美章网 精品范文 偏置电路设计范文

偏置电路设计范文

前言:我们精心挑选了数篇优质偏置电路设计文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

第1篇

关键词: 硅PIN光电二极管; 偏置电路; 电子滤波器; 闪烁探测器

中图分类号: TN710?34 文献标识码: A 文章编号: 1004?373X(2014)13?0159?03

Design and application of low?price bias circuit for Si?PIN photodiodes

JIA Mu?lin1, ZENG Guo?qiang2, MA Xiong?nan3

(1. Guangxi Radiation Environment Supervision and Management Station, Naning 530222, China; 2. Chengdu University of Technologe, Chengdu 610059, China;

3. China Institude For Radiation Protection, Taiyuan 030006, China)

Abstract: The Si?PIN photodiodes have been more and more widely used in the areas of weak light signal detection, but the result of detection is more likely affected by bias voltage and other factors. The high?stability bias voltage with low ripple coefficient is essential for accurately achieving the detected weak light singal. A Si?PIN photodiode bias circuit based on TPS61040 DC/DC boost converting chip was design and applied to the weak light signal detection of the NaT (Tl) scintillator. A good result was achieved.

Keywords: Si?PIN photondiode; bias circuit; electronic filter; scintillator detector

硅PIN光电二极管(以下简称SPD)作为一种成熟的半导体光电器件,因其特有的优势在自控、通信、环保、医疗及高能物理研究等领域得到了越来越广泛的应用,但其使用极易受所加偏置电压的影响。因此,在实际应用中对SPD上所加的偏置电压的要求非常苛刻,必须具备很低的纹波系数和良好的稳定性,这也就造成常用的SPD偏置电路成本较高。针对这一情况,本文将介绍一款基于TPS61040电压转换芯片的偏压电路设计,并将其应用于NaI(Tl)+SPD辐射探测器的信号检测。

1 硅PIN光电二极管与偏置电压关系

1.1 SPD及其偏置电压简介

与普通光电二极管相比,SPD是由中间隔着本征层的PN结构成。当在PN两端外加反向偏压时,内建电场几乎集中于I层,使得耗尽层厚度加大,增大了对光子的吸收和转换有效区域,提高了量子效率;同时,PN节双电层间距加宽,降低了器件本身的结电容,如图1所示。使得器件的响应速度提高,有利于在微弱光脉冲信号检测领域的运用;此外,结电容的降低减小了信号电荷在其上的分配,有利于为前置放大电路输入更多的原始信号电荷。

图1 偏置电压与结电容关系

1.2 偏置电压电平选择

但偏置电压不是越高越好,原因是SPD的暗电流随偏压的增加而增加,如图2所示。当偏压超过一定值时,暗电流随偏压呈线性增长趋势,使得整个系统的信噪比迅速降低。在进行微弱光信号检测时,若所加偏压自身噪声较大,将直接影响到有用信号的提取,甚至可能将有用信号完全湮没。综合SPD的特性曲线和实验结果,一般将偏置电压设定在24 V。

图2 偏置电压与暗电流关系

2 偏置电路设计

2.1 升压芯片确定

通常,便携式仪器配用的电源电压为较低,无法满足SPD偏置电压电平24 V的要求,须进行升压处理。目前,主要选用APD(雪崩光电二极管)专用升压芯片(如:MAX5026,MAX1932等)构成SPD的偏置电路,但成本相对较高,且这类芯片升压幅度远超过SPD的需要,造成了一定的浪费。因此,设计一款低成本的SPD专用偏置电路是非常有必要的。

本文选用的TPS61040升压芯片是一款由德州仪器公司生产的电感式DC/DC升压转换器,其主要特点是价格低、功耗低、转换效率高。该芯片采用脉冲频率调制(FPM)模式,开关频率高达1 MHz;输入电压范围为1.8~6 V,可选用的供电电源较为丰富,适用性强;最高输出电压可达28 V,可满足绝大部分SPD的偏压电平要求。

2.2 TPS61040工作原理

TPS61040的内部功能结构如图3所示,其脉冲频率调制模式(PFM)工作原理如下:转换器通过FB脚检测输出电压,当反馈电压降到参考电压1.233 V以下时,启动内部开关,使电感电流增大,并开始储能;当流过外部电感的电流达到内部设定的电流峰值400 mA或者开关启动时间超过6 μs时,内部开关自动关闭,电感所储能量开始释放;反馈电压低于1.233 V或内部开关关闭时间超过400 ns,开关再次启动,电流增大。通过PFM峰值电流控制的调配,转换器工作在不间断导通模式,开关频率取决于输出电流大小。这种方式使得转换器具有85%的转换效率。芯片内部集成的MOSFET开关,可使输出端SW与输入端隔离。在关断过程中输入电压与输出电压间无联接,可将关断电流减小到0.1 μA量级,从而大大降低了功率。

图3 TPS61040的功能模块

2.3 升压电路设计

本文设计(图4所示)采用5 V电池作为电源,输出电压+24.5 V。根据TPS61040的数据手册可知反馈电平决定了输出电压的值,反馈电平又与分压电阻直接相关,输出电压[Vout]可按如下公式计算:

[Vout=1.233*(1+RTRB)]

式中:[RT]和[RB]分别为上下分压电阻,在电池供电的情况下,二者的最大阻值分别为2.2 MΩ与200 kΩ。在选择反馈电阻时,应综合考虑阻值与反馈电平的关系,较小的阻值有利于减小反馈电平的噪声,本文中[RT]和[RB]分别选用阻值1 MΩ与51 kΩ的电阻,根据上式可得输出的电压电平为24.5 V。为减小输出电压的纹波,可在[RT]上并联一补偿电容。三极管[Q1]用于隔离负载与输入电源。

图4 升压转换器原理图

2.4 滤波电路设计

根据PFM模式的工作原理可知,流过储能电感的电流呈现周期性的变化,从而将其内贮存的磁能转化为电能输出,造成了偏置电路的输出电平也呈周期性变化,波形近似为三角波,如图5所示。这使得升压转换器输出的电压不能直接用于的SPD偏置。

要得到理想的偏置电压,必须对其进行处理。本文采用电子滤波器来完成偏压的滤波,电路原理如图6所示。根据电子滤波器有放大电容的作用,可以用容量和体积均较小的电容来实现超大电容的功能,基本设计如图6所示。通过滤波处理后,成功将偏置电压的纹波控制在2 mV以内(见图7),且整个偏压电路体积较小,而且成本较低。

图5 升压转换器输出电压波形

图6 偏压滤波原理图

图7 滤波后的偏压

3 应用实例

本文选用的SPD为滨淞公司S3590?08型大面积硅PIN光电二极管,可用于闪烁探测器中光电转换功能,选用的闪烁体为一块体积Φ30 mm×25 mm的圆柱形NaI(Tl)晶体,通过一块聚光光锥将NaI(Tl)晶体发出微弱光线汇集到S3590?08的受光面进行探测,并采用本文设计的升压电路为S3590?08提供偏压;选用的放射源核素为Cs?137。SPD输出信号经过前置放大器(原理如图8所示)处理后,输出信号的波形如图9所示,可见本文设计的偏置电路基本达到辐射信号检测的需要。

图8 前放原理图

图9 加有偏压核脉冲信号波形

4 结 论

本实验表明,基于TPS61040升压转换器的升压电路是可以用作对偏压要求较高的SPD的偏置电源,与采用APD专用偏压芯片构成的同类电路相比,成本更低,且电路结构简单、功耗较低、体积较小,具有一定的实际运用价值。

参考文献

[1] 尼曼(美).半导体物理与器件[M].3版.北京:电子工业出版社,2005.

[2] 凌球,郭兰英.核辐射探测[M].北京:原子能出版社,1992.

[3] 侯振义.直流开关电源技术及应用[M].北京:电子工业出版社,2006.

[4] 薛永毅.新型电源电路应用实例[M].北京:电子工业出版社,2001.

第2篇

关键词:MSP430 压控电流源 模拟闭环控制 空载过压保护

中图分类号:TM615 文献标识码:A 文章编号:1007-9416(2013)10-0003-02

在现实的生活中,电源类产品在出厂前,必须经过性能测试,合格后才能投入市场。在以往,通常采用静态负载,如电阻箱等可变阻值的电阻来模拟负载,但其测试精度低,方法不易操作,给电源的测试带来了困难。为了解决这个问题,人们设计了一种电子负载设备,可以有效改良电源测试的方法。电子负载主要依靠电子元器件吸收并消耗电能,其体积较小,一般采用功率半导体器件作为载体,使得负载易于调节和控制,并能达到很高的精度和稳定性。本文在系统设计中采用TI公司的单片机MSP430,该单片机工作电流低,能有效降低功耗,具有16位数据的处理能力,且内置硬件乘法器,乘除法运算都为单周期指令,运行速度更快,片内集成资源丰富,为系统设计提供了可能。同时通过测量电路实时监控被测电源的相关数据,并通过LCD显示屏,显示测得的数据。本文设计简单易行,系统运行稳定可靠。

1 系统设计的基本原理

1.1 系统设计方案

系统设计利用单片机MSP430作为核心控制器,以44矩阵键盘设定单片机输出电流值,单片机将相应的数字信号输出给D/A芯片处理,将键盘设定输出的电流值从数字电压信号转换为模拟电压信号,再经恒流控制和电流放大,将产生的信号接入被测电源的输入端(电源的正极)。被测电源的实际输出电流(电源的负极)再经过采样电阻形成电压信号经过A/D信号转换和电压检测,将数字信号输入单片机进行相应的程序处理,再经LCD液晶屏显示。

在电路的设计过程中,为减少误操作给系统硬件带来的破坏,我们也设计了空载和过载报警电路。当系统中没有接入被测电源或者检测的电流值超出一定范围,通过蜂鸣器报警和高亮LED的闪烁,引起使用者足够的注意。以上功能设计的系统框图如图1所示。

1.2 系统硬件设计的实现

电路设计中,D/A转换器我们采用的是8位的数模转换芯片DAC0832,其引脚结构如图2所示。

DAC0832内部含有两级输入寄存器,使其具备双缓冲、单缓冲和直通三种输入方式,以便适用于多种电路设计需要。D/A转换结果采用电流形式输出,再通过选用合适的线性运算放大器实现模拟信号的放大,满足相应的设计需要。同时运放的反馈电阻可通过Rfb引脚端引用片内固有电阻,也可以根据设计需要外接反馈电阻。该芯片的典型应用如图3所示。

本文系统设计的控制芯片采用的是MSP430,反馈电阻采用的是外接电阻,经D/A转换后输出的电流连入集成运算放大器LM324的输入端,进行模拟信号的放大,再经过反馈电路,将相应的模拟信号进行数据处理。而反馈电路运行的稳定性,直接影响着系统工作的精度,作者采用了如图4的硬件设计方式实现反馈电路的功能。

受控电流源采用普通三极管SS8050和大功率三极管3DD15D相结合,通过控制流入大功率三极管3DD15D的基极偏置电压,间接控制输出到负载上的电流大小。在系统的设计调试过程中,我们采用15V电源和负载电阻来替代实际的被测电源,进行相关的参数研究。实际使用中,我们可以去除负载电阻,在15V电源和GND接线处连接被测电源。设计中,我们还需考虑到输入到单片机的电压是经过A/D变换的数字信号,这样才可以实现与MSP430的接口连接,由核心控制器来进行数据的处理。由于MSP430内置A/D转换器,可以完成模拟信号向数字信号的转换,因此降低了系统硬件电路设计的复杂性,有利的节约了开发成本。

实现空载和过载报警电路的方法是测量负载两端电压,由于这两点电压比较高,因此需分压后送A/D测量,分压电阻取值需要较大,以减小对输出电流的影响,当超过额定值时通过主控制器软件程序判断是空载或者过载,电路设计如图5所示。

2 系统设计的软件功能原理

在系统硬件设计的基础上,作者完成了相应的软件程序设计,其程序流程图如图6所示。

在整个硬件系统上电后,首先进行系统初始化,保证各硬件系统运行正常。空载或者过载部分的程序编写可以有效减少因误操作对系统的硬件造成的破坏,在这部分程序中,以容错技术为主,包括:空载报警提示、负载电压过大报警。当电流源没有外接负载或者外接负载超过系统设计的参数极限时,产生相应中断程序,调用声光报警程序和液晶显示程序,提示系统的操作者。

除此之外,程序流程图中的按键扫描程序是重要组成部分,实现的相应功能的子程序较多,其中实现的按键功能有加1键,减1键,退格键,取消键,确定键,保存键和基本的数字功能键。键码的分析中涉及到键盘扫描和编码技术,其中键盘扫描的方式一般有三种:主动查询方式、键盘中断方式和定时中断方式。键盘编码的方式常见的有三种:特征编码法、顺序编码法和反转查表法。本次设计采用主动查询方式对键盘进行扫描,采用反转查表法对键盘编码。

主程序示例。在主程序中,包括基本的头文件和主函数,由于整体程序的复杂性,在本文中我们针对主要的功能函数进行简单说明

3 结语

该简易直流电子负载电流可以在100mA~1000mA范围内进行设定,并且以10mA的步进值,对输出电流大小进行微调,因而可实际应用于检测小功率恒流源的稳定性。在恒流(CC)工作模式下,当电子负载两端电压变化10V时,显示电流值变化小于1%。电子负载还可以检测被测电源的电压与电流,达到设计要求。

作者在接下来的系统研究中,将进一步通过提升硬件性能,改善硬件设计的合理性,提升软件程序的运行效率,提高电流的输出精度,达到更稳定的测试性能。

参考文献

[1] 蒋益飞,周杏鹏.基于 STM32 直流电子负载的设计与实现[J],仪器仪表用户,2012.03/

[2] 童诗白,华成英.模拟电子技术基础[M].北京:高等教育出版社,2001,248-291.

第3篇

关键词:单片机 控制电路 步进电机 驱动模块

中图分类号:TP23 文献标识码:A 文章编号:1007-9416(2016)10-0019-02

1 前言

近年来,步进电机在多个领域得到了开发和应用,并取得了良好的使用效果。步进电机是一种常见的执行元件无论是结构还是操作方法,都比较简单,其性能也与工业生产控制要求相适应,在工业技术中对其进行应用,已是一种既定的趋势。步进电动机以其显著的特点,在数字化制造时挥着重大的用途。与此同时步进电机调控也发生了相应的升级和转变,本文对单片机和步进电机进行同步应用,以控制软、硬件,不断提高步进电机工作效率。

2 单片机的应用意义及原则

2.1 单片机的应用意义

单片机与步进电机进行同步应用,既能够满足工业生产要求,又是步进电机电路设计过程中的基本诉求。单片机的性质是集成电路芯片,以具体技术为依托,对中央处理器、随机存储器、只读存储器、中断系统和定时器等子系统功能进行实现。它能够对数据信息进行收集、分析和处理,在步进电机控制系统中极具应用优势,达到良好的应用效果。

首先,提高步进电机性能。依据实际情况,对反应式、永磁式和混合式等步进电机类型进行合理选择,充分发挥它的设计功能,适应社会需要。如果对该三种反应原理进行单一应用,步进机将丧失其整体性能,也会对步进电机的工作质量产生不同程度的影响,使它的应用效果大打折扣。单片机能够依据步进电机的工作环境、运动特性、控制性能和实际功用等,对它进行局部性的优化和升级,以补强步进电机控制系统整体,实现步进电机结构层面上的一体化,充分发挥它的使用性能,为工业生产提供物质及技术支持。

其次,降低步进电机维护及保养成本,节省资金。步进电机的材质一般比较昂贵。接收电信号脉冲之后,长期工作周期背景下,运动轨迹会发生明显变动。对步进电机的使用效果和结构产生直接性影响,产生裂纹或在记录过程中出现失误,使步进电机维护更加困难。在实际应用中需要在特定周期内,对步进电机进行维护和保养,确保其具备良好的应用效果及安全性。单片机能够从结构和功能上对步进电机进行协调,使电机不再受局部区域干扰,避免出现运动差错,对步进电机的维护和保养成本进行有效控制,实现资源节约。

2.2 单片机在步进电机电路中的实用性原则

设计单片机步进电机控制系统的时候,需要考虑资金要素,要依实际情况,对设计成本进行有效控制,减少不必要的资金浪费,使单片机在步进电机电路中得到充分应用。

3 步进电机概述

3.1 步进电机发展

步进电机别名阶跃电动机或脉冲电动机,它能够对脉冲信号进行转换,使其成为角位移或直线位移电机,也使它的分析过程更加便利。该种步进电机发展较早,无论是位移量与脉冲数,还是位移速度与脉冲频率都呈现正相关。

步进电机的最初研发时间是上世纪二十年代,距今已有很长年限。上世纪五十年代,人们开始在步进电机上对晶体管技术进行应用,实现了对步进电机的数字化控制,使其控制过程更加快捷便利。此后,研究人员再次对步进电机性能进行升级和改善,使其具备分解性、响应性、精度性和可依赖性等多方面优势。加之,微电子技术和计算机技术的发展,自动化控制系统中开始对步进电机进行频繁应用,使其逐渐成为机电一体化中的重要执行元素。步进电机的优势非常明显,它既能够提升工作效率,实现自动化,也能够使位置控制更加快捷、准确,不断提高生产效率,实现经济效益最大化[1]。

步进电机广泛应用在生产实践的各个领域。它最大的应用是在数控机床的制造中,因为步进电机不需要A/D转换,能够直接将数字脉冲信号转化成为角位移,所以被认为是理想的数控机床的执行元件。早期的步进电机输出转矩比较小,无法满足需要,在使用中和液压扭矩放大器一同组成液压脉冲马达。随着步进电动机技术的发展,步进电动机已经能够单独在系统上进行使用,成为了不可替代的执行元件。比如步进电动机用作数控铣床进给伺服机构的驱动电动机,在这个应用中,步进电动机可以同时完成两个工作,其一是传递转矩,其二是传递信息。步进电机也可以作为数控蜗杆砂轮磨边机同步系统的驱动电动机。除了在数控机床上的应用,步进电机也可以并用在其他的机械上,比如作为自动送料机中的马达,作为通用的软盘驱动器的马达,也可以应用在打印机和绘图仪中等等。

3.2 步进电机的工作原理

定子和转子是步进电机的主要元件。正常工作状态下,如果有电流经过,定子绕组会产生一个矢量磁场,继而对转子产生带动,使其在具体作用下旋转,转子和定子的磁极磁场方向会发生偏差,形成相应的角度。步进电机主要对通过定子绕组的电流进行支配,实现转子旋转角度控制。一旦输入脉冲信号,转子即发生偏转,即步距角。完成脉冲信号给出规律设定之后,电流的通过将会更具规律性,而转子也会有规律的进行持续转动,对电机进行带动,使步进电机实现工作。如图1所示,步进电机结构。

传统电动机的转动具有持续性特征,控制难度相对较大。当前的步进电动的驱动方式是数字信号,能够依据实际情况,对它的定位和运转等使用状态进行有效调节。我们对输入脉冲的电机绕组通电顺序、频率和数量等进行合理调整,对步进电机接受脉冲信号而旋转指定的角度进行科学合理的指挥,使其满足最初诉求。如今,步进电机的正常运行得益于脉冲信号。如果没有输入脉冲信号,步进电机将处于定位状态。单片机能够对步进电机这一特性进行有效控制。对单片机和步进电机进行同步应用,有助于提高其生产效率。传统电动机的主要功用是能量转换,而步进电机则作为电路控制元件存在,极具精确性,对人们日常生产和生活具有正向性影响。

4 基于单片机控制步进电机电路的设计

步进电机可以以硬件系统实现控制。但是,基于市场因素考虑,硬件系统不具备经济性,而它的各项功能也不具备适用性。一旦发生设计变更,则需要对硬件电路进行整体性修改,加大了工作负担,很难实现便利性。单片机具备可直接编程优势,能够对运算功能进行有效执行,在具体应用过程中,可对步进电机进行适应性控制,对具体的转向、步数和速度等进行合理调节。借助软件的更改,能够满足不同设计诉求。设计人员对显示电路和键盘电路进行有效结合,能够进行人机交换,最大程度降低外部干扰,使其更加可靠、高效。

4.1 系统硬件设计

4.1.1 单片机最小系统

电路设计中离不开单片机最小系统设计,它是步进电机电路的起始部分。主要功能是生成步进电机转动需要的脉冲,并对其加以控制。我们可以借助单片机的软件编程功能,对步进电机所需要的信号进行输出,使单片机输出脉冲数与步进电机旋转角度呈现正相关,单片机输出脉冲频率与步进电机转动速度也呈现正相关。同时,单片机也能够对电流值进行有效处理,并借助数码管明确显示电机的转速和方向。

单片机的主要模块有复位电路和晶体振荡电路。如图2所示,单片机最小系统线路图。

P0口主要对数码管显示情况进行控制,使其显示结果更加明确,且极具准确度;P1口着重控制步进电机中单片机的编程,使芯片处于良好的读写状态;P2口作为数码管位选,对公共端工作进行有效控制。同时,它也能够对扫描电路键盘工作情况进行合理控制。P3口着力于模数转化成芯片的工作控制[2]。

4.1.2 数码管显示电路

数码管显示模块的主要显示内容有步进电机选择速度、旋转方向、步进电机电流通过情况。该设计中,借助数码管对设计进行显示,直接点亮数码管,实现位选部分,对单片机控制端的地输出电压问题进行有效控制。因而,需要将辅助三极管添加到位选和单片机控制端。

4.1.3 串口通信模块

串口通信模块的应用原理是对计算机和单片机进行连接,实现二者之间的信息交互和流通。它的应用原理是借助计算机对程序进行编程,然后对程序进行复制,在单片机芯片中对其进行应用。

4.1.4 电机驱动模块

步进电机的信号功率比较小,很难对电机进行驱动,使其运行。因此要添加电机驱动模块,使步进电机信功率不断放大。集成的驱动芯片价格比较低,控制难度相对较小,可以将其作为核心元件应用到电机驱动电路设计中。

如图3所示,该电机驱动电路中,电机驱动核心由驱动芯片L298和其周围的电路组成,L298N的管脚IN1,IN2,IN3,IN4和ENA,ENB与单片机的I/O端口P1口的六个管脚依次连接相连,接收脉冲信号。L298N的OUT1,OUT2和OUT3,OUT4之间可分别接电动机的一相。其中IN1,IN2,IN3,IN4管脚接输入控制电平,控制电机的正反转。ENA,ENB控制使能端,控制电机的停转。而控制步进电机的运行速度只要控制系统发出时钟脉冲的频率或换相的周期,即在升速过程中,使脉冲的输出频率逐渐增加;在减速过程中,使脉冲的输出频率逐渐减少。该种连接模式和驱动芯片与单片机和步进电机之间的串联模式相符合,使电路控制和操作更加简单和便利。

4.1.5 独立按键电路

内部电路中的按键是独立的,在单片机端口上对其进行连接。将其作为外部性按键,使内部各项模块具有较好的中断功能,以对步进电机旋转方向进行科学合理的选择,并对它的速度进行科学调控,使其电流呈现良好的现实状态,对步进电机进行合理控制。它属于步进电机电路设计中的辅装置,具有不可或缺的重要作用。

4.2 系统软件设计

软件系统主要为硬件系统电路设计提供依托和支持。依据单片机本身的性质和特点,对系统软件进行合理编程和读写,以充分体现出设计功能,并对其进行合理更改,实现电路控制。系统软件设计与硬件系统电路设计具有紧密相关性。软、硬件中的任一设计模块都直接关乎最终设计效果和步进电机电路的整体运行状态。因而,需对系统软件设计进行合理把控,以提升其整体性能。

4.2.1 红外线编码

遥控器编码形式是32位二进制码组,前16位是用户识别码,能够对不同的电器设备进行有效区分,避免不同机种遥控编码相互干扰。该芯片用户识别码固定高8位地址和低8位地址分别为OBFH和40H,后16位则是8位操作码和它的反码。单片机接收红外线之后,可按以下方式开展解码工作:中断信号产生-EA清零-延时短-等待高电平-延时不足4.5ms-再次等待高电平-延时0.84ms-P3.2脚电平值读取,对32位代码进行依次读取,前16位是识别码,后18位中,数据码和数据反码均为8位[3]。

4.2.2 步进电机程序

步进电机程序设计的基本诉求是对旋转方向进行判断,再依据正确的顺序,将其传送给控制脉冲,继而对所需控制步数进行判定,观察其具体传动情况,直至将要求控制步数传送完毕。分别将步进电机和单片机作为具体执行元件和控制器,并将检测元件定义为光敏电阻传感元件背景下的传感器。而手动输入信号则是手动按钮,以红外遥控装置开展遥控操作,对时钟控制和状态显示的步进电机控制系统进行综合限定辅助,使步进电机的手动、自动和遥控多功能操作更加便利,保障其可靠性。

5 程序原理分析

5.1 程序设计思路

依据电路设计,单片机的输入和输出分别为P1口的前6个管脚和P1口的后2个管脚及P2口的前4个管脚。首先,主程序部分向驱动电路输出4路高电平,停转电机。继而对定时器T0的具体工作模式和允许中断位置高电平进行合理设置,将“停转”状态显示点亮,然后进行按键扫描,按下按键之后,实现程序段跳转。如果没有按下按键,即会回归到程序的初始部分。正转部分需对正转状态指示进行点亮,然后执行起始脉冲输出,继而对按键进行扫描,并对不同状态下的执行情况进行合理判断,调配到定时器T0赋初始值子程序,对累加器A中的数值进行累加。几经循环,使步进电机处于正转状态。反转部分的设计过程亦是如此。加速和减速中,对定时时间进行改变,即可实现定时器定时初始值更改。

5.2 设定定时器计数初始值

程序设计中对定时器T0的定时中断进行选用,以实现步进电机细部性时间控制。对T0的定时时间进行更改,即可改变步进电机转速。假定步进电机的步距角为7.5°,转一圈耗费的脉冲数量为48。将转速假设为N(r/min),而每一分钟脉冲数据输送数量为48N,每送一个脉冲信号需要花费的时间为s。

定时器T0的技术初值为。将步进电机最低转速假定为20r/min,最高转速为100r/min,速度级的界定为5r,共17级。

6 结语

步进电机在应用层面极具优越性,在工业设备中已经得到了广泛应用,有助于提高生产质量及效率。我们要结合具体操作背景,对单片机的优越性进行重点分析,在步进电机电路控制系统中对它进行全面应用,使步进电机工作性能得到充分提升。伴随着不同的数字化技术的发展以及步进电机本身技术的提高,步进电机将会在更多的领域得到应用。

参考文献

[1]洪新华,陈建锋,等.基于单片机的步进电机控制系统的设计[J].湛江师范学院学报,2010,(06):84-87.

[2]令朝霞.基于单片机的遥控步进电机控制的设计[J].自动化技术与应用,2012,(04):78-80+91.

[3]刘建南.基于单片机的步进电机控制系统的设计研究[J].科技广场,2016,(03):61-63.

精品推荐
免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

学术顾问

免费咨询 学术咨询 期刊投稿 文秘服务