美章网 精品范文 功能材料论文范文

功能材料论文范文

前言:我们精心挑选了数篇优质功能材料论文文章,供您阅读参考。期待这些文章能为您带来启发,助您在写作的道路上更上一层楼。

功能材料论文

第1篇

构成物质的原子包含原子核及核外电子,而物质的化学性质由核外电子的结构及电子-离子、电子-电子之间的相互作用决定。因此,研究电子的行为对材料研究具有重要意义。量子力学原理为描述电子的行为提供了理论依据。量子力学的模拟方法是通过求解薛定谔方程来实现的,该方法对单电子体系(如氢原子)行之有效,但对于复杂的多电子体系就无能为力了,原因在于无法求解复杂体系的薛定谔方程。但是,通过一些近似处理便可以得到薛定谔方程解。这些方法习惯上称为第一性原理。最为著名的近似方法有Hartree-Fock近似、密度泛函理论(DensityFunctionalTheory,DFT)和量子蒙特卡罗方法(QuantumMonteCarlo)。其中,应用最为广泛的是由Hohenberg,Hohn和Sham于20世纪60年代提出的DFT方法。DFT方法的优点在于通过电子密度分布来表示系统能量,将多电子问题转化为单电子问题,从而简化了求解过程。经过不断完善,DFT方法已成为计算固体物性的首选方法。此外,基于DFT原理,研究人员还发展了第一性原理分子动力学理论及含时密度泛函,拓展了第一性原理的应用范围,使其在材料、医学、生物等方面的研究中起到举足轻重的作用。

2材料原子结构建立过程

在已知晶体结构信息条件下,在MS中可采用多种方法建立原子的构型。晶体结构的信息可以通过晶体结构数据库软件查询,对于一些复杂的晶体结构,可通过日本国立材料研究中心数据库(NIMS)等查询。

MS中构建晶体结构一般需要用到的信息有:晶格常数,晶体结构所属空间群或空间群号,晶胞中的原子占位。纳米二氧化钛作为一种新型多功能材料,性质非常优良,应用十分广泛,目前国内外的许多研究选用其作为研究对象。它主要包括金红石型、锐钛矿型和版钛型三个晶型。其中锐钛矿型纳米二氧化钛在常温下是稳定的,主要应用在环保及新材料方面,工业应用前沿广阔。笔者以锐钛矿型TiO2能带计算过程为例,介绍其建立过程。锐钛矿型TiO2为四方晶系,空间群为I41/AMD。每个锐钛矿型TiO2原胞由2个钛原子和4个氧原子组成,初始原胞1×1×1为长方体,如图1a所示。首先选取锐钛矿TiO2晶体2×2×2超级原胞,然后通过计算得到体系的最小化电子能量和原子结构的稳定构型,从而对其进行结构优化。经分析,优化后计算得到的TiO2晶体的晶格参数a,b和c与文献报道实验测试值及其他理论计算值相似(见表1)。为了考查TiO2表面原子与吸附氧之间的反应过程,在完成块体优化后,我们切出了TiO2的三个主要的低指数面(100),(001)和(101)(如图1所示)。其中(101)面为锐钛矿型TiO2的最稳定晶面,亦为锐钛矿TiO2中最主要的晶面,约占94%以上[11-13],对该表面的研究具有重要意义。(101)面的性能,在一定程度上可反映出锐钛矿TiO2体相材料的性能。因此,我们主要考虑的锐钛矿TiO2表面模型为(101)面。

对于(101)表层,分别将具有5配位和6配位的两种钛原子表示为Ti5C和Ti6C,具有面氧和桥氧两种氧原子表示为O2C(brightoxygen)和O3C(planeoxygen)(如图1所示)。为了避免交换关联影响,选择真空层厚度为10Å。通过MS软件进行计算。基于DFT理论,采用超软赝势描述价电子的相互作用,采用广义梯度近似(GGA)修正交换关联能,对构建的(101)面进行结构松弛优化。在动能截止能量为340eV及K点值为6×6×1的条件下,进行赝势和电荷密度的自洽迭代循环。计算过程中的能量收敛精度为2×10-5eV,作用在每个原子上的力小于等于0.01eV/nm,内应力小于等于0.1GPa。

除了构建原子模型之外,我们还得到了直观能带结构图(如图2所示)。在教学过程中,运用MS软件,计算过程只需要2~5分钟,学生即可得到能带结构图。横坐标为在模型对称性计算中设定的K点,K点就是倒格空间中的几何点。按照对称性,取纵坐标为能量。因此,能带结构图表示在研究体系中,各个具有对称性位置的点的能量。各个点能量的加和就是整个体系的总能量。采用MS得到的能带结构图,简单易懂、清晰明了,可清楚地看到价带、导带及带隙等具置、形状及长度等。在Castep里,通过给scissors赋值,可增加价带和导带之间的空间,使绝缘体的价带和导带清楚地区分出来。有助于学生更深层次地了解能带结构信息,为更深入的研究提供基础和引导。

3结束语

第2篇

纤维素复合材料有很多种,按照组成成分区分,可分为纤维素/合成高分子复合材料、纤维素/导电聚合物复合材料等;按照功能区分,可分为力学材料、光学材料、电学材料。现简要介绍有特点的功能性纤维素复合材料。

1.1具有光电活性的纤维素复合材料通过相关学者的研究发现,如果将氢氧化钠/尿素水溶液作为溶剂制备纤维素或染料复合膜,那么,这种材料会显示出较强的发光性能或荧光性能。其中,复合膜还有较强的透明性,透光率能够达到90%.试验发现,复合膜的力学性能很高,拉伸强度能够达到138MPa。如果将天然纤维素浸泡在发光溶剂中进行离心干燥,经过一段时间后,能够得到光致发光纸。这种材料不仅展现了发光剂的吸附能力,还提供了复合纸的发光性能。因此,这些纤维素发光材料可以用于发光二极管和包装等领域。

1.2纤维素/碳纳米管复合材料从纤维素先进功能材料的研究、分析中发现,碳纳米管具有非常优秀的力学性能和电性能,受到人们的高度重视,并被广泛应用于电子器件中。随着科技的不断发展,这种材料在生物传感和复合材料中占有重要位置。

2化学法制备纤维素功能材料

因为天然纤维素很难溶解,所以,不适用于工业生产中。它作为一种天然高分子,在性能上也有一定的不足,例如,这种纤维素耐化学腐蚀性很差、强度较低、稳定性不高。所以,相关人员可以通过化学方法改善天然纤维素的缺陷,强化其溶解性和强度,并赋予它新的性能,不断拓展纤维素的应用领域。因为纤维素分子链上有很多羟基,所以,可以利用这种方法制备出各种各样的纤维素衍生物。近几年,纤维素衍生物材料被广泛应用于日用化工、涂料和食品等领域。其中,纤维素的制备方法主要有均相法和非均相法。因为纤维素很难溶解,所以,在工业生产中,都是利用非均相法制备纤维素衍生物。但是,在这个过程中,纤维素衍生物存在结构不统一和不可控的缺点,同时,还会产生大量的副产物,所以,纤维素衍生物的种类较少。相关人员尝试利用纤维素在不同溶液中的反应生产纤维素衍生物。

2.1纤维素酯纤维素酯是纤维素与强酸或羧酸衍生物,通过酯化反应得到的一种纤维素衍生物。这种衍生物的种类较多,并有较高的附加值,能够在生物、材料、食品中广泛应用。利用这种方式,相关人员可以合成一些具有新功能性的纤维素酯。相关人员通过酯化反应将卟啉分子连接在纤维素上,得到了光电转换材料,卟啉分子还给予了纤维素材料全新的抗菌性能。所以,通过酯化反应,能够在乙基纤维素上连接三苯基胺,然后得到溶致变色的纤维素衍生物,并显现出蓝-绿荧光。这种衍生物在溶液中的量子效率为65%,所以,它还被应用在光电器件领域。

2.2纤维素醚从传统意义上讲,纤维素醚类的种类很多,并有很多性能。这种物质被广泛应用于石油开采中,还有食品、纺织和日用化学品等方面,所以,相关人员可以引进新的基因功能,以得到新型的功能性纤维素醚。一些学者合成了纤维素咔唑醚,它能够用于存储信息,并在OLED的空穴中传输材料;还有一些学者利用醚化反应,在纤维素上连接联苯液晶分子,从而得到对紫外光吸收能力较强的纤维素材料。近年来,相关人员发现了一些新型、高效的纤维素溶剂,为纤维素的再生产提供了新介质。在纤维素溶液中进行衍生化反应,能够得到结构统一、可调控的功能性纤维素衍生物,例如纤维素酯、纤维素醚等。这些分子或衍生物的反应快速、高效、容易分离,为相关行业的研究奠定了良好的基础。

3结束语

第3篇

传统生态浮床存在的不足包括:①植物根系悬浮在水体中无法从底泥中获取足够的微量元素而影响其生长效果;或悬浮的根系容易被水体中草食类动物吞噬;②低温下植物枯萎后整个生态浮床系统无任何净化效果,更有甚者会产生二次污染[2];③仅有植物根系少量的生物膜和植物同化作用以致浮床净化效果相对低下。为此国内外进行诸多探索,并取得良好的效果。(1)强化浮床系统内的微生物。为了提高传统生态浮床的净化效果,业内人士进行了大量的探索。孙连鹏等[3]将固定化反硝化细胞应用到生态浮床的脱氮过程,使生态浮床系统脱氮效果大大提高;李淼等[4]将离子束辐照定向诱变技术应用于生态浮床除磷脱氮过程中,并取得了良好的效果;李先宁等[5]将滤食性动物和人工合成生物载体加入生态浮床系统中,利用滤食性动物的滤食能力提高水体的可生化性和人工材质生物载体富集微生物达到联合修复富营养化水体,取得了良好的效果。(2)强化水体的复氧过程。水体复氧过程是水体自净发生的主要成因之一。操家顺等[6]构建生物膜和浮床植物复合技术浮床,并设置了一定间距以形成大气复氧区,强化了待修复水体的复氧过程,从而提高了水体的修复效果。章永泰等[7]利用风力发电技术强化浮床系统水下曝气和水下照明,强化了水下生态系统的氧化能力和浮游植物的光合作用,从而提高水体修复效果。基于生态浮床实用性和成本低廉性原则以及各种强化手段中的共性部件(生物膜载体),业内人士均认为:人工合成生物载体加入生态浮床系统(组合式生态浮床)中是最可行、最低廉、最广泛的技术,故而被广泛研究和采用。

2组合式生态浮床和净化效果

将生物载体引入到传统生态浮床中而组建组合式生态浮床,通过提高浮床系统中微生物量和生态浮床的辐射“场强”使其净化效果得到了极大的提升[8,9]。其作用原理是:通过在不同材质生物载体上富集极其复杂的、大量的生物膜系统,提高组合式生态浮床系统内的生物量、生物种类以及系统的“生物场强”[10],提高组合式生态浮床的净化效果。而且生物载体的应用可以避免冬季低温条件下因植物枯萎而出现无净化效果的情况,因为低温条件下生物载体上的微生物虽生物净化效果差,但是仍然会有一定净化效果。

2.1传统的组合式生态浮床存在的弊端生物载体是组合式生态浮床系统的重要组成部分,最原始的形式就是将人工合成生物载体悬挂在生态浮床的底部,仅仅就是为了提高生态浮床的生物持有量和净化效果以及生物场强,并取得了良好的效果。但是这种生态浮床系统,植物根系和生物载体相互独立,并无耦合效应,植物和生物载体之间并没有很好的配合。另外也有将生物载体作为生物膜附着体和植物根系基质,植物根系和生物载体相互作用、相互依赖,生物载体为根系提供保护和承受部分污染负荷,而根系为生物载体上的微生物提供氧气。而生物载体和植物根系自身的净化效果仍然在发挥优势,而且耦合了两者的优势。

2.2新型组合式生态浮床的净化效果和现状本课题组经过大量的实验研究认为,将生物载体不悬挂于浮床底部而是作为植物生长基质,即实现生物载体和植物根系“亲密接触”而形成湿地型新型组合式生态浮床,其净化效果和管理维护会更好些。而且业内人士对生物载体作为浮床基质时的效果也进行一定的探索研究。

2.2.1无机型生物载体在生态浮床中的应用徐丽花等[11]研究了沸石、沸石-石灰石、石灰石3种生物载体系统的水质净化能力,结果表明:沸石、沸石-石灰石和石灰石系统的TN平均去除率分别为68%、78.3%、60.9%。沸石-石灰石系统的去除率最高,这是由于沸石和石灰石发生了协同作用,沸石吸附NH+4-N,石灰石促进了硝化作用,使得系统对TN的去除效果好于其生物载体单独使用时的效果。熊聚兵等[12]利用泥炭、石英砂等为植物生物载体强化脱氮过程,研究发现泥炭可提供碳源有利于脱氮,该系统中的NH+4-N、NO-3-N、NO-2-N和TN的去除率分别为98.05%、98.83%、95.60%、92.41%,而石英砂提供过滤补充脱氮,两者结合的去除效果明显高于任一者的单独去除效果。无机生物载体在组合式生态浮床中具有较好的处理效果,但因其密度较大,在实际景观水体修复中需要浮体较多,增加处理成本,降低其推广效能。

2.2.2人工合成生物载体在生态浮床中的应用人工合成生物载体因其稳定性强、坚固耐用、能够有效抵挡水流冲击,在组合式生态浮床生物载体中被广泛应用。虞中杰等[13]通过构建美人蕉竹制框架下加挂球形生物载体的方式,该系统对TP、NH+4-N、NO-3-N和CODMn的去除率分别达到74.3%、76.6%、63.6%和67.5%。这得益于人工合成的球形生物载体表面易于附着微生物,有利于强化水体中污染物的降解。张雁秋等[14]以传统生态浮床为对比照组,以空心塑料生物载体作为基质和生物载体组建的组合式生态浮床系统为实验组。初始进水的TN、NH+4-N、NO-3-N是17、6、11mg/L时,该组合式生态浮床的最终TN、NH+4-N、NO-3-N的质量浓度分别为(1.05±0.20)、(0.38±0.18)、(0.17±0.03)mg/L,而传统生态浮床的最终TN、NH+4-N、NO-3-N的质量浓度分别为(5.23±1.12)、(0.29±0.11)、(4.19±2.08)mg/L,显示出良好的脱氮效果,并使硝态氮浓度保持较低浓度。

2.2.3天然纤维素物质生物载体在生态浮床中的应用玉米秸、稻草、油菜秸、麦秸等农作物秸秆和竹丝、树皮等植物茎秆类的废弃物均可以作为生物载体原料。而且用植物纤维素物质作生物载体的较其他人合成的生物载体更容易降解,使用一定时间会自行分解,比人工称合成的生物载体容易形成载体污泥更利于保护环境[15]。本课题组对植物纤维素物质进行预处理后作为组合式生态浮床的生物载体,既能合理利用秸秆资源,拓宽秸秆的利用价值,又能有效修复水体和生态环境,取得良好的效果。施亮亮等[16]构建以稻草为生物载体和植物生长基质,以美人蕉和菖蒲为植物的复合组合式生态浮床为实验组,以人工合成填料为基质的组合式生态浮床为对照组。添加稻草为生物载体的组合式生态浮床在去除污染物方面明显优于以人工合成填料为基质的组合式生态浮床。笔者在研究中发现以竹丝为生物载体的组合式生态浮床,CODMn、TN、NH+4-N和NO-3-N的平均去除率分别为63.50%、63.86%、47.80%和64.75%明显优于无生物载体组合式生态浮床的49.56%、31.29%、28.24%和43.90%,镜检发现竹丝表面具有较丰富的生物相,大量活性良好的群居钟虫、草履虫、累枝虫和鞭毛虫等,活性、数量均占优势的指示性原生动物,处理过程竹丝稳定降解,释放无机盐类和小分子有机物为微生物生长提供必需的营养成分。楼菊青等[17]发现以毛竹为原料的生物载体在膜速度、挂膜量上有较明显的优势。以上文献研究均显示了天然纤维素物质在组合式生态浮床生物载体制造领域的潜在价值,为浮床生物载体基于天然纤维素物质资源化利用的多元化发展打下坚实的基础[18]。采用天然纤维素物质不仅作为亲水性很强的生物载体,还可以作为反硝化碳源,本课题组已经通过红外光谱分析方法掌握以下信息:①可生物降解材料表面具有较丰富的亲水性基团(-OH(主要在纤维素、多糖物质中)、-CH2(主要在脂肪类物质中)、-NH2(主要为蛋白质)),可形成更为复杂的生物膜体系,更容易吸附微生物,更利于生物增殖、生物种群的多样性;②可生物降解材料使用过程中,被吸附其表面的微生物分解,形成一些可被微生物作为营养的物质,而强化微生物的生长,如果生物载体是固体碳源,释放出来的碳源有利于提高水体的脱氮效果。

3生物载体在生态浮床应用中急需解决的科学难题

3.1作为浮床基质的生物载体与植物根系交互作用机理研究作为浮床基质的生物载体与植物根系是一种相互耦合的关系,互为对方提供生长繁殖所需要的养分,在一定程度上促进提高了生态浮床系统的净化效果、净化进程和生物多样性。目前本课题组已经发现以可生物降解的稻草作为生态浮床系统中植物生长的基质时,其中水生植物(美人蕉和菖蒲)叶子呈碧绿色,而以人工合成生物载体(塑料球)为植物基质或无任何基质时,2种浮床中水生植物叶子呈浅黄色。分析认为稻草、塑料球均作为生物载体和植物基质,生长速率缓慢的硝化菌更容易附着在亲水性良好的稻草上,塑料球因其亲水性差、生物亲和性欠缺而使硝化菌增殖缓慢,稻草上大量的硝化菌就能将相对不容易被植物吸收的氨氮转化为更容易被植物吸收的硝态氮,充分的氮素使稻草基质生态浮床中的植物叶子更为翠绿,生长速率更快。即稻草基质为植物根系提供充分的养料(硝酸盐);而根系能为稻草表面微生物膜提供来自光合作用的氧气,并在稻草基质中产生脱氮所需要的好氧、缺氧环境,提高整个生态浮床的脱氮效果。但是根际微生物和生物膜相互作用、相互影响研究并没有取得很好的成果,值得深入研究。

3.2生物载体表面和植物根系表面微生物种群差异分析由于根系表面和生物载体表面存在非常大的差异,根际微生物种群类别和生物载体表面微生物类别差异、数量差异和特性差异均需要深入研究,目前很多的研究仍然处于定性分析中阶段。微生物作为生态修复和污染物去除的主体,不同生理生化特性的微生物承担着不同生物降解过程,所以掌握不同生物载体和植物根系表面微生物种群存在的差异(生长速率、呼吸类型、降解底物酶系种类、微生物种群数和数量级等),对不同污染物采取不同的不同载体和植物,或不同生物载体组合,或不同植物的多样化组合,或人工干预提供不同的环境以实现污染物去除,实现通过对微生物相关特性的强化和调控而实现微生物对污染物的降解。

3.3生物载体材质在不同污染源种类的水体修复中的选择方法生物载体作为生态浮床中重要的生物附着场所,有时也作为浮床植物的基质,其作用较大,但是随着生物载体的材质和形态等不断多样化,生物载体形态主要由从水流速度、使用方便和造景等因素考虑,对水体修复效果不会造成实质上的影响,而生物载体材质的不同对水体修复效果会产生极大的影响。传统意义上的生物载体是塑料材质,并将悬挂在生物载体框架以下,其作用原理是:在生物载体表面形成生物膜以提高生态浮床系统中微生物量达到强化生态浮床的修复效果,在其表面形成的微生物是复杂的、多样的、杂乱的丛生,并无特定的靶向污染物,在复合污染较重的现在存在一定的优势。但是塑料材质生物载体存在亲和性和亲水性差而导致微生物量少、附着困难[19]。而且对于以氮素为主要污染物且C/N低的地表水修复过程中来说并无太大的价值,因为脱氮过程中涉及硝化和反硝化过程,反硝化过程需要补充有机碳以提高脱氮效果,而塑料材料生物载体并不能提供碳源,投加液体碳源存在计量无法控制和运行管理复杂等问题,如果以人工合成高聚物作为生物载体和碳源虽然可以实现良好的脱氮过程和硝化菌群的富集,但费用过高[20,21];所以天然纤维素物质是理想的碳源、载体,不仅天然亲水性和生物亲和性可以实现生物量的最大化和挂膜的最快化,而且生物释碳按需供给和,其来自极为广泛(农业废弃物、林业废弃物等。对于磷含量相对较高的地表水体修复时,塑料材质或天然纤维素材质的生物载体应用于生态浮床中则效果较差,根据生物除磷均以排泥的方式,地表水体污染物浓度较轻,污泥量少或无污泥,无排泥也就除磷效果很低。现在一些工艺中为了提高除磷效果,采用一些孔隙多样化吸收磷或含有某些能够与磷发生化学反应的生物载体以提高除磷效果。

4展望

免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

学术顾问

免费咨询 学术咨询 期刊投稿 文秘服务