保密工作,常抓不懈,实现期刊安全保密工作和质量提高“两促进,双丰收”。

(二)提高作者和编者的保密意识。作者是科技论文的最初生产者,增强作者的保密意识,是科技期刊保密工作的治本之策,要注重对作者的保密知识宣传。为此,科技期刊除在“稿约”中设置保密条款和要求作者投稿时递交所在单位保密部门提供的论文保密审查报告外,还要主动与作者沟通,询问稿件是否,介绍对内容的技术处理措施,使作者正确处理好论文的发表与保密之间的关系。同时利用期刊“补白”或图片的形式宣传保密知识,以提高作者、读者的保密意识。

编辑是稿件出版前最后的保密审查者和把关者,其保密意识、责任心和技术处理能力非常重要。为防止失泄密事件的发生,科技期刊编辑部门应加强保密教育,组织编辑人员认真学习和领会《中华人民共和国保守国家秘密法》和国家有关科学技术的保密规定,增强编辑的保密意识,克服麻痹思想,熟悉保密法规,增强保守国家秘密的责任感。

1.建立健全安全保密工作制度并严格执行。科技期刊要搞好安全保密工作,防止失泄密事件的发生,建立健全保密工作制度并严格执行是关键。要从源头抓起,在稿约中明确提出作者投稿必须由其单位保密管理机构出具保密审查报告,否则不予接收投稿,作者修改过的稿件要重新出具保密审查报告。严格执行《新闻出版保密规定》的有关规定,坚持稿件送审原则。

2.提高编辑的识密能力。编辑应具备安全保密方面的知识,做到“火眼金睛”,对于不得公开发表的数据资料和关键技术等,一定要做好技术处理和脱密处理。对于不能公开的地名、人名,要用代号来代替,不能将内部资料、技术文件、未公开的学位论文列入参考文献之中,也不能对其中的重要内容作直接引用。基金项目标注时要慎重。

加密技术论文范文第8篇

关键词:网络安全;防火墙;PKI技术

一、概述

网络防火墙就是一个位于计算机和它所连接的网络之间的软件。该计算机流入流出的所有网络通信均要经过此防火墙。防火墙对流经它的网络通信进行扫描,这样能够过滤掉一些攻击,以免其在目标计算机上被执行。网络安全技术最早受到人们关注的就是网络防火墙技术。作为网络安全的一道屏障防火墙应该安装到那个部位呢?第一,网络防火墙应该安装在公司内部网络和外部网络的接口处,这是其网络安全的第一道屏障。第二,如果公司内部网络拓扑比较大,应该在各个局域网之间设置网络防火墙。网络防火墙的作用就是阻止恶意的攻击,因此不论是公司内部网络还是外部网络只要有攻击的可能都应该安装防火墙。

二、网络防火墙实现的技术

(一)加密技术

信息交换加密技术分为两类:即对称加密和非对称加密。

1.对称加密技术

对称加密使用的是对称密码编码技术,其主要的特点就是使用同一个密钥对文件进行加密和解密,也就是文件加密的密钥也可以用作文件解密的密钥,因为这种特性所以被称为对称加密技术。当文件在交换的过程中如果加密密钥没有被泄露,那么文件在网络传输中就保证了其机密性和完整性。但是这种对称的加密技术也并不是十分的完美,其仍存在令人不满意的一面,如果一个人和多个人进行文件交互时,那么其就会维护与所有相交互人员的密钥,还有就是大量的浮点运算致使计算量大,加密/解密速度慢,需占用较多资源。

(二)非对称加密/公开密钥加密

非对称密钥是相对对称密钥而言的,顾名思义其对文件的加密密钥和解密密钥不是同一个密钥,其密钥是成对出现的。在这一对密钥中其中任一个密钥都可以向人公开,而另一个密钥则有持有人妥善保管。被公开的密钥则用于信息交流时加密使用,个人持有的则是用于解密。解密密钥有自己掌握,另一个密钥可以广泛的公开,但它只应于生成密钥的交换方。

这种非对称的密钥加密技术可以使交换双方不必交换密钥就能够进行安全的交流,因此其被广泛应用于网络贸易,数字签名等信息交流方面。

(三)PKI技术

PKI是IPublie Key Infrastucture的简写,所谓PKI 就是一个用公钥概念和技术实施和提供安全服务的具有普适性的安全基础设施。信息技术安全的核心技术就是PKI技术,这也是电子商务领域的关键技术和基础技术。电子商务,电子政务等都是经过互联网络进行的活动,因此缺少物理等方面的接触,这就使得网络电子验证方式越显的那么重要。而PKI技术正适合这些经常进行网上交流而物理接触较少的行业,并且都够很好的处理好交流的机密性,真实性,完整性和可控制性等安全问题。一个实用的PKI体系应该是安全的易用的、灵活的和经济的。

三、安全技术的研究现状和方向

我国的信息网络已经经历了通信的保密,数据保护两个阶段,现在已经进入了网络信息安全的研究阶段,已经研发的网络安全软件或产品有,防火墙,安全型路由器,黑客的入侵检测,对系统的脆弱检测软件等。但是我们应该知道,网络信息安全是一个复杂的领域,其是有数学,物理,生活信息技术等学科的长期交叉和融合的一个新成果。要想提出系统的,完整的解决网络信息安全的方案,应该从以下五个方面入手,信息安全系统,信息的分析和检测,现代密码理论,安全协议,安全体系结构,这五个部分是相互协调的一个有机整体。

国际上信息安全研究起步较早,力度大,积累多,应用广,在70年代美国的网络安全技术基础理论研究成果”计算机保密模型”(Beu&Lapadula模型)的基础上,指定了”可信计算机系统安全评估准则”(TCSEC),其后又制定了关于网络系统数据库方面和系列安全解释,形成了安全信息系统体系结构的准则。

作为网络信息安全的重要内容的安全协议,其形式化的方法可以追溯到上个世纪的70年代末,现在有三种分析方法,这三种方法是基于状态机,模态逻辑和代数工具,但是这三种方法仍普遍存在漏洞,现正处于待提高的阶段。密码学作为网络信息安全技术的关键学科,近几年来活动非常的活跃,尤其是欧,美,亚洲等国频繁的举办网络信息安全和密码学的会议。上个世纪70年代,美国的一个学者首先提出了公开的密钥密码体制,这使网络信息系统的密钥管理摆脱了困境,同时也解决了网络数字签名,其依然是现在网络信息安全研究的一个热点。随着互联网络的普及推广,电子商务也得到了前所未有的发展机遇,因此电子商务的安全性也在受到人们的普遍关注,其现在也正处于研究和发展阶段,它带动了论证理论、密钥管理等研究,由于计算机运算速度的不断提高,各种密码算法面临着新的密码体制,如量子密码、DNA密码、混沌理论等密码新技术正处于探索之中。

现在人类已经进入了信息社会,网络安全技术必将成为本世纪网络信息安全发展的关键技术,其将会信息这一重要的战略资源提供强有力的保障,这样才能够推动社会的发展。现阶段我国的网络信息安全技术仍处于研究和产品开发的初级阶段,我们还必须更加努力的去探索,研究,开发,走具有我国特色的产学研联合发展的道路,以期赶上或者超过发达国家的科技水平,保证我国信息网络的安全,推动我国国民经济的高速发展。

加密技术论文范文第9篇

【关键词】电子商务;安全技术;原理

一、防火墙技术

防火墙是一个系统或一组系统,它在公司内部网与互联网间执行一定的安全策略。防火墙是设置在被保护网络和外部网络之间的一道关卡,来防止发生不可预见的、潜在的具有破坏威力的侵入。常见的防火墙主要有:包过滤型、服务器型。(1)包过滤型防火墙:数据包过滤是基于源地址和目的地址、应用或协议,以及每个IP包的端口信息,由防火墙按照事先设置好的规则对数据包作出通过与否的判断。这类防火墙通常安置在公司内部网络与外部网络相衔接的路由器上。(2)服务器型防火墙:服务器型防火墙一般是两部分组成,服务器端的程序及客户端的程序。客户端的程序和中间节点相连,然后中间节点和给予服务的服务器进行连接。服务器可以控制对应用程序的访问,它能替网络用户完成一定的TCP/IP功能。一个服务器实际上是一个应用层的网关,即一个为确定网络应用而进行连通两网络的网关。由于状态监视技术相当于结合了包过滤技术和应用技术,因此是最先进的,但是由于实现技术复杂,在一般的计算机硬件系统上很难设计出基于此技术的完善防御措施(市面上大部分软件防火墙使用的其实只是包过滤技术加上一点其他新特性而已)。

二、数据加密技术

1.对称密钥加密技术。对称密钥加密技术就是加密和解密均使用一个同样的密钥,而且通讯双方同时需要得到这把密钥及确保密钥的安全。(1)加密算法。实现对称密钥加密技术的加密算法主要有以下两种:第一,DES算法:DES主要使用移位及替换的方法进行加密。第二,IDEA算法:IDEA是一种国际信息加密算法。它是一个分组大小为64位,密钥为128位,迭代轮数为8轮的迭代型密码体制。这种算法使用长达128位的密钥,能够较好地排除了各种试图全搜索密钥的可能。(2)对称式密钥加密技术的优缺点。对称加密技术拥有加密速度较快、保密性高的优点。它的缺点:一是密钥是保密传输安全的关键,发送者需要把密钥安全、妥善地发送到接收者,不能泄露它的内容。二是多人信息传输时密钥组合的数量会出现膨胀,从而使得密钥分发变得更为复杂。这样极大数量的密钥分发、管理、生成的确是难以解决的问题。三是双方在通讯过程中需要拥有统一的密钥,才能够发送具有保密性的信息。

2.公开密钥加密技术。公开加密技术需要密钥是长双成对地使用,也就是加密过程及解密过程分别使用两个不同的密钥来实现。在给对方发送信息时,要使用对方的公开密钥对信息加密,然后在接收者收到信息后,使用自己保管的秘密密钥对信息解密。所以这种技术也被称为非对称加密技术。(1)加密算法。公开密钥加密算法主要是RSA加密算法。它是一个较为成熟的、至今理论上较为成功的公开密钥密码体制,它的安全是基于数理论中的欧拉定理和计算复杂性理论中的以下结论:求解两个大的素数的积是可能的,但要想分解这两个大素数的积,求积的素因子却是十分艰难的。RSA加密、解密过程由密钥生成、加密过程和解密过程组成。(2)公开密钥加密技术的优缺点。公开密钥加密技术的优点:一是密钥较少方便管理。网络中的任何用户只需要保管自己的秘密密钥,则n个用户仅仅需要产生n对密钥。二是密钥的分配也较为简单。加密密钥分发给用户,解密密钥是由用户自己管理。三是不需机密的通道和复杂协议来传输密钥。四是可实现数字签名和数字加密。公开密钥加密技术的缺点就是加密、解密的速度较慢。

3.加密技术的实际应用。PGP(pretty good privacy)是一个对邮件和传输的文挡进行加密的软件,可以用来对邮件和文挡保密以防止非授权者阅读,让你可以安全地和你从未见过的人们通信。PGP加密采用了RSA以及传统加密算法来实现加密的。加密的关键在于一对密钥,该密钥对包括一个公钥以及一个私钥。公钥和私钥是根据某种数学函数生成的,并且通过一个密钥来推测另外一个密钥几乎是不可能的。其中,明文可以用公钥加密,然后用私钥解密得到原文,明文也可以用私钥加密,然后用公钥解密得到原文。由于私钥为自己保留,不给别人知道,因此私钥除了加密功能之外,还具有数字签名的作用。其机制在于:私钥只有自己才有,别人没有你的私钥,你用私钥可以对文件进行签名,而别人由于没有你的私钥,无法进行同样的签名,这样就能证明该文件是从你这里发出去的;公钥是提供给要和你进行安全通信的人使用的。

参 考 文 献

[1]兰丽娜,刘辛越.电子商务安全体系研究[J].学术术究.2007(4)

加密技术论文范文第10篇

论文摘要:密码技术是信息安全的核心技术公钥密码在信息安全中担负起密钥协商、数字签名、消息认证等重要角色,已成为最核心的密码。本文介绍了数字签名技术的基本功能、原理和实现条件,并实现了基于rsa的数字签名算法

0.引言

随着计算机网络的发展,网络的资源共享渗透到人们的日常生活中,在众多领域上实现了网上信息传输、无纸化办公。因此,信息在网络中传输的安全性、可靠性日趋受到网络设计者和网络用户的重视数字签名技术是实现交易安全的核心技术之一,在保障电子数据交换((edi)的安全性上是一个突破性的进展,可以解决否认、伪造、篡改及冒充等问题

1.数字签名

1.1数字签名技术的功能

数字签名必须满足三个性质

(1)接受者能够核实并确认发送者对信息的签名,但不能伪造签名

(2)发送者事后不能否认和抵赖对信息的签名。

(3)当双方关于签名的真伪发生争执时,能找到一个公证方做出仲裁,但公证方不能伪造这一过程

常用的数字签名技术有rsa签名体制、robin签名体制、e1gamal签名体制及在其基础之上产生的数字签名规范dss签名体制。

1.2数字签名技术的原理

为了提高安全性,可以对签名后的文件再进行加密。假如发送方a要给接收方b发送消息m,那么我们可以把发送和接收m的过程简单描述如下:

(1)发送方a先要将传送的消息m使用自己的私有密钥加密算法e(al)进行签名,得v=e(al(m))其中,a的私有加密密钥为al;

(2)发送方a用自己的私有密钥对消息加密以后,再用接收方b的公开密钥算法ebl对签名后的消息v进行加密,得c=e(b l (v))。其中,b的公开加密密钥为6l.

(3)最后,发送方a将加密后的签名消息c传送给接收方b

(4)接收方b收到加密的消息c后,先用自己的私有密钥算法d(62)对c进行解密,得v=d(h2挥))其中,b的私有解密密钥为62(5)然后接收方再用发送方a的公开密钥算法d(a2)对解密后的消息v再进行解密,得m=d(a2(v))。其中,,a的公开解密密钥为a2=这就是数字签名技术的基本原理。如果第三方想冒充a向b发送消息,因为他不知道.a的密钥,就无法做出a对消息的签名如果a想否认曾经发送消息给b.因为只有a的公钥才能解开a对消息的签名,.a也无法否认其对消息的签名数字签名的过程图l如下:

2. rsa算法

2.1 rsa算法的原理

rsa算法是第一个成熟的、迄今为止理论上最成功的公开密钥密码体制,该算法由美国的rivest,shamir,adle~三人于1978年提出。它的安全性基于数论中的enle:定理和计算复杂性理论中的下述论断:求两个大素数的乘积是容易计算的,但要分解两个大素数的乘积,求出它们的素因子则是非常困难的.它属于np一完全类

2.2 rsa算法

密钥的产生

①计算n用户秘密地选择两个大素数f和9,计算出n=p*q, n称为rsa算法的模数明文必须能够用小于n的数来表示实际上n是几百比特长的数

②计算 (n)用户再计算出n的欧拉函数(n)二(p-1)*(q-1),(n)定义为不超过n并与n互素的数的个数③选择。。用户从[(0, (n)一1〕中选择一个与}(n)互素的数b做为公开的加密指数

4计算d。用户计算出满足下式的d : ed = 1 mal (n)(a与h模n同余.记为a二h mnd n)做为解密指数。

⑤得出所需要的公开密钥和秘密密钥:公开密钥(加密密钥):pk={e,n} ;

秘密密钥(解密密钥);sk=(d,n}

加密和解密过程如下:

设消息为数m(m<n)

设c=(md)mod n,就得到了加密后的消息c;

设m=(ce)mod n,就得到了解密后的消息m。其中,上面的d和e可以互换

由于rsa算法具有以下特点:加密密钥(即公开密钥)pk是公开信息,而解密密钥(即秘密密钥))sk是需要保密的。加密算法e和解密算法d也都是公开的。虽然秘密密钥sk是由公开密钥pk决定的,但却不能根据pk计算出sk。它们满足条件:①加密密钥pk对明文m加密后,再用解密密钥sk解密,即可恢复出明文,或写为:dsk(esk(m))= m②加密密钥不能用来解密,即((d娜e,c}m)) } m③在计算机上可以容易地产生成对的pk和sk}④从已知的pk实际上不可能推导出sk⑤加密和解密的运算可以对调,即:e}(m)(es}(m)(m))=m所以能够防止身份的伪造、冒充,以及对信息的篡改。

3. rsa用于数字签名系统的实现

rsa竿名讨程如下图2所示:

加密技术论文范文第11篇

论文摘要:密码技术是信息安全的核心技术公钥密码在信息安全中担负起密钥协商、数字签名、消息认证等重要角色,已成为最核心的密码。本文介绍了数字签名技术的基本功能、原理和实现条件,并实现了基于RSA的数字签名算法

0.引言

随着计算机网络的发展,网络的资源共享渗透到人们的日常生活中,在众多领域上实现了网上信息传输、无纸化办公。因此,信息在网络中传输的安全性、可靠性日趋受到网络设计者和网络用户的重视数字签名技术是实现交易安全的核心技术之一,在保障电子数据交换((EDI)的安全性上是一个突破性的进展,可以解决否认、伪造、篡改及冒充等问题

1.数字签名

1.1数字签名技术的功能

数字签名必须满足三个性质

(1)接受者能够核实并确认发送者对信息的签名,但不能伪造签名

(2)发送者事后不能否认和抵赖对信息的签名。

(3)当双方关于签名的真伪发生争执时,能找到一个公证方做出仲裁,但公证方不能伪造这一过程

常用的数字签名技术有RSA签名体制、Robin签名体制、E1Gamal签名体制及在其基础之上产生的数字签名规范DSS签名体制。

1.2数字签名技术的原理

为了提高安全性,可以对签名后的文件再进行加密。假如发送方A要给接收方B发送消息M,那么我们可以把发送和接收M的过程简单描述如下:

(1)发送方A先要将传送的消息M使用自己的私有密钥加密算法E(al)进行签名,得V=E(al(M))其中,A的私有加密密钥为al;

(2)发送方A用自己的私有密钥对消息加密以后,再用接收方B的公开密钥算法Ebl对签名后的消息V进行加密,得C=E(b l (V))。其中,B的公开加密密钥为6l.

(3)最后,发送方A将加密后的签名消息C传送给接收方B

(4)接收方B收到加密的消息C后,先用自己的私有密钥算法D(62)对C进行解密,得V=D(h2挥))其中,B的私有解密密钥为62(5)然后接收方再用发送方A的公开密钥算法D(a2)对解密后的消息V再进行解密,得M=D(a2(V))。其中,,A的公开解密密钥为a2=这就是数字签名技术的基本原理。如果第三方想冒充A向B发送消息,因为他不知道.a的密钥,就无法做出A对消息的签名如果A想否认曾经发送消息给B.因为只有A的公钥才能解开A对消息的签名,.a也无法否认其对消息的签名数字签名的过程图l如下:

2. RSA算法

2.1 RSA算法的原理

RSA算法是第一个成熟的、迄今为止理论上最成功的公开密钥密码体制,该算法由美国的Rivest,Shamir,Adle~三人于1978年提出。它的安全性基于数论中的Enle:定理和计算复杂性理论中的下述论断:求两个大素数的乘积是容易计算的,但要分解两个大素数的乘积,求出它们的素因子则是非常困难的.它属于NP一完全类

2.2 RSA算法

密钥的产生

①计算n用户秘密地选择两个大素数F和9,计算出n=p*q, n称为RSA算法的模数明文必须能够用小于n的数来表示实际上n是几百比特长的数

②计算 (n)用户再计算出n的欧拉函数(n)二(P-1)*(q-1),(n)定义为不超过n并与n互素的数的个数③选择。。用户从[(0, (n)一1〕中选择一个与}(n)互素的数B做为公开的加密指数

4计算d。用户计算出满足下式的d : ed = 1 mal (n)(a与h模n同余.记为a二h mnd n)做为解密指数。

⑤得出所需要的公开密钥和秘密密钥:公开密钥(加密密钥):PK={e,n} ;

秘密密钥(解密密钥);SK=(d,n}

加密和解密过程如下:

设消息为数M(M<n)

设C=(Md)mod n,就得到了加密后的消息C;

设M=(Ce)mod n,就得到了解密后的消息M。其中,上面的d和e可以互换

由于RSA算法具有以下特点:加密密钥(即公开密钥)PK是公开信息,而解密密钥(即秘密密钥))SK是需要保密的。加密算法E和解密算法D也都是公开的。虽然秘密密钥SK是由公开密钥PK决定的,但却不能根据PK计算出SK。它们满足条件:①加密密钥PK对明文M加密后,再用解密密钥SK解密,即可恢复出明文,或写为:Dsk(Esk(M))= M②加密密钥不能用来解密,即((D娜e,c}M)) } M③在计算机上可以容易地产生成对的PK和SK}④从已知的PK实际上不可能推导出SK⑤加密和解密的运算可以对调,即:E}(M)(Es}(M)(M))=M所以能够防止身份的伪造、冒充,以及对信息的篡改。

3. RSA用于数字签名系统的实现

RSA竿名讨程如下图2所示:

加密技术论文范文第12篇

关键词:机械制造;精密加工;车床

前言

随着工业制造行业的发展,产品数量、质量、生产工艺、安全等方面均受到了广大群众的高度重视,几年来发展的现代机械制造工艺和精密加工技术得到了行内的认可,两者对传统机械制造工艺的生产成本高、生产效率低、质量不稳定等方面均作出了很好的改善,试论机械制造业和精密加工技术的发展趋势,还需要掌握现代机械制造工艺和精密加工技术的具体内容,这对我国工业事业的发展具有重要作用。

1.现代机械制造工艺及精密加工技术概述

1.1现代机械制造工艺概述

现代机械制造工艺包含两种方式,一种是机器化处理,对原材料进行机械化的切削工艺,完成零件加工,二是使用机械制造工艺辅助完成零件装配,利用电子信息技术、机械加工技术等与机械相融合,达到高质、高量、低消耗的加工目的。现代机械制造工艺在设计、生产、检测、维修等方面均以达到综合运用,提高了生产效率。

1.2机械制造精密加工技术概述

现代社会中的高新科技和工业领域中都不乏有机械制造精密加工技术的存在,例如,航空航天业和精密车床业均采用了机械制造精密加工技术。在使用机械制造精密加工技术的同时,对提高生产效率和增长经济效益等方面均有促进作用。世界各国的工业技术中已经几乎全面实现了机械制造精密加工技术,这也是我国工业发展方向。

2.现代机械制造工艺及精密加工技术分析

2.1现代机械制造工艺

2.1.1现代机械制造工艺理论与技术的发展

二十世纪初,德国就非常重视工艺,出版了许多工艺工作手册,而到了20世纪50年代,苏联许多学者在德国学者研究的基础上,出版了《机械制造工艺学》、《机械制造工艺原理》等著作,把工艺提升到理论高度。在20世纪70年代,形成了机械制造系统和机械制造工艺系统,从此工艺技术成为一门学科。近年来,机械制造加工工艺理论和技术的发展比较快,除传统制造方法外,由于制造精度、表面粗糙度和质量的提高及许多新材料的出现,特别是不少新型产品的制造生产,如计算机、集成电路、印刷线路板等,与传统制造方法有很大的不同,开辟了许多制造工艺的新领域和新方法,主要可分为工艺理论、制造模式、加工方法、制造技术和系统等。机械制造工艺理论包括:精度原理、加工成形机理、相似性原理、优化原理和决策原理等方面。

2.1.2现代机械制造工艺的实践

现代机械制造工艺是在实践生产中不断发展完善的。在机械制造企业生产工艺的过程中,存在许多不稳定的因素,例如,设备、刀具、气候、元时代辅助材料及工艺生产则的情等。工艺产品生产需要与企业的工艺资源相结合,并能够依据实际生产经验进行科学的探索和试验。相反,如果未经实践就容易忽略掉设备、技术、操作人员、生产环境、物流等因素对工艺制造的影响,从而影响实际制造效果。现代机械制造工艺实践的过程包括许多内容,如会签新产品图样、设计新产品的试剂、解决工艺技术问题、做好工艺服务工作等。随着PDM、ERP、CAPP等系统的广泛应用,现代机械制造工艺的流程更加规范,生产效率也得到了提高,同时降低了成本、实现了环保生产。在自动化程度较高的现代机械制造企业,基于先进的科技而进行了工艺设计、工装设计、图样研究构建工艺数据等,从而大大提高了现代机械制造工艺是质量和生产效率,推动了我国机械制造工艺的绿色、环保、可持续发展。

2.2现代机械精密加工技术

为解决普通精密加工技术达不到的高精度加工,现代化机械精密加工技术应运而生。使用现代机械精密加工技术,从“质”和“量”的方面均具有明显的促进作用:“质”方面,以往精密加工技术中有不少技术达不到的精度范围,现代机械精密加工技术对微米、纳米级的原件均能够精密加工,从“质”方面提升了整体加工技术;“量”方面,现代机械精密加工技术的生产率较高,相比以往精密加工技术的生产量高出30%,并且具有不同形状、不同尺寸,使现代机械精密加工技术在各应用领域中均得到了广泛发展。

2.2.1超精密研磨技术

现代工艺中复杂的电路基板、粗糙的硅片若想得到精密加工,使用传统研磨、抛光方法显然无法达到标准,而超精密研磨技术中包含了线修整固着磨料研磨和化学机械研磨等众多高新技术,对原件的加工能够做到极高的精准,并且所需设备较为简单,在各应用领域中均得到了认可[2]。

2.2.2超精细切削技术

使用超精细的切削方法对原件进行加工,采用超高精准度的定位、微进给、微控制等技术对原件进行加工,实现超精密切削工艺。

2.2.3微细加工技术

在人们所用的电子设备中,电子零部件的体积微小、运行频率高、能耗低,对此方面的加工需要超微细离子技术,特别是该技术针对在硅片上的操作更为精准。

3.现代机械制造工艺及精密加工技术特点

现代机械制造工艺和精密加工技术两者之间的联合具有以下特点:①关联性,两者相结合提升了单一工艺的技术,在现代机械制造工艺中,设计的工作环节较多,包括产品研发、设计、生产、售后、管理等,任何一个环节出现错误都将影响以下环节的运行[3]。因此,将精密加工技术的先进性加入到制造工作中,能够提升整个制造流程的质量;②全球性,目前世界各国的工业、经济、文化、政治、科技等方面均朝向全球化发展,现代机械制造工艺和精密加工技术在此背景下得到了迅猛发展,就我国目前来看,使用的现代机械制造工艺和精密加工技术是借鉴了国外先进技术下形成的技术,带动了我国工业加工技术的发展。

4.结论

综上所述,现代工业领域融入现代机械制造技术和精密加工技术是必然发展趋势,也是生产企业提升市场竞争力的关键技术。社会各界应该对该工艺和技术的结合给予高度重视,不断开拓、创新机械制造工艺和精密加工技术,扩展应用领域,推动我国工业事业的发展。

参考文献:

[1]黄静.浅谈现代机械制造技术和加工工艺的应用[J].中国新技术新产品,2013,05(11):73.

加密技术论文范文第13篇

信息安全论文3900字(一):探究计算机网络信息安全中的数据加密技术论文

【摘要】随着近几年网络信息技术的发展,社会生产和生活对网络数据的依赖程度越来越越高,人们对网络信息安全重视程度也随之提升。对于網络信息而言,信息数据安全非常重要,一旦发生数据泄露或丢失,不仅会影响人们正常生活和财产安全,甚至还会影响社会稳定和安全。在此基础上,本文将分析计算机网络信息安全管理现状,探索有效的数据加密技术,为网络环境安全和质量提供保障。

【关键词】计算机;网络信息安全;数据加密技术

引言:信息技术的普及为人们生活带来了许多便利和帮助,但是由于信息安全风险问题,人们的隐私数据安全也受到了威胁。但是,目前计算机网络环境下,数据泄露、信息被窃取问题非常常见,所以计算机网络信息安全保护必须重视这些问题,利用数据加密技术解决此难题,才能维护网络用户的信息安全。因此,如何优化数据加密技术,如何提升网络信息保护质量,成为计算机网络发展的关键。

1.计算机网络安全的基本概述

所谓计算机网络安全就是网络信息储存和传递的安全性。技术问题和管理问题是影响计算机网络安全的主要因素,所以想要提升网络信息安全性能,必须优化信息加密技术和加强信息管理控制,才能为计算机网络安全提供保障。将数据加密技术应用于计算机网络安全管理中,不仅可以提升数据保护权限,限制数据信息的可读性,确保数据储存和运输过程不会被恶意篡改和盗取,还会提高网络数据的保密性,营造良好的网络运行环境。因此,在计算机网络快速发展的环境下,重视网络信息安全管理工作,不断优化数据加密技术,对维护用户信息安全、保护社会稳定非常有利。

2.计算机网络信息安全现状问题

2.1网络信息安全问题的缘由

根据网络信息发展现状,信息安全面临的风险多种多样,大体可分为人文因素和客观因素。首先:网络信息安全的客观因素。在计算机网络运行中,病毒危害更新换代很快,其攻击能力也在不断提升,如果计算机防御系统没有及时更新优化,很容易遭受新病毒的攻击。例如,部分计算机由于系统长时间没有升级,无法识别新木马病毒,这样便已遗留下一些安全漏洞,增加了信息安全风险。同时,部分计算机防火墙技术局限,必须安装外部防护软件,才能提升计算机网络防护能力。其次:网络信息安全的人文因素。所谓人为因素,就是工作人员在操作计算机时,缺乏安全防护意识,计算机操作行为不当,如:随意更改权限、私自读取外部设备、随意下载上传文件等等,严重影响了计算机网络数据的安全性,涉密数据安全也得不到保障。例如,在连接外部设备时,忽视设备安全检查工作,随意插入电脑外部接口,容易导致计算机感染设备病毒,导致计算机网络信息安全受到威胁。

2.2计算机网络信息安全技术有待提升

信息安全是计算机网络通信的重要内容,也是计算机网络通信发展必须攻击的难题。随着信息技术的发展,我国计算机信息安全防御技术也在不断创新升级,能够有效应对病毒冲击危害,但是相比先进国家而言,我国计算机信息技术起步较晚,网络信息安全技术也有待提升。例如,根据我国计算机网络信息安全现状,对新病毒的辨识能力和清除能力较弱,无法有效控制病毒侵害,这对信息安全保护和系统运行都非常不利。因此,技术人员可以借鉴他国安全技术经验,构建出针对性的信息安全防护技术,优化计算机系统安全性能,才能为网络信息安全传输提供保障,避免造成严重的安全事故。

3.数据加密技术分析

3.1对称加密技术

所谓对称机密技术,就是指网络信息传输中所采用的密钥功能,利用加密和解密的方式,提升传输数据的安全性,常常被应用于电子邮件传输中。同时,对称加密技术具有加密和解密密钥相同的特征,所以密钥内容可以通过其中一方进行推算,具备较强的可应用性。例如,在利用电子邮件传输信息时,传输者可以采用加密算法将邮件内容转化为不可直接阅读的密文,待邮件接收者收到数据信息文件后,再采用解密算法将密文还原可读文字,既可以实现数据传输加密的目的,又能确保交流沟通的安全性。从应用角度来讲,对称加密技术操作简捷方便,并且具备较高的安全度,可以广泛应用于信息传输中。但是,对称加密技术欠缺邮件传输者和接收者的身份验证,邮件传输双方密钥有效的获取途径,所以也存在一定的安全风险。

3.2公私钥加密技术

相对于对称加密技术而言,公私钥加密技术在进行信息加密时,加密密钥和解密密钥不具备一致性,密钥安全性更佳。在公私钥加密技术中,信息数据被设置了双层密码,即私有密码和公开密码,其中公开密码实现了信息数据加密工作,并采用某种非公开途径告知他人密钥信息,而私有密码是由专业人员保管,信息保密程度高。因此,在采用公私钥加密技术时,需要先对文件进行公开密钥加密,然后才能发送给接收者,而文件接收者需要采用私有密钥进行解密,才能获取文件信息。在这样的加密模式下,网络数据信息安全度提升,密码破解难度也进一步加大,但是这种加密方式程序较为复杂,加密速度慢,无法实现高效率传播,加密效率相对较低,不适用于日常信息交流传输。

3.3传输加密和储存加密技术

在计算机网络信息安全保护中,数据传输加密、储存加密是重点保护内容,也是信息数据保护的重要手段,其主要目的是避免在数据传输过程中被窃取和篡改风险问题。线路加密和端对端加密是两种主要的传输加密方式,实现了传输端和传输过程的信息安全保护工作。例如,传输加密是对网络信息传输过程中的安全保护,通过加密传输数据线路,实现信息传输过程保护,如果想要停止加密保护,必须输入正确的密钥,才能更改数据加密保护的状态。端对端加密技术是在信息发送阶段,对数据信息实施自动加密操作,让数据信息在传递过程中呈现出不可读的状态,直到数据信息到达接收端,加密密码会自动解除,将数据信息转变为可读性的明文。此外,存取控制和密文储存是储存加密的两种形式。在存取控制模式中,信息数据读取需要审核用户的身份和权限,这样既可以避免非法用户访问数据的问题,又能限制合法用户的访问权限,实现了数据信息安全等级分层保护。

4.计算机网络信息安全中数据加密技术的合理应用

4.1数据隐藏技术

在网络信息数据加密保护中,将数据信息属性转变为隐藏性,可以提升数据信息的可读权限,提升信息安全度。因此,将信息隐藏技术应用于网络信息加密工程中,利用隐蔽算法结构,将数据信息传输隐蔽载体中,可以将明文数据转变为密文数据,在确保信息安全到达传输目的地时,再采用密钥和隐蔽技术对数据信息进行还原,将密文数据还原成明文数据。例如,在企业内部区域网络信息传输时,便可以采用数据隐蔽技术控制读取权限,提升网络信息传递的安全性。因为在企业运行模式下,一些企业信息只限于部分员工可读取,尤其是一些涉及企业内部机密、财务经济等数据,所以需要采用隐蔽载体技术,通过密钥将隐藏的提取数据信息。在这样的加密模式下,企業数据信息安全性得到保障,不仅可以实现信息数据高效率传播,还降低了二次加密造成的安全隐患,控制了员工读取权限,对企业稳定发展非常有利。

4.2数字签名技术

相比公私钥加密技术而言,数字签名技术更加快捷便利,是公私钥加密技术的发展和衍生。将数字签名技术应用于网络信息安全中,在数据传输之前,传输者需要先将数据文件进行私有密钥加密,加密方式则是数字签名信息,而数据文件接收者在收到文件信息后,要使用公共密钥解密文件。由此可见,数字签名技术在公私钥加密技术的基础上,增加了权限身份的审核程序,即利用数字签名的方式,检查数据文件传输者的权限和身份,进一步提升了网络信息传输的安全性。同时,在计算机网络信息安全管理中,根据信息数据管理要求,灵活运用对称加密技术、公私钥加密技术和数字签名技术,充分发挥各项加密技术的优势作用,落实数据传输和存储加密工作。例如,针对保密程度较低的数据信息而言,可采用灵活便利的对称加密技术,而对于保密级别较高的数据而言,即可采用数字签名技术进行加密。通过这样的方式,不仅可以保障网络信息传输效率,优化信息传输的安全性能,还可以提升数据加密技术水平,为网络信息安全提供保障。

4.3量子加密技术

随着计算机信息技术的发展,数据加密技术也在不断创新和优化,信息安全保护质量也随之提升。相比以往的数据加密技术而言,量子加密技术的安全性更好,对数据安全控制效果更佳。将量子力学与加密技术进行有效融合,既可以实现数据传输时的加密操作,又能同时传递解密信息,节省了单独的密钥传输操作,加密方式也更加智能化。例如,在网络信息传输中,一旦发现数据传输存在被窃取和被篡改的风险,量子加密技术会及时作出反应,转变数据传输状态,而数据传输者和接收者也能及时了解数据传输状况。这种数据加密方式一旦发生状态转变是不可复原的,虽然有效避免的数据泄漏风险,但可能会造成数据自毁和破坏问题。同时,由于量子加密技术专业性强,并且仍处于开发试用状态,应用范围和领域比较局限,无法实现大范围应用。

5.结束语

总而言之,为了提升计算机网络信息的安全性,落实各项数据加密技术应用工作非常必要。根据网络信息安全现状问题,分析了对称加密、公私钥加密、数据隐蔽等技术的应用优势和弊端,指出其合理的应用领域。通过合理运用这些数据加密技术,不仅强化了数据传输、存储的安全性,营造了良好的网络信息环境,还有利于提升用户的数据加密意识,促进数据加密技术优化发展。

信息安全毕业论文范文模板(二):大数据时代计算机网络信息安全与防护研究论文

摘要:大数据技术的快速发展和广泛应用为计算机网络提供了重要的技术支持,有效提高了社会经济建设的发展水平。计算机网络的开放性和虚拟性特征决定了技术的应用必须考虑信息安全与防护的相关问题。本文介绍了大数据时代计算机网络安全的特征和问题,研究了如何保证网络信息安全,提出了3点防护策略。

关键词:大数据时代;计算机网络;信息安全与防护

进入信息时代,计算机网络技术已经逐步成为人们的日常工作、学习和生活必备的工具,如电子商务、网络办公、社交媒体等。计算机网络相关技术的发展也在不断改变人类社会的生产模式和工作效率,实现全球各地区人们的无障碍沟通。但在网络世界中,信息的传播和交流是开放和虚拟的,并没有防止信息泄露和被非法利用的有效途径,这就需要从技术层面上考虑如何提高计算机网络信息安全。特别是近年来大数据技术的高速发展,海量数据在网络中传播,如何保证这些数据的可靠性和安全性,是目前网络信息安全研究的一个重要方向。

1大数据时代计算机网络信息安全的特征

大数据是指信息时代产生的海量数据,对这些数据的描述和定义并加以利用和创新是目前大数据技术发展的主要方向。大数据的产生是伴随着全球信息化网络的发展而出现的,在这个背景下诞生了大量的商业企业和技术组织,也为各行各业提高生产力水平和改变生产模式提供了有效帮助。大数据时代的网络特征首先是非结构化的海量数据,传统意义上的海量数据是相关业务信息,而大数据时代由于社交网络、移动互联和传感器等新技术与工具快速发展产生了大量非结构化的数据,这些数据本身是没有关联性的,必须通过大数据的挖掘和分析才能产生社会价值;其次,大数据时代的网络信息种类和格式繁多,包括文字、图片、视频、声音、日志等等,数据格式的复杂性使得数据处理的难度加大;再次,有用信息的比例较低,由于是非结构化的海量数据,数据价值的提炼要经过挖掘、分析、统计和提炼才能产生,这个周期还不宜过长否则会失去时效性,数据的技术和密度都会加大数据挖掘的难度;最后,大数据时代的信息安全问题更加突出,被非法利用、泄露和盗取的数据信息往往会给国家和人民群众造成较大的经济社会损失。传统计算机网络的信息安全防护主要是利用网络管理制度和监控技术手段来提高信息存储、传输、解析和加密的保密性来实现的。在大数据时代背景下,网络信息的规模、密度、传播渠道都是非常多样化的和海量的,网络信息安全防护的措施也需要不断补充和发展。目前网络信息安全的主要问题可以概括为:一是网络的自由特征会对全球网络信息安全提出较大的挑战;二是海量数据的防护需要更高的软硬件设备和更有效的网络管理制度才能实现;三是网络中的各类软件工具自身的缺陷和病毒感染都会影响信息的可靠性;第四是各国各地区的法律、社会制度、宗教信仰不同,部分法律和管理漏洞会被非法之徒利用来获取非法利益。

2大数据时代背景下計算机网络安全防护措施

2.1防范非法用户获取网络信息

利用黑客技术和相关软件入侵他人计算机或网络账户谋取不法利益的行为称为黑客攻击,黑客攻击是目前网络信息安全防护体系中比较常见的一类防护对象。目前针对这部分网络信息安全隐患问题一般是从如下几个方面进行设计的:首先是完善当地的法律法规,从法律层面对非法用户进行约束,让他们明白必须在各国法律的范畴内进行网络活动,否则会受到法律的制裁;其次是构建功能完善的网络信息安全防护管理系统,从技术层面提高数据的可靠性;再次是利用物理隔离和防火墙,将关键数据进行隔离使用,如银行、证券机构、政府部门都要与外部网络隔离;最后是对数据进行不可逆的加密处理,使得非法用户即使获取了信息也无法解析进而谋利。

2.2提高信息安全防护技术研究的效率

大数据技术的发展是非常迅速的,这对信息安全防护技术的研究和发展提出了更高的要求。要针对网络中的病毒、木马和其他非法软件进行有效识别和防护,这都需要国家和相关企业投入更多的人力物力成本才能实现。目前信息安全防护技术可以概括为物理安全和逻辑安全两个方面,其中物理安全是保证网路系统中的通信、计算、存储、防护和传输设备不受到外部干扰;逻辑安全则是要保障数据完整性、保密性和可靠性。目前主要的研究方向是信息的逻辑安全技术,包括安全监测、数据评估、拨号控制、身份识别等。这些技术研究的效率直接影响着网络信息安全,必须组织科研人员深入研究,各级监管部门也要积极参与到网络管理制度的建立和完善工作中来,从技术和制度两个方面来提高信息防护技术的研究效率。

2.3提高社会大众的信息安全防护意识

目前各国都对利用网络进行诈骗、信息盗取等行为进行法律约束,也利用报纸、电视、广播和网络等途径进行信息安全防护的宣传教育。社会大众要认识到信息安全的重要性,在使用网络时才能有效杜绝信息的泄露和盗用,如提高个人电脑防护措施、提高密码强度等。各级教育部门也要在日常的教学活动中对网络信息安全的相关事宜进行宣传和教育,提高未成年人的安全意识,这都是有效提高信息安全防护能力的有效途径。

加密技术论文范文第14篇

关键词:信息安全 信息技术 信息隐藏 隐写术

目前,随着因特网的普及、信息处理技术和通信手段的飞速发展,使图像、音频、视频等多媒体信息可以在各种通信网络中迅速快捷的传输,给信息的压缩、存储、复制处理等应用提供了更大的便利。同时,也为信息资源共享提供了条件,目前网络已经成为主要的通讯手段。各种机密信息,包括国家安全信息、军事信息、私密信息(如信用卡账号)等都需要通过网络进行传输,但互联网是一个开放的环境,在其上传输的秘密关系着国家安全、经济发展和个人稳私等方方面面的安全,所以信息安全在当今变得越来越重要。

信息安全的类型

信息安全主要有两个分支:加密技术和信息隐藏。

加密技术(Cryptography)已经为人们所熟悉,广泛应用于各行各业。加密技术研究已有多年,有许多加密方法,但是由于加密明确的告知用户,此文件或其他媒介已经进行过加密,窃密者必将利用各种破解工具进行破解,得到密文。虽然加密长度和强度一再增加,但破解工具也在加强。并且由于计算机性能的飞速发展,使解密时间缩短,所以加密术的使用局限性已见一斑。

信息隐藏,信息隐藏可以追溯到公元1499年,它的历史久远。但是直到20世纪90年代,在IT界,人们才赋予了它新的内容,使之成为继加密技术之后,保护信息的又一强有力的工具。信息隐藏与传统的信息加密的明显区别在于,传统的加密技术以隐藏信息的内容为目的,使加密后的文件变得难以理解,而信息隐藏是以隐藏秘密信息的存在为目标。所以科学技术的发展使信息隐藏技术在信息时代又成为新的研究热点。它既发扬了传统隐藏技术的优势,又具有了现代的独有特性。对于研究信息安全方向的学者而言,研究信息隐藏是很有意义的,也是刻不容缓的。

信息隐藏的相关研究

在信息隐藏的研究中,主要研究信息隐藏算法与隐蔽通信。在信息隐藏算法中,主要有空间域算法和变换域算法。最典型的空间域信息隐藏算法为LSB算法,最典型的变换域算法是小波变换算法。由于LSB算法的鲁棒性比较差,相关的研究改进工作都是提高其鲁棒性。对于小波变换算法,由于小波变换具有良好的视频局部特性,加上JPEG2000和MPEG4压缩标准使用小波变换算法取得了更高的压缩率,使得基于小波的变换的信息隐藏技术成为目前研究的热点。一般根据人类的视觉特点,对秘密信息用一定的比例进行小波压缩,压缩过程增加了数据的嵌入容量。然后量化小波系数并转换为二进制流数据。对载体信号同样进行小波变换,选择适当的小波系数及嵌入参数嵌入信息。因为小波有几十种,每种小波的特性不同,参数的选取也不同,所以必须通过实验,筛选出隐蔽性较好、容量较大的方法,从而使不可感知性、鲁棒性与容量三者之间达到平衡。另外,还可以先对偶数点的小波系数与之相邻的两点的小波系数的平均值来替换,这个平均值称为插值,作为秘密数据嵌入的位置。

信息隐藏的实施阶段

一般而言,信息隐藏是分为四个阶段:预处理阶段、嵌入阶段、传输阶段和提取阶段。为了使每个阶段都达到安全,所以必须在预处理阶段,引入加密术中的加密算法。在嵌入阶段,使用基于小波的隐藏信息的算法,在传输阶段,进行隐蔽通信,从而使用传输阶段也是安全的。所以这套信息隐藏的处理方案,将形成一个安全的体系,因此即能隐藏秘密信息的内容,也能隐蔽通信的接收方和发送方,从而建立隐藏通信。

信息隐藏的应用范围

信息隐藏的优势决定了其具有广泛的应用前景,它的应用范围包括:电子商务中的电子交易保护、保密通信、版权保护、拷贝控制和操作跟踪、认证和签名等各个方面。信息隐藏主要分为隐写术和数字水印,数字水印技术主要用于版权保护以及拷贝控制和操作跟踪。在版权保护中,将版权信息嵌入到多媒体中(包括图像、音频、视频、文本),来达到标识、注释以及版权保护。数字水印技术的应用已经很成熟。信息隐藏的另一个分支为隐写术,隐写术的分类的依据不同:可以按隐写系统结构分类:分为纯隐写术、密钥隐写术和公钥隐写术;按隐写空间分类:可以分为信道隐秘、空域隐写、变换域隐写;按隐写载体分类可以分为文本隐写、语音隐写、视频隐写和二进制隐写。

信息隐藏技术的现实意义

在网络飞速发展的今天,信息隐藏技术的研究更具有现实意义。将加密技术融合到信息隐藏技术中来,并将信息隐藏中的子分支数字水印中的经典算法加以改进也融合进信息隐藏技术,使整个信息隐藏过程达到理论上的最高安全级别。所以基于算法的隐蔽通信研究具有不可估量的现实意义。

信息隐藏技术是近几年来国际学术界兴起的一个前沿研究领域。特别是在网络技术迅速发展的今天,信息隐藏技术的研究更具有现实意义。目前,为保证数据传输的安全,需要采用数据传输加密技术、信息隐藏技术、数据完整性鉴别技术;为保证信息存储安全,必须保证数据库安全和终端安全。信息安全的研究包括两个主要研究方向:信息加密与信息隐藏。在信息安全的研究理论体系和应用体系中,密码技术已经历了长期的发展,形成了较完整的密码学理论体系,有一系列公认的、经典的可靠的算法,然而,在现代信息科学技术的条件下的信息隐藏,虽然可以追溯到公元前,但其完备的理论体系还尚未建立。信息隐藏与传统的信息加密有明显的区别,传统的密码术以隐藏信息的内容为目的,使加密后的文件变得难以理解,而信息隐藏是以隐藏秘密信息的存在为目标。

作为网络环境中的新的信息安全技术,信息隐藏方法的研究及应用在学术和军事、政务方面倍受关注,国际上已经召开了几届信息隐藏学术会义,国际会议先后在1996年在英国剑桥、1998年在美国波特兰、1999年在德国雷斯顿,2001年在美国匹兹堡召开。信息隐藏方面的研究越来越深入。另外,在国际上,剑桥大学、IBM研究中心,NEC美国研究所、麻省理工学院等许多科研单位都成立了专门的部分进行这一领域的研究。欧洲委员会也对相应的研究项目进行深入研究。国际化标准组织也提出了MPEG-4的框架,允许方便的将视频编码与加密技术和水印技术结合起来。

在国内,对信息隐藏也给予了高度重视。中国科学院自动化所、清华大学、北京大学、北京邮电大学网络安全中心等都与国际同步正在进行许多高水平的研究。1999年在我国何德全院士、周仲义院士、蔡吉人院士与有关应用研究单位在北京联合发起召开了我国第一届信息隐藏学术会议,2000年在北京,2001年在西安、2002年在大连分别举行了会议。在2004年,广州中山大学举行了全国第五届信息隐藏学术年会,在2006年,将在哈尔滨工业大学举行第六届信息隐藏学术年会。另外,在2004年国家自然科学基金课题中,信息工程大学的平建西教授申请了信息隐藏的国家自然科学基金课题并得到了资助。

信息隐藏的计算和技术实施策略

在信息隐藏算法中,主要有空间域算法和变换域算法。最典型的空间域信息隐藏算法为LSB算法。LFTurnet与RGVan利用LSB算法将信息隐藏在音频和数字图像中。Bender提出了通过修改调色板统计信息来嵌入秘密数据库的隐藏算法。Patchwork方法采用随机技术选择若干对像素,通过调节每对像素的亮度和对比度来隐藏信息,并保证这种调整不影响图像的整体观感。丁玮从数字图像的透明叠加方法出发,提出了基于融合的数字图像信息隐藏算法。并根据七巧板的游戏原理,提出了隐藏数字图像的Tangram算法,Marvel将数字图像看作嗓声,提出了空间域中的扩频数据隐藏方法。Lippman使用信号的色度,提出了在国家电视委员会的色度信道中隐藏信息的方法。Liaw和Chen提出了将秘密图像嵌入到载体图像中的灰度值替方法,为了适合灰度值替换,Wu和Tsai提出了使用图像差分的改进方法;Wu和Tsai还在人类视觉模型的基础上,提出了在数字图像中嵌入任何类型数据的数据隐藏方法;Tseng和Pan提出了一种安全的、大容量的数据隐藏算法;Provos通过随机嵌入和纠错编码的方法改进了信息隐藏的性能,Solanki等从信息论的角度出发,将视觉标准引入到通过量化来嵌入信息的方法,并由此提出了一种高容量的信息隐藏算法。

在变换域算法中,正交变换的形式可以有离散傅立叶变换(DFT),离散余弦变换(DCT),小波变换(Wavelet)等。由于变换域算法利用了人眼对于不同空间频率的敏感性,在适当的位置嵌入信息具有更好的鲁棒性和不可觉察性。容量也较高,所以变换域隐藏算法比空间域算法复杂。

最具代表性的变换域算法是Cox在1995年提出的扩频算法。Andreas Westfel和Pitas分别提出了通过模拟图像水平或者垂直移动将秘密数据嵌入到图像的DCT系统的数据隐藏算法,管晓康提出了Pitas算法的改进算法,克服了该算法中嵌入数据量小的缺点。丁玮成功地将该算法修改并在小波域中运算该算法,并通过置乱技术改进了Pitas算法中的随机数策略,消除了误判的可能性。

Cabin提出了数据隐藏的信息论模型,并引入了概念e-安全。如果载体信号和载密信号的概率分布的相关熵小于e,那么称数据隐藏系统是e安全的。如果e=o,那么数据隐藏系统是绝对安全的。Mittelholzer从信息论的角度出发,提出了数据隐藏算法,并以互信息来描述数据隐藏算法的安全性与鲁棒性。Shin在Cabin信息论模型的基础理论上,提出了在任何满足条件的载体数据中嵌入秘密数据的绝对安全的一次哈希数据隐藏算法。Zollner等提出的安全模型也是利用信息理论来衡量数据隐藏系统的安全性。Sunlivan也从信息论的角度出发,对数据隐藏的安全性进行了分析。

加密技术论文范文第15篇

【关键词】网络安全防火墙PKI技术

一、防火墙技术

(1)包封过滤型:封包过滤型的控制方式会检查所有进出防火墙的封包标头内容,如对来源及目地IP、使用协定、TCP或UDP的Port等信息进行控制管理。现在的路由器、Switch Router以及某些操作系统已经具有用Packet Filter控制的能力。(2)封包检验型:封包检验型的控制机制是通过一个检验模组对封包中的各个层次做检验。封包检验型可谓是封包过滤型的加强版,目的是增加封包过滤型的安全性,增加控制“连线”的能力。(3)应用层闸通道型:应用层闸通道型的防火墙采用将连线动作拦截,由一个特殊的程序来处理两端间的连线的方式,并分析其连线内容是否符合应用协定的标准。

二、加密技术

信息交换加密技术分为两类:即对称加密和非对称加密。

1、对称加密技术。在对称加密技术中,对信息的加密和解密都使用相同的钥,也就是说一把钥匙开一把锁。这种加密方法可简化加密处理过程,信息交换双方都不必彼此研究和交换专用的加密算法。如果在交换阶段私有密钥未曾泄露,那么机密性和报文完整性就可以得以保证。对称加密技术也存在一些不足,如果交换一方有N个交换对象,那么他就要维护N个私有密钥,对称加密存在的另一个问题是双方共享一把私有密钥,交换双方的任何信息都是通过这把密钥加密后传送给对方的。如三重DES是DES(数据加密标准)的一种变形,这种方法使用两个独立的56为密钥对信息进行3次加密,从而使有效密钥长度达到112位。

2、非对称加密/公开密钥加密。在非对称加密体系中,密钥被分解为一对(即公开密钥和私有密钥)。这对密钥中任何一把都可以作为公开密钥(加密密钥)通过非保密方式向他人公开,而另一把作为私有密钥(解密密钥)加以保存。公开密钥用于加密,私有密钥用于解密,私有密钥只能有生成密钥的交换方掌握,公开密钥可广泛公布,但它只对应于生成密钥的交换方。非对称加密方式可以使通信双方无须事先交换密钥就可以建立安全通信,广泛应用于身份认证、数字签名等信息交换领域。非对称加密体系一般是建立在某些已知的数学难题之上,是计算机复杂性理论发展的必然结果。最具有代表性是RSA公钥密码体制。

三、PKI技术

PKI(Publie Key Infrastucture)技术就是利用公钥理论和技术建立的提供安全服务的基础设施,PKI技术是电子商务的关键和基础技术。

1、认证机构。CA(Certification Authorty)就是这样一个确保信任度的权威实体,它的主要职责是颁发证书、验证用户身份的真实性。由CA签发的网络用户电子身份证明―证书,任何相信该CA的人,按照第三方信任原则,也都应当相信持有证明的该用户。CA也要采取一系列相应的措施来防止电子证书被伪造或篡改。构建一个具有较强安全性的CA是至关重要的,这不仅与密码学有关系,而且与整个PKI系统的构架和模型有关。

2、注册机构。RA(Registration Authorty)是用户和CA的接口,它所获得的用户标识的准确性是CA颁发证书的基础。RA不仅要支持面对面的登记,也必须支持远程登记。要确保整个PKI系统的安全、灵活,就必须设计和实现网络化、安全的且易于操作的RA系统。

3、密钥备份和恢复。为了保证数据的安全性,应定期更新密钥和恢复意外损坏的密钥是非常重要的,设计和实现健全的密钥管理方案,保证安全的密钥备份、更新、恢复,也是关系到整个PKI系统强健性、安全性、可用性的重要因素。

四、安全技术综合应用研究热点

电子商务的安全性已是当前人们普遍关注的焦点,目前正处于研究和发展阶段,它带动了论证理论、密钥管理等研究,因此网络安全技术在21世纪将成为信息网络发展的关键技术,21世纪人类步入信息社会后,信息这一社会发展的重要战略资源需要网络安全技术的有力保障,才能形成社会发展的推动力。

参考文献

[1]步山岳,张有东.计算机安全技术.高等教育出版社,2005年10月

精品推荐