美章网 精品范文 加固设计论文范文

加固设计论文范文

加固设计论文

加固设计论文范文第1篇

南阁大桥主桥为双塔双索面稀索斜拉桥,中间设置挂梁,挂梁为预应力钢筋混凝土工字梁。桥跨组合为:2×35m+108m+3×35m,其中吊梁36m,桥梁全长283m。设计荷载为汽车-20级、挂车-100,于1994年建成通车。上部结构:主梁采用先简支后连续的组合式部分预应力混凝土连续梁,恒载的绝大部分为预制A类部分预应力工字梁承受。横桥向设四片工字梁,工字梁间距3.2m。索塔为H型,不设上横梁。斜拉索为双索面稀索体系,每塔设置5根拉索,分两种类型,分别由1457mm和2117mm平行钢丝组成。下部结构:主墩基础为81.5m的钢筋砼钻孔灌注桩组成的高桩承台,过渡锚墩基础为21.5m的钢筋砼钻孔灌注桩组成的高桩承台。

2病害分析

2.1表观病害

该斜拉桥技术状况评定为4类桥,影响桥梁的正常使用。主要病害有:挂梁受到过往船只的不同程度撞击,存在严重的安全隐患;全挂梁边梁出现严重纵向裂缝,局部有少量斜向裂缝;最大缝长2100cm,最大缝宽0.58mm;纵梁多处露筋锈蚀。

2.2验算和试验

在承载能力极限状态组合下,斜拉桥挂梁跨中、塔根处纵梁、35m工字梁截面抗力不满足汽车-20级和公路Ⅱ级荷载要求;在正常使用极限状态下,斜拉桥挂梁跨中、塔根处纵梁、13#-14#墩梁、35m工字梁截面缝宽度验算不满足规范要求。静载试验各工况下,主桥跨中挂梁、主桥第二跨工字梁主要测点挠度校验系数均大于规范允许值1.00,不满足规范要求;主桥纵梁主要应变测点及主桥第二跨工字梁主要应变测点校验系数均大于规范允许值1.00,也不满足规范要求;且主桥跨中35m简支挂梁裂缝测点有明显变化。综上,桥梁的刚度、强度及抗裂能力差。动载试验条件下,斜拉桥主桥和36m挂孔工字梁动载的实测值均大于理论计算值,结构整体刚度满足设计要求。

3复核模型与加固方案

一般研究桥梁结构损伤程度的校验系数是基于挂梁与主跨相邻35m工字梁作为一个整体的基础上进行考虑。本次复核认为:挂梁作为一个单独结构放置于两侧斜拉桥框架上,结构上可视为独立的简支梁受力。因此,在计算校验系数时,按简支梁考虑扣除两端位移后,以跨中与两端支座间相对位移进行考虑,这样可更真实地反映挂孔的工作状况。综上所述:(1)斜拉桥主塔、拉索及纵梁满足《公路桥梁承载能力检测评定规程》中“校验系数小于1”的要求,视为工作状态尚可,不考虑加固。(2)斜拉桥挂梁校验系数为2.71和3.11,严重超出《公路桥梁承载能力检测评定规程》中“校验系数小于1”的要求,结构刚度严重不满足设计要求,本复算认为挂孔工字梁工作状况远比理论状况差。根据损伤判断,损伤系数约为0.32,显示挂梁部分的四片主梁损伤均比较严重,刚度较差,且整体性较差,加固方案采用全部更换方案。(3)复算中第一、二跨工字梁基本满足《公路桥梁承载能力检测评定规程》中“校验系数小于1”的要求,且考虑检测报告中未发现该跨工字梁有相应的明显病害,故认为工字梁实际状况要好于理论状况,结构刚度满足设计要求,不考虑加固。

3.1加固设计

基于复核计算结果及检测报告,考虑到结构的安全性,宜适当降低加固标准,故加固的目标是维持原汽车-20级、挂车-100的荷载标准。根据该桥梁交通量、使用要求及结构受力情况,遵循因地制宜、合理选材、方便施工、利于养护并满足结构强度、刚度、耐久性、适用性的要求,进行本次维修加固设计。另外从美观的角度出发,维修设计时尽量做到维修后结构外观与原结构和谐一致。

3.2斜拉桥加固设计

(1)由于原挂梁工作状况较差,考虑拆除原挂孔混凝土工字梁,重新架设钢箱梁,增强挂梁的整体受荷情况,以及改善挂梁整体刚度,减轻自重,缓解恶化速度。采用钢箱梁挂梁替换现有的4片工字梁,复建原有的人行道板及栏杆,以及更换原挂梁端伸缩缝。(2)考虑到边跨工字梁工作状态尚可,仅对工字梁中出现的裂缝进行封闭或灌注处理。(3)鉴于斜拉索于2008年进行了更换,若更换挂梁时发现斜拉索锈蚀较严重则更换斜拉索,若斜拉索工作状态良好则不进行更换。

3.3钢箱梁结构设计

斜拉桥挂梁采用钢箱梁。钢箱梁顶面设置钢纤维混凝土现浇层,厚15cm(含顶板厚)。主桥挂梁为一孔34m简支钢箱梁。钢箱梁顶宽12.0m,底宽9.66m,悬臂长1.2m,箱梁外腹板处梁体净高2.2m(外轮廓尺寸)。箱梁为单箱三室结构,边、中腹板为直腹板。钢箱梁通过腹板变高形成顶板双向2%横坡,底板横向水平设置。钢箱梁主要由顶板、底板、腹板及各自的加劲肋组成,在钢箱梁中每2m设一道纵向横隔板,强横隔板和弱横隔板交错设置,以保证箱梁的整体作用。桥面板采用正交异性板,箱梁顶板纵肋为闭合截面的U形肋,肋厚6mm,肋距400mm。底板纵肋为板肋,肋厚12mm,肋距400mm,牛腿横梁内对应纵肋处设置板肋,厚16mm。箱梁腹板厚18mm,翼板顶板厚度等厚12mm,顶厚16mm。箱梁底板厚在跨中28.814m范围内为20mm,在牛腿横梁内局部加厚到22mm。底板、顶板不同板厚对接时厚度的变化都在箱外侧进行,保持箱内侧平顺。箱体及分块节段间连接全部采用焊接。为了保证桥梁的平整,钢箱梁应向上设置预拱度,具体预拱度值施工交底时提供。

4结语

加固设计论文范文第2篇

良好的水库项目,不仅能够实现水资源的有效利用以及可持续发展,同时还可以维护当地的生态环境,起到保护环境的作用,另外还能够提升防洪工作的效果,保护了当地的人民群众,推动了社会经济的不断前进、发展。但是现在有部分水库出现险情溃堤问题的频率越来越高,再加上水库大多建于城镇或者是村庄的上游地区,以及各个交通沿线,所以如果水库质量下降,防洪蓄水功能减弱,将会导致水库下游城镇、村庄的安全受到严重安全威胁,严重时甚至会导致当地的社会经济发展受阻,就此有必要开展水库项目的除险加固工作,提升除险加固设计质量,保证除险加固施工质量。另外开展除险加固工作不仅能够降低汛期时期的危险程度,提供给水库下游群众更多的人身安全保障,实现水库的防洪作用;另外除险加固工作还能够增加蓄水强度,降低水资源的浪费情况,更好的满足人民群众生产、生活的需求,能够达到兴利的目的。

2、水库项目除险加固设计问题探析

2.1水库存在质量隐患

水库如果已经存在施工质量及安全隐患问题,将会导致水库在使用过程中出现大坝损坏情况,同时这种损坏情况将会随着时间的延长而增加,直接影响到水库的蓄水功能以及使用年限。水库质量隐患的出现主要是由于相关施工企业在施工过程中,用劣质材料替换优良材料,或者是为了降低施工成本而偷工减料,或者是只顾施工进度而忽略施工质量,这些问题均会导致水库出现各种隐患,严重时还会直接威胁到人民的生命财产安全。再加上水库在前期运行阶段,其施工质量问题以及安全隐患问题几乎不会凸显、出现,但是随着水库的使用年限不断增长,水库主体受到水的侵蚀以及冲刷,水库的各种问题才会逐渐凸显出来。水库的施工质量问题以及安全隐患问题主要有:上下游坝体的抗滑稳定系数不达标、土坝的干密度不达标以及坝体稳定性能不达标等等。

2.2水库防洪设备性能不达标

溢洪道作为水库主要的防洪、泄洪设备,其防洪以及泄洪能力必须要通过精确计算,并确定满足工程需求之后才能够投入使用,这样除险加固设计的作用才能够体现出来,水库加固质量才能有保障。如果溢洪道的防洪以及泄洪数据不精准,会导致后期施工变更问题出现的几率大增,所以保障溢洪道的防洪以及泄洪数据的正确是非常重要的。但是现在仍旧有一些计算人员不能准确计算防洪以及泄洪能力,在计算过程中得过且过、马马虎虎,甚至部分计算人员在没有调查、确定水库的真正防洪以及泄洪情况时,就确定防洪以及泄洪数据,从而直接的影响到水库的施工质量以及使用年限。

2.3水坝设计要求与相关规定、需求不符

通过调查可以发现,现在有很多的水库均在使用土坝,这就导致了水库的施工受到各种不良因素的影响,致使坝体不能够根据相关设计规范以及图纸要求选择施工材料,同时坝体的填筑结果也与相关规范要求有所出处,这也是水库在施工完成之后均会发生渗漏问题的主要原因。另外在清理水库的过程中,由于部分施工人员没有严格按照相关规定、规范进行清理工作,同时相关管理人员也没有对清理质量进行严格检查、控制,这就导致了在大坝清基工作完成后,大坝基地仍旧存在很多杂物以及裂缝,这就给了坝基裂隙生长的空间,这也是水库的坝底或者是坝体发生渗漏问题的主要原因之一。该问题的出现除了会导致水库蓄水功能下降之外,严重时还会导致水库出现严重的病险。所以一定要提升重视水库隐患、问题的力度,采用多种手段解决水库隐患问题,并对水库施工以定时或者是不定时的加固施工以及除险处理。

3、提升水库项目除险加固设计有效性的办法

3.1完善、优化施工准备工作

为了提升水库项目的除险加固质量,需做好施工开始之前的准备工作,具体内容为:第一,水库加固施工准备阶段需对水库的各项施工以及安全隐患进行全面排查,然后根据排查结果制定相应的加固方法,对症下药。具体为在设计开始之前,相关人员需要对水库的地质情况以及地质条件进行实地勘察,并查阅相关的文献资料,以确定并找出水库的危险点,然后以水库的实际情况为基础制定相应的地质勘察以及测量方案,以得到各项数据,再根据结构确定隐患治理方案;第二,做好设计工作。水库项目的除险加固设计主要是利用已经收集到的数据、资料,针对水库的问题、隐患,制定具有可实施性的、经济、科学的施工方案。水库项目的一切加固除险施工工作均需要围绕设计工作开展,所以设计工作以及设计图纸是极为重要的。

3.2严格控制水库项目除险加固质量

只有提升了水库项目除险加固质量以及安全程度,水库的各个病险问题才会得到真正解决,水库才会更加可靠、安全,才能够真正起到防洪抗灾的作用。就此为了增强水库施工质量,首先施工企业应完善质量保证制度,并制定相应的质量控制办法,通过规定约束施工各相关人员的行为,另外施工企业还应当明确各方责任,若水库出现施工质量问题或者是水库在使用过程中出现任何问题,都能够找到相应的事故承担者,进而给予施工相关人员威慑,使施工相关人员自觉遵守相关规定,这样就能够在人员方面保障水库项目的除险加固质量。

3.3确定泄洪道的防洪以及泄洪能力

为了提升除险加固设计的实用性,需根据工程实际情况以及相关规范标准开展除险加固设计,并确定施工设计方案,特别是泄洪道的防洪以及泄洪数据。由于泄洪道的防洪以及泄洪能力的理论值与实际计算值存在或多或少的差别,所以为了使泄洪道的功能充分体现出来,以增强水库加固质量,需综合各方因素,尤其是泄洪道可能会出现的变形情况确定泄洪量。

3.4水库上游坝坡除害加固施工设计办法

由于部分水库建设时间较早,上游坝坡只能够利用由砂砾等物质构成的粉质坝壳,这种材料的透水性非常差,已经不能满足现代水库的需求。就此需要使用堆石体等具有较强透水性的物质、材料替换当前的上游坝坡材料。堆石体能够提升坝坡的抗滑坡性,降低上游坝坡的坡度大小,增强坝坡的安全性以及稳定性,已经成为坝坡的主要替换材料。

4、结语

加固设计论文范文第3篇

上个世纪末我国公路建设高速发展,而在全国进行大范围公路建设中因为桥梁桩承载力好,节省用料和人力的优点得到广泛运用。桥梁的桥体的承载力主要就是靠桥梁桩来承担,因此桥梁桩的基础加固是公路工程建设的基本保障。尤其是在我国这种地形地质条件相对复杂的山区,公路桥梁路段多且承载量要求较高。但是,我国大范围的桥梁桩基本上是钢筋混泥土进行建设的,很容易出现一些问题。1)水分的自然侵蚀。首先是钢筋混凝土中的钢筋极容易被渗透的水分侵蚀,破换钢筋的支撑力。当水分的侵入混凝土中的时候还会因为同碱性的水泥融合产生膨胀力,甚至导致混凝土裂开从而破坏掉整个桥梁桩,这个时候就会影响到整个桥梁的稳固,因此仅仅是自然的长时间的侵蚀就会造成整个桥梁桩的不稳定。2)极端气候的破坏作用。除了水分的渗入会导致桥梁桩被破坏,低温作用到水上会导致混凝土结构桥梁桩小孔中的水分结冰膨胀。而长时间的气温变化作用的不断循环,就会导致混泥土结构的逐渐剥离甚至瓦解,事实上这个过程并不长,尤其是在地质和气候比较复杂的地区,因此要特别注意防范和处理这种情况的发生。

2加固桥梁桩方法

桥梁桩对整个桥梁乃至整个公路的运行的重要作用不言而喻。因此在防范桥梁桩的损害问题上,必须迅速采取积极的应对处理方法,而这些方法必须是科学地针对桥梁桩的特点和问题,能够切实地保障桥梁桩的稳固,主要从以下三个方面坚持:1)做好防范工作。为了保障桥梁的稳固性,除了针对进行桥梁设计之外,桥梁桩的本身质量要进行较为严格的鉴定并且明确后期追加的加固的方案。加固设计方案无外乎三个方面:硬度方面,强度方面和持久度方面。首先在硬度方面就是桥梁桩建造的稳固性;强度方面就是确定保证桥梁桩的整体性的稳固;持久度方面就是在建造的时候采用耐性良好的同时还要方便之后进行损伤部分的修复。从这三个方面着手,可以比较全面的做好桥梁桩的稳固性的防范工作。2)坚持效益最大化。在工程设计和建造中最基本的原则除了安全稳固之外就是经济,以最小的原料和人工投入获得最优的经济效益,这就要求工程建造人员在桥梁和建设的时候做到效益最大化。3)务求实事求是。在公路建设前桥梁桩做好各项加固工作之外还必须实事求是,不能盲目加固浪费工程建设。合理的加固技术必须在原有的公路建设基础上不仅起到实际加固的效果还可以有效控制工程再建的风险,降低工程建设的成本。

3桥梁桩加固设计的基本方案

3.1增加桩基进行加固

为了保证公路桥梁的整体的安全性,增加桥梁桩和扩大整个承台的承载范围和作用力,可以在桥梁桩基的载重能力不足采用。准确来讲就是将原来的桥梁桩的承重进行扩大并且可以增加新的桥梁桩,这样就可以提高桥梁桩的承载能力并且增加整个桥梁工程的稳定性。这项方法不仅能够节省工程工作量,并且有着较为明显的加固效果,但是它的局限性就在于为了达到加固效果会对原有的交通运行情况有所影响,因此也要考虑到它的实际操作性。

3.2桥梁桩基自体加固法

这个方法是在原有的混凝土桩基础上进行加固,尤其是直径偏小的钢筋混凝土桥梁桩。因此这种方法不仅施工工程相对较小还提升了桥体的承载力。很多县城上的小桥都是采用这种结构,工程实例上来说,某县的公路桥桥宽近六米,桥梁桩为钢筋混凝土结构,随着经济的发展还有桥梁的自然消耗,桥梁本身需要进行拓宽处理,而相应的桥梁的稳固性要求增加。

3.3桥梁桩的本身修补加固法

顾名思义,这个方法主要是针对已经出现受损状况的桩基进行修补处理,从而增加桥梁桩的本身的强度,硬度和持久性。从工程实例上面来说,有一驾桥梁在建设初期河流比较充沛,受侵蚀情况相对比较严重。而最近几年河流河床下降,桩基状况比较明显,尤其是桥梁桩的本身混凝土的表面受到较为严重的侵蚀,甚至钢筋也因为桥梁转的而发生锈蚀,桥梁桩的承载力受到非常严重的损害,整个桥身的安全性也得不到有效地保证。经过多重的分析和方案选择,还有实地的调研考察,最终决定采用桥梁桩修补加固法对整个桥身进行修补加固。首先要调查和考评所有桥梁桩的受损情况和修补范围,然后再通过钢筋水凝土的修补和浇筑封装桥梁桩和桩基。这个办法不仅可以修补损害严重的桥梁桩,而且对桥梁桩的本身强度的增加有着较为明显的作用。这个方法对于承载能力要求不高的桥梁有着较为明显的作用,在大范围的同类工程问题中值得借鉴和推广,有助于为我国桥梁工程建设节约资源。

3.4扩大桥梁基加固法

这个方法是从整体的结构方面来进行加固的,桥梁桩的加固和桥梁基紧密联系在一起。这样一来整体上的稳固性能够更加全面的增加桥体的稳固和安全。举例来说,某个交通桥梁在进行年度检测的时候发现桥梁桩桩体破坏比较严重,有比较严重的被侵蚀的损害现象,并且钢筋也因此暴露出来,混凝土的上还出现了空洞现象,这样一来明显降低了桥梁桩的整体承载能力,并且整个桥梁的桩基承受力也随着降低,因此进行加固处理是十分必要的。

4结束语

加固设计论文范文第4篇

(1)积雪引起的压强取0.50kN/m2,由于大风造成的压强取0.50kN/m2;(2)恒荷载数值应以厂房实际工作情况确定;(3)屋顶积雪分布系数按照设计规范中给出的系数适当提高,以项目所在地的积雪分布荷载为基础,该项目取2~4,承重钢件的重要性系数取1.1;(4)计算檩条过程中,积雪荷载取值可参照本次雪灾的积雪分布规律进行计算;(5)未受损的部件和各部件连接处也可能受损,加固设计中也应考虑这部分因素;(6)加固方案应保证实际工作方便,可操作,减少加固工程对正常生产运行的影响;(7)加固过程中应保证生产安全、方案合理可行;(8)根据实际情况,可将修复、加固工作分阶段实施操作。

2钢架加固

2.1加固设计方案

按照上述工程实例情况,基于目前加固设计标准和操作规范,结合事故检测报告中提及的问题进行分析,本文设计了2种钢架加固方案,进行筛选。方案一:通常厂房荷载计算只选取恒荷载,一般为50年最大风雪荷载量进行计算。这种方案计算所得的轻钢厂房强度并不能满足实际工作需求,也不能达到设计标准。为解决上述问题,本方案对承重梁进行加腋处理,以缓解焊接重量,柱翼缘选择对称焊接,以提高承载能力。该方案所需焊接工作量大,对生产过程的影响也大。方案二:对上述工程实测数据分析可知,厂房悬挂荷载较低,钢架所承受恒荷载为0.3kpa。按照上述数据可知,轻钢厂房外部构件稳定性不达标,在柱翼缘处加入刚性系杆,以缓解这一问题。该加固方案工作量较少,对厂房内部设备生产运行影响也小。对厂房实际工作情况进行分析,在厂房运行过程中不能有灰尘产生,两种方案进行对比分析,选取方案二进行加固处理。

2.2荷载取值范围

在计算过程中确定荷载取值范围,选择轻钢结构设计可以按照相关设计规范选取合理数值。通常情况,雪压、风压选取50年内最大值,本工程分别选取0.5kpa和0.55kpa;恒荷载量取0.3kpa,悬挂荷载量取0.1kpa;房屋自重计算得0.2kpa。按照上述荷载取值范围进行核算,该数值是按照单向刚接计算所得,而实际工作中是双向刚接,应对上述数据进行处理。根据上述数据可见,轻钢结构中主要存在超负荷工作现象,大部分钢架外部稳定应力超过承受限值。经分析可知,保证钢架柱稳定应力不超过1,面部长度应取5.5米进行计算。此外,钢架梁所承受的应力也超极限运行,要保证稳定性达标,面外长度应取3米进行计算。

2.3刚架结构的加固

如图2所示,刚架结果加固处理即在柱间设置刚性系杆,以降低轴面外部的长度,设计规范中规定,面积应小于5.5m2,该工程计算0.9m×5.85m=5.25m2,符合规范条件。

3维护结构的加固设计

3.1檩条的加固设计

在对檩条进行加固设计中,应首先确定檀条部分的荷载数值。参考本次雪灾积雪分布规律进行计算。在进行加固处理时,应轻轻揭开厂房外顶板,为确保厂房能够正常运行,厂房内部环境不受影响,应将厂房内顶板留于厂房顶部,为缓解承载应力作用,应增加檩条数量。檩条加固设计时应结合实际积雪荷载量和分布范围,选择最为经济合理的檩条位置和数量进行加固设计。积雪较少的位置处檩条可以不改变布设位置,在原檩条位置加设2.5毫米厚的C状檀条;在积雪符合较大的区域,在原檩条处加设3毫米厚的C状檀条,加设的C状檀条高度应与原檀条保持一致;在积雪最严重的区域,可利用25a热轧槽或者H型钢檩条焊接到原檀条位置,对受损部位进行焊接修复处理,以加强原檩条的承载能力。

3.2其他结构的加固设计

屋面支撑材料的加固应遵循设计规范中规定的设计方法进行设计,加设刚性系杆以提高屋面整体的承载能力,同时,设计者还应考虑实际加固施工的可操作性,选取最方便可行的设计方案。墙梁加固设计中,可在需要加固的墙梁部位增设一道墙。悬挂梁加固时应在连接处加设刚性系杆,以增强梁的承载力。雨篷加固,可将槽钢焊接在横梁上,增大衡量的抗扭强度。

4结束语

加固设计论文范文第5篇

集灌路分离式立交桥位于厦漳高速公路厦门段,原桥名为官林头互通I-1桥,为左右幅分离的钢筋混凝土矮墩连续刚构箱梁,桥跨组合为(20.5+2×21.5+20.5)m,全长88.30m。单幅上部结构采用单箱三室混凝土箱梁,梁高1m,顶宽12.5m,底宽6.5m,腹板厚0.40m,顶底板厚0.25m。下部结构采用薄壁墩、单排3根Φ1.2m钻孔灌注桩基础,墩梁固结。桥址区基岩埋深大于40m,基础按摩擦桩设计。该桥于1997-07月竣工通车,检测发现该桥混凝土保护层厚度与设计值相比偏薄,梁体出现结构受力的横向裂缝,加固后粘贴的玻纤布老化,局部出现脱落,技术评定为三类桥。改扩建需要将原有桥梁拼宽至8车道。主要技术标准如下:(1)设计荷载,老桥为汽—超20,挂—120;拼宽新梁为公路Ⅰ级;(2)设计车速为120km/h;(3)桥面宽度:老桥总宽26.0m,双向4车道,扩建后的桥梁总宽为42.0m,双向8车道,在老桥两侧各拼宽8.0m。(4)地震基本烈度为Ⅶ度。

2扩建方案

根据老桥现状调查、桥梁检测报告及静、动力荷载试验结果,经过综合分析,认为老桥经加固后可以继续正常运营。桥梁扩建方案为:保留老桥并采取一定的加固措施,新建结构类型相同或相近的新桥,通过翼缘板湿接缝连接新老桥梁,最后形成双向8车道的桥梁结构。

2.1结构体系分析

鉴于老桥采用墩梁固结矮墩连续刚构体系,在同跨径桥梁中比较少见,为考察箱梁病害是否结构体系的问题,是否需要利用体系转换来改善当前结构受力状态,拼宽新桥采用何种结构形式比较有利,对如下2种不同结构体系进行分析比较:体系1:维持原有结构体系不变,进行加固、拼宽;体系2:解除2个边墩的墩梁固结,维持中墩固结,进行加固、拼宽。采用midasCivil程序,以老桥为例,建立结构体系对比计算模型,主要考察箱梁边跨跨中截面、中跨跨中截面、边墩墩顶截面、中墩墩顶截面的面内弯矩以及边墩墩底推力的差异。体系1与体系2计算结果的比值为1.012~1.112,结构体系的影响对桥梁上部箱梁结构受力影响并不显著。因此,老桥加固以及新桥设计仍然采用原有的矮墩连续刚构体系,以避免老桥因体系变化导致次生病害产生,并保证活载作用下新老桥横向变形比较一致。

2.2新桥结构

新桥采用与老桥相同的跨径及上下部结构,以保证外观一致且变形协调。桥跨组合为20.5m+2×21.5m+20.5m,全长88.30m。上部结构采用单箱双室混凝土箱梁,梁高1m,顶宽8.0m,底宽5.5m,腹板厚0.40m,顶底板厚0.25m。薄壁墙式墩,墩身宽度3.0m,厚度0.6m,单排2根Φ1.2m钻孔灌注桩基础,墩梁固结;肋式台、双排4根Φ1.2m钻孔灌注桩基础。

2.3老桥加固

为确保桥梁能够安全、正常的运营,在拼宽之前,必须对老桥进行加固,以提高既有结构的承载能力、耐久性。按照“老桥老规范、新桥新规范”的原则进行维修加固,即对原桥的结构验算仍然采用85年颁布的相关规范(简称旧规范),但加固工程中涉及的材料、工艺等部分,执行最新颁布的规范(简称新规范)。除一般病害(如非结构性裂缝,混凝土表层破损、脱落,支座老化、破坏等)采用常规处治措施外,对主要病害箱梁腹板、底板裂缝,需进一步研究合理的维修加固措施。

2.3.1老桥主要病害

主要病害为箱梁腹板、底板裂缝、玻纤布老化,第4跨梁底玻纤布局部脱落,梁体出现超限宽的横向受力裂缝,梁底共13条横向裂缝,缝宽0.18~0.28mm,共计缝长22.1m。核查以往养护、桥检资料,该桥在粘贴玻纤布加固之前的主要病害为:梁侧腹板存在较多裂缝,均为竖向裂缝,右幅第1~3跨梁侧腹板裂缝部分延伸至梁底,左幅第1跨梁侧裂缝部分延伸至梁底,最大缝宽0.20mm;左幅第2跨1/4L~3/4L、第3跨1/4L~3/4L存在梁底横向裂缝,最大缝宽0.10mm。

2.3.2病害成因分析

经过综合分析,产生上述病害的主要原因如下:(1)施工措施不当,施工中混凝土震捣不密实、钢筋位置偏差、保护层过薄、养护欠妥当等,造成混凝土质量不均匀,在受到较大荷载时,沿腹板产生的表面裂缝易与受拉区裂缝相连接[。(2)腹板侧面裂缝部分从梁底向上开裂,梁底面出现横向裂缝,均与主筋垂直,属于梁受拉区出现的弯曲裂缝,说明结构抗力不足。(3)刚构桥属于超静定结构,混凝土收缩、徐变、温度变化等都会对结构产生附加应力,导致混凝土开裂。

2.3.3加固方案

综合考虑加固效果、施工便利性及加固施工过程中的通车要求等因素,在清理混凝土表面,对裂缝灌浆、封闭后,采用高强不锈钢铰线网-渗透性聚合物砂浆技术进行加固,施加预应力高强钢铰线网提高结构的承载能力,抗剪与抗弯加固的不锈钢铰线分别采用Φ3.2mm和Φ4.8mm规格,种类均为6×7+IWS,同时通过在外表面涂刷3cm厚度的配套高强渗透性砂浆增加结构的耐久性。加固前须拆除梁体表面粘贴的所有玻纤布。箱梁外侧面沿腹板全高加固,主要受力钢铰线须垂直于桥梁轴线方向,并兜向底板45cm。箱梁底板上的钢铰线网需须顺桥向布置,每跨内的钢铰线网在纵向不宜拼接,必须搭接时,在钢铰线受力方向的搭接长度应不小于80cm。施工工艺流程为:定位放线混凝土基层处理裁切钢铰线网片钢铰线网片的固定与张紧钢铰线网片节点的固定涂刷界面剂聚合物砂浆压抹湿润养护。其中钢铰线网的固定和张紧是其能够立即和原结构共同受力的关键。根据设计确定的锚具位置,通过植入螺栓和粘贴钢板在构件端部固定锚具。钢铰线下料后,用专门的挤压锚具挤压套筒使其与钢丝绳成为一体,在一侧钢丝绳的一端直接穿入锚具,另一端由专门的张拉器预张紧后进行锚固,参考以往工程经验,预张拉应力取0.25~0.3倍的抗拉强度设计值。用配套专用固定销钉对钢铰线网片的各节点进行逐段钻孔锚固,使其固定在箱梁上。该项加固技术在国内许多建筑工程、桥梁工程上得到应用,实践表明加固效果良好,其主要特点如下:(1)由于高强渗透性砂浆基本为无机材料、不锈钢绞线网耐腐蚀性能好,较好地解决了混凝土结构加固后的耐久性、抗火、耐高温性能等问题,加固性能可靠;(2)钢铰线网为高强不锈钢铰线编织成网,运输及施工方便;(3)高强钢铰线强度高,其标准强度约为普通钢材的5倍,加固后结构自重增加很小,对原结构的自重影响也很小;(4)对混凝土结构进行抗弯及抗剪加固均可取得良好的加固效果,并且可以显著地提高构件刚度;(5)混凝土构件加固后的疲劳性能以及钢网、砂浆的锚固、粘结性能良好;(6)易于大面积施工,在结构加固的过程中不影响建筑物的使用,对被加固的母体表面没有平整要求,节点处理方便,更适合桥梁和楼板等混凝土结构的加固。

2.4新老桥拼接

经过多阶段比选确定箱梁拼宽设计的基本原则为“上连下不连”,其要点如下:(1)新老桥上部结构通过拼接形成整体共同受力,下部结构分离独立受力。(2)老桥箱梁翼缘板下缘钢筋无法承受翼缘板刚接后产生的正弯矩,设计采用现浇铰缝进行拼接。老桥翼缘板切除0.5m,新老箱梁之间预留0.5m的UEA钢纤维混凝土翼缘板后浇段,新老桥之间通过植筋和锯缝形成铰缝,拼接铰缝构造见图5,顶板锯缝填沥青玛蹄脂,底板填塞木条。(3)为减小拼宽部分收缩、徐变对老桥的影响,拼宽部分建成后3~6个月,再实施拼接。(4)为减小拼接后新桥基础沉降对老桥的影响,应严格控制该基础沉降,对新桥进行桩底压浆。同时,为了降低新桥的后期沉降量,尽量使沉降量发生在拼接前,新桥上部结构施工完毕后,对梁体进行加载预压,加载量不小于桥面2期恒载的重量,预压时间控制在2~3个月。

3结构受力分析

3.1分析模型及计算荷载

采用MIDASCivil对老桥加固前后、老桥和拼宽新桥在拼宽前后、拼宽纵桥向相互影响及结构抗震性能进行分析计算,有限元模型见图6。采用ANSYS进行新老桥翼缘板拼宽前后局部分析。考虑的荷载有施工临时荷载、恒载、汽车荷载、整体温差、梯度温度、基础变位、收缩、徐变、地震动等。老桥计算考虑了一定的定量退化处理。

3.2主要分析结果

(1)桥梁拼宽前,老桥在承载能力极限状态下满足规范要求,正常使用极限状态下裂缝超限,需要进行加固。现行公路桥梁加固设计规范未对上述加固方法进行规定,考虑到该方法与粘贴钢板加固法同属于复合截面加固法,钢铰线网与钢板的受力方式均设计成仅承受轴向应力作用[4-5],其加固原理、材料性能、计算假定等均类似。参照文献中2种加固方法的3种计算规定,对老桥加固进行验算,裂缝通过应变值推算,不考虑主梁侧面围套内钢铰线网片对承载力的提高作用,计算结果满足规范要求。此外,还可采用组合有限元法建立精细模型进行分析计算。(2)桥梁拼宽后,新老桥在承载能力极限状态和正常使用极限状态下的结构承载力、裂缝宽度、跨中挠度满足规范要求。拼宽后老桥的弯矩、剪力值有所增大,新桥的弯矩、剪力峰值下降。(3)新老桥翼缘板拼宽前后局部分析结果表明:拼宽后,新桥的基础变位导致新、老桥翼缘板出现横向附加弯矩,弯矩峰值在墩顶处,向跨中及桥台处逐渐减小。老桥翼缘板(每延米长度)的墩顶横向弯矩在翼缘根部大于新桥翼缘板根部的横向弯矩。基础沉降工况对拼接的影响最大,老桥抗剪略有不足,考虑到老桥翼缘板加固困难,设计除适当增加新桥桩基长度外还对桩基底部进行压浆处理,以减少基础沉降的影响。同时,为了降低新桥的后期沉降量,尽量使沉降量发生在拼接前,新桥上部结构施工完毕后,对梁体进行加载预压。(4)采用反应谱法进行抗震性能分析,桥梁采用连续刚构体系,桥墩为薄壁墩、单排桩基础,刚度适中,各墩台刚度协调,结构体系抗震性能较好,地震工况不控制设计。

4结语

加固设计论文范文第6篇

随着国家经济的发展,对使用时间较长的水库来讲极容易出现下列病害:大坝坝顶高度过低泄洪建筑能力不足,防洪标准达不到规范要求,主要原因是:水文分析不足以至于泄洪建筑设置不足,随着时间推移洪水资料与设计初值产生偏差泄洪能力不足。在汛期高水位的作用下大坝极容易出现渗漏问题,许多土石坝或多或少均会有管涌、流土的现象,混凝土坝和浆砌石还容易发生溶滤破坏。多数大坝按现行规范在结构强度、抗震和滑动稳定性上均达不到要求。大坝输水及泄洪建筑的稳定系数和结构强度也不能满足现行规范要求。机电设备和金属结构使用过度,缺少更换和维修。多数水库缺少足够的水文测报和大坝观测装置,管理设施陈旧落后,防汛道路标准低,有的水库甚至没有防汛道路。

2小河口水库主要存在问题

大坝上游坝坡水位变动区塌陷、破损严重;大坝下游坝坡纵横向排水沟破损;坝右岸下游岸坡坍塌;溢洪道进口段左右侧翼墙空箱漏水严重,左侧翼墙后土体在校核洪水位会发生渗透破坏;泄洪洞泄洪能力不足等。改建方案选取:通过查阅文献对坝坡的加固处理常用的方法有:坝坡拆除重建、对局部破坏区域进行改造、对老化部位进行局部翻新,其中已拆除重建为主。溢洪道加固主要的方法有:局部拆除重建、完全废弃重建,其中已局部重建为主。输水洞加固的方式常用的有:拆除重建水塔或对水塔进行加固、对输水洞洞身进行整体加固、对输水洞出口消能设施进行加固以及对金属结构、启闭系统改建,其中已对水塔、金属结构、启闭系统的改造为主。

3改建工程加固设计

3.1坝坡改建

坝坡采取破损段局部维修加固:对大坝上游坝坡水位变动区塌陷、破损严重的干砌石护坡进行维修;对大坝下游坝坡纵横向排水沟破损段进行维修;对大坝右岸下游岸坡坍塌部位采用浆砌石护坡处理。

3.2溢洪道改造

溢洪道部分整体拆除,部分加固改造:本次设计在空箱内设土工布反滤,上铺植草砖植草固土;本次闸室改建段桩号0+189.6~0+201.6,总长12m,闸室为闸门控制宽顶堰钢筋砼结构,为了不影响上游交通桥的稳定性,本次设计将现状闸室拆除至670.4m,以上部分全部拆除重建,新建底板与闸墩为整体结构,进口底高程671.4m,墩顶高程682.5m,底板厚2.5m,边墩厚1.5~1.2m,中墩厚1.2m,检修闸门为叠梁门,工作门为平面定轮钢闸门,闸门尺寸10×6.8m,启闭平台高程为690.8m,新建闸室段与上游交通桥及下游泄槽段侧墙顺接,缝间设BW型膨胀止水条止水;闸室与大坝间采用土料回填交通道路,路面高程682.5m,路面宽8m,断面为梯形断面,上下游边坡均为1:2,要求土料压实度≥0.95,路面采用200厚C20砼现浇;泄槽底板加固范围为0+310~0+645,即在原底板上现浇砼结构进行加固处理;侧墙0+201.6~0+210段因泄洪时拱桥严重阻水,本次设计拆除重建,侧墙采用钢筋砼扶臂挡土墙结构;侧墙加高段范围为0+210~0+295、0+427~0+645,即在原墙顶现浇砼加高;侧墙改建段范围为右0+310~0+467,即将原侧墙拆除重建,侧墙结构仍采用钢筋砼悬臂挡土墙结构;侧墙加固改建段范围为左0+320~0+427、左0+450~0+480,即在原侧墙后加30cm厚钢筋砼衬砌;泄洪洞出口侧墙延长段范围为0+340.3~0+359.3,采用钢筋砼结构,尾部为流线型。

3.3泄洪洞改造

泄洪洞拆除重建:本次设计拆除原检修平台及上部启闭机房,将检修平台由670.9m加高至678.65m,启闭平台由680.4m加高至686.35m,加高部分均为钢筋砼结构,启闭机房为砖混结构,进水塔与坝顶间新建工作桥及支撑排架,桥面高程682.5m,分为5跨,总长78m;更换闸门及启闭设备;对泄洪洞洞身漏水段0+034~0+104进行洞身反压灌浆,并对伸缩缝进行维修处理。

3.4输水洞改造

输水洞增设水塔,出口增设反滤排水设施等:进口增设进水塔,塔高36.1m,启闭机平台高程682.5m,进水塔为C25钢筋砼结构,进口底高程665.5m,孔口尺寸为1.5×1.5m,塔内设事故检修闸门,上游止水,施工采用钢筋砼沉井围堰,沉井内径8m,沉井高21.5m,壁厚1.2m;进水塔与坝顶间采用钢筋砼梁板式工作桥连接,桥长54.0m,桥面宽2.5m,共分四跨,支撑为钢筋砼排架结构;对输水洞洞身进行砼回填,并在输水洞出口增设反滤排水设施。对输水干渠节制闸及泄水闸的启闭机进行更换。

3.5机电及金属结构

溢洪道增设事故检修门和启闭设备,工作闸门、埋件、启闭设备重新设计;泄洪洞事故检修门、工作闸门、埋件和启闭机拆除更新,重新设计;输水洞进口增设事故检修闸门;输水干渠节制闸及泄水闸增设启闭设备。

3.6水情自动化测报系统

为了及时了解工程运行状态以及运行管理对于洪水预报的要求,本设计增设大坝变形观测、大坝坝体渗流、坝肩绕坝渗流等观测设施,并创建水情自动化测报系统。

4本水库改建目标

加固设计论文范文第7篇

1.1有效延长建筑的使用时间

使用寿命在房屋建筑工程中是一个非常重要的问题,多数房屋在使用过程中因为受到使用功能的改变、火灾、地基不均匀沉降、超载等不同因素的影响,寿命缩短的很严重,而结构加固技术的使用正好可以有效延长建筑的使用时间。

1.2增强房屋建筑耐久性

房屋建筑在使用过程中,因为受到多种因素的影响,其耐久性受到了严重的影响,结构加固技术的使用可以从结构上使建筑物耐久性得到加大。

1.3提高房屋建筑抗震性

作为一种自然灾害,地震的发生为社会发生造成了严重影响,近年来我国地震频现,因此在房屋建筑使用过程中应该对抗震性给予充分重视,结构加固技术的使用可以使既有房屋建筑稳定性得到大大加强,有效提高建筑的抗震能力,进而更好的与现代社会发展的需要相适应。

2我国房屋建筑施工加固设计的使用现状

2.1房屋建筑施工加固技术体制不合理

目前我国的施工技术与管理方式比较粗放,同时密集化与专业化的程度也不高,尚未形成相应的技术创新体系。在房屋建筑施工过程中应该在技术人才培养机制上进行不断的创新,同时对房屋建筑施工技术体系进行不断的完善与创新,进行体系建设。正因为房屋建筑行业存在一定的特殊性,因此不能完全依靠传统体制,这样会使产业升级技术的更新换代受到影响,或者产业升级速度太慢等问题的存在都会对市场创新受到影响,加上房屋建筑施工技术在创新上存在一定的滞后性,需要进行大量的创新实践和运用,这样才能对施工进度与施工质量进行有效保证。值得一提的是,建筑施工技术创新很容易会不适应实际的市场需求,加上一些新的技术成果容易受到相关政策的影响,进而不能及时进入到建筑施工之中。

2.2建筑施工技术与理念非常落后

科学的理论与正确的理念是行动的先导,在建筑行业中也是如此,企业领导、项目负责人以及施工人员在工作中都离不开科学的理论与正确的思想作指导。从目前房屋建筑施工中来看,很多企业领导者、项目负责人不重视施工技术、材料的创新性,严重忽视了施工过程中的创新理念,在这种情况下,整个工程建设在设计与施工过程中始终沿用着传统的思路,不重视引进先进的理念与技术,在理念与施工上不能与时代要求相适应。施工企业严重忽视了建筑技术在创新工作上的重要性,以上这些因素是造成房屋建筑创新性缺乏的重要原因。

3房屋建筑工程中经常使用的几种加固设计技术

3.1粘贴钢板加固技术

这项技术在建筑加工施工中十分常见,这项技术的优点主要在于加固施工的时间比较短、钢筋混凝土结构不需要加湿、外观损害比较少等,因此不能对建筑物的正常使用造成影响。但是因为加固技术的效果主要由建筑结构胶的质量所决定,所以粘合的材料与施工水平都会随建筑物的加固效果产生影响。因此一般来说这种技术经常在钢筋混凝土构件薄弱部位以及受拉区的静态固件中使用。

3.2增补受拉钢筋技术

这项技术主要是指在房屋建筑主体结构中一些受力集中的地区,使受拉钢筋得到增加,利用这种方法对梁体结构的承载力水平进行改善。在这样的过程中,增补钢筋和既有梁体结构之间的连接可以利用全焊接与半焊接等方式来实现。在二者连接的过程中,可以与实际情况相结合,在干法外包与湿法外包两种方式之间进行灵活的选择。

3.3外包型钢加固技术

这项技术主要是指用型钢外包在钢筋混凝土结构的四角上,这样一来原来的结构构件的承载能力就会得到大大的提高。这种技术主要可以分为干式与湿式两种外包方法,一般来说湿式外包型钢法比较常用,这种方法可以使结构承载力得到有效提高。外包型钢法的受力非常可靠,同时施工方法也非常简单,但是需要用到的钢材量非常大,同时加固施工的成本也非常高,因此,一般房屋建筑的加固不会使用这种方法,而选择将这种技术用在建筑物梁、柱等位置上。

3.4碳纤维加固技术

这项技术主要是指通过树脂胶结合擦聊将碳纤维板粘贴在结构的表面上,通过这种方式促进结构承载力得到提高,这种技术的优点主要在于它的强度比较高、材料的重量比较小,在使用过程中不需要对材料腐蚀等问题进行考虑,此外适用的领域也非常广,施工材料价格比较低,因此成为现代结构加固设计中比较常用的一种加固技术。但是因为这种技术的耐高温性能并不强,一般来说要求在温度环境60℃以内使用,否则就需要采取一些保护性的措施。

3.5预应力加固技术

这项技术主要是指利用施加预应力的钢绞线、钢拉杆等对结构构件承载力进行提高,它是一种集加固、卸载以及改变结构受力于一身的加固方法。因为受到荷载与预应力的双重作用,使拉杆出现了轴向拉力预应力偏心受压的情况,在这种情况下构件的抗弯能力得到了增加,同时外荷载效应得到了减少,最终使结构受弯变形的程度得到了有效控制,同时也大大提高了构件斜截面的承载力。这种技术的缺点在于在加固施工过程中需要专门的施工机具设备与工序,并要求在60℃以内的温度环境中应用,否则就需要采取一些保护性的措施。

4结语

加固设计论文范文第8篇

1.1真空预压机理

真空预压主要是在外荷不变时,对需要加固处理的软土使用薄膜进行密封,使其与大气完全隔绝,然后在薄膜上层铺设砂垫层,并在其中安置管道以及竖向砂井。使用射流泵对密封土体进行真空处理,并通过管道及砂井及时排出内部的水、气,使之产生较大的负压。加固土体随着内部水气的排出,会缩小砂土间的空隙,使土体的应力增强。同时由于强烈的压差,会使周围及深度土体也会产生较强的负压,从而使整体的路基达到较好的加固效果。

1.2堆载预压机理

堆载预压主要是采用多种荷载材料对场地进行加固处理,这种方法在工程中应用较为普遍,取材也较为广泛,例如砂料、土石料或者建筑物等。其加固原理为:加固土体随着堆载的过程使超静孔隙水压力逐渐消散,从而使土体的有效应力逐渐增强,达到加固效果。若土体的软土层较厚,可在软土层中打设砂井,增加塑料排水板的安置数量,从而使渗透系数加大,有效降低固结进程,从而在更短的时间内达到加固的效果。一般而言,堆载的荷载值直接影响着加固土体的超静水压力消散程度以及预压的加固效果。同时加载的工期长短也对最终的加固效果有一定的影响。因此,要合理控制荷载大小以及加载速度,才能达到更好的加固效果。

1.3真空-堆载联合预压

真空预压与堆载预压均属于排水固结法,因此两者的加固机理属于相同的物理原理,加固结果均为孔隙水压力消散,并转变为有效应力,达到加固作用。但真空预压会在真空的作用下不断形成负的超静孔隙水压力,而堆载预压法是在加载的过程中不断形成正的超静孔隙水压力。因此在真空-堆载联合预压的情况下会使孔隙水压力的正负压差增大,提高孔隙水压力消散的速度,从而增强加固效果。这种新型的联合预压加固方法主要体现以下几个特点:①固结应力明显增大,固结速度明显加快。在双重预压效果之下孔隙水的抽出效率增强,地下水位逐渐下降,从而增加了土骨架的固结压力,在真空作用的负压力、堆载作用的正压力以及地下水位下降引起的固结压力三重作用下,达到较大的土体强度;②抵消部分向内收缩变形或侧向挤出变形。真空预压时导致土体内部各向固结应力等效,土体会产生收缩变形的效应,而堆载预压时土体内竖直方向的固结应力大于水平方向,土体会产生侧向变形的效应。真空-堆载联合预压时部分应力会产生叠加或抵消效果,从而有助于地基的稳定。

2真空-堆载联合预压加固软土路基的设计

2.1设计方案

首先根据加固所要达到的效果计算排水通道的间距(深度)、堆载填土重量、堆载高度等参数。该工程共需填土18kN/m3,堆载高度约1.3m,预计90d后路基的平均固结度可达到85%以上,沉降量约0.8m。1)密封系统的设计。对需要加固的土体使用3层聚氯乙烯薄膜进行密封,密封膜进入不透气图层需≧0.5m,然后在薄膜上层铺设黏土并压实。加固区之间使用水泥浆搅拌连续墙施工,以此降低沉降度不均等的状况。2)排水系统的设计。在薄膜上层铺设0.4m的砂垫层,并再其中以正方形的结构布置B型塑料排水板,保持1.0m的排水通道间距和12m的打设深度。3)加压系统的设计。真空-堆载联合预压方案设计80kPa的真空荷载、26kPa的堆载荷载以及7kPa的砂垫层荷载。4)检测系统的设计。在现场试验段埋设多个监测仪器,分别监测预压加载过程中的地表沉降、水平位移、孔隙水压力、地下水位等参数。

2.2施工控制

施工前要对场地进行清洁打扫,将加固区内的杂物、杂草以及积水等清理干净,再铺设土工布及砂垫层,保证砂垫层低于3%的含泥量。通过经纬仪等测量工具对排水板的打设位置进行确定,再用竹签进行标记,然后进行打设施工,保证排水板穿透淤泥层,并保证其在砂垫层表面漏出25cm左右。在砂垫层中埋设真空管路,之后进行真空泵的安装,真空泵布设原则为850m2/台,每台机器的7.5kW的功率。铺设真空膜并进行预压,当真空度达到标准值后,进行堆载预压。

3真空-堆载联合预压加固软土路基的应用效果

水平位移的观测可判断路基侧向变形的情况,分别取K1+350、K1+450、K1+550监测断面的路肩位置进行检测。在真空预压的初期先会产生挤出变形,但变形作用较小,主要是受砂垫层和密封沟的影响。待真空度达到标准后,会产生收缩变形,侧向位移不断向加固区中心收缩,最大水平位移可达235mm,最低85mm。收缩变形主要发生区域为地下15m左右,离地面越近,其位移值越小。孔隙水压力的观测主要是为了了解地基的固结状态,本次选取的3个观测断面分别达到22m、23m、24m的深度。在真空度逐渐升至标准值的过程中孔隙水压力逐渐下降,离地面越近的距离受真空压力的影响越大,因此其孔压变化也较大,在距离砂垫层2~4m的测点,孔压可维持在-40kPa左右。随着时间的延长,真空压力会逐渐向下扩散,因此可使深部孔压也逐渐降低。

4结束语

加固设计论文范文第9篇

现状溢洪道仅局部护砌,出口无消能设施;放水卧管、涵管出口消能设施损毁。上坝道路狭窄,难以满足防汛抢险要求。经有关部门鉴定,张家沟水库为三类病险水库。为确保张家沟水库安全运行,必须进行除险加固改造。

2除险加固工程方案设计

2.1大坝

2.1.1增设防浪墙防浪墙顶宽0.5m,高1.0m,墙顶高程1022.8m,M7.5水泥砂浆砌石结构。

2.1.2大坝坝体整修坝体的裂缝,主要是因坝体干缩、施工时坝体填筑不均匀、分段接茬处理不当等,从而造成坝基和坝体的不均匀沉降所致。孔穴、塌坑是坝体裂缝在雨水的冲刷下,土层下陷而成。本次坝坡整修,首先把现有坝坡上的杂草、灌木及腐殖土清除干净,清除厚度0.5m;然后对坝坡按设计断面进行适当补填及削坡。同时,对坝体上的孔穴、塌坑及裂缝,全断面彻底挖除并重新回填黏土夯实,压实度不低于96%。大面积土方回填和夯实采用74kW推土机摊土,8-12t羊脚碾碾压,边角处采用2.8kW蛙式打夯机夯实。小面积土方回填采用人工平土,2.8kW蛙式打夯机夯实。坝体经过整修,将上游坝坡恢复至1∶3.0,下游坝坡恢复至1∶2.5。

2.1.3坝坡护砌根据实际情况和防洪要求,拟对大坝上游坝坡清坡整平后铺设40cm厚的干砌石,下设厚20cm砂砾料垫层及15cm厚的粗砂垫层。护坡坡脚伸入淤积层以下1.0m。大坝下游坝坡采用草皮护坡。

2.1.4贴坡排水坝下游坡脚现无反滤体,本次新增贴坡排水。贴坡顶面高程1014.0m,顶宽2.41m,从外到内依次为干砌块石、碎石、砂砾料和粗砂,砌筑石块要求排砌嵌紧。

2.1.5坝坡排水为了防止暴雨冲刷坝肩和下游坝坡,将水流送至坝脚以外,在下游坝坡与岸坡结合处布设横向排水沟3条,在下游坡脚设一纵向排水沟,并与坝坡横向排水沟相连。排水沟形式为矩形断面,采用现浇C15砼浇筑。横向排水沟断面尺寸为0.3m×0.3m,坡脚纵向排水沟断面尺寸为0.5m×0.3m。

2.1.6坝顶道路原坝顶道路为土路面,宽3.0m。雨天泥泞,影响管理人员巡察。本次改造将坝顶拓宽至4.0m,路面采用0.2m厚泥结碎石结构,以1%横坡向下游倾斜。

2.2溢洪道

本次除险加固改造,将溢洪道分为引渠段、控制段、泄槽段及消力池四部分。由于溢洪道左侧为基岩,岩体几乎垂直,不需衬砌,全段只需对右侧(靠坝体一侧)侧墙和溢洪道底板衬砌。底板为现浇C20砼,各段连接处均设齿墙,齿墙高0.5m,厚0.3m。引渠段全长20.9m,进口底高程1016.79m,纵坡1/100为倒坡,断面为矩形。引渠段右侧侧墙紧贴大坝坝坡,为挡土墙式,顶厚0.6m。侧墙由地面起逐渐加高至4.8m。控制段长度79.5m,始端底高程1017.0m,末端底高程1015.01m,纵坡1/40。泄槽段断面为梯形,底宽3.8m,右侧侧墙坡比1∶0.75。侧墙高度4.8-3.1m,为渐变形式。由于泄槽段右侧土体单薄,且形状不规则,本次对其整修成顶宽3m、外坡比1∶1.25与地面连接。消力池全长10m,池深1.0m,池宽3m。侧墙高4.1m,为挡土墙形式。消力池出口接5m长铅丝笼石护坦。

2.3放水卧管

由于卧管管台砌体老化,剥蚀严重,已不能正常运行,本次重修卧管,增设孔塞。

3主要加固改造工程施工要点

3.1大坝加固施工

坝体整修前,首先清除该段的杂草、腐殖土、砂、石等。坝坡培厚段要将原坝坡开挖成平顺的边坡,坡度不陡于1∶1,以便于新旧土层结合。清基采用74kW推土机施工,清基深度为50cm,清基范围应超出设计边线30-50cm。坝体上的塌坑、孔洞、裂缝按楔形缝开挖,采用机械和人工配合,回填黏土采用蛙式打夯机和人工石硪夯打相结合,使其压实度不小于96%。腐殖土、杂草等清除物由1m3挖掘机或3m3装载机挖装,8t自卸汽车运至下游弃渣场集中堆放。

3.2下游护坡施工

坡面反滤料回填、干砌石(包括拆除)采用人工施工,筛选并利用部分拆除料。干砌石要自下而上砌筑,每块块石重量不小于15kg。护坡应严格按照设计要求铺砌,坡面不允许有游石、孤石、补贴石、小石等现象。砂砾料、碎石、干砌块石应优先利用原有的坝坡石料,不足部分再适当补充。干砌石护坡要逐层填实,用大石排紧小石塞严,无活石,以脚踏不动为准;坝面石选用较大石块排砌,错缝竖砌,结合平稳,不得使用垫石;石面接触严密,坝面坡度平整。下游坝坡草皮护坡的植草时间宜在春季或初夏,坝坡整平后,铺填种植土50-70mm,再铺植被网,用防滑钉固定,播洒草籽于网内,松土覆盖,轻轻压实。

3.3溢洪道施工

施工内容主要为溢洪道衬砌。土方开挖采用1m3挖掘机挖装,8t自卸汽车运输至下游坝坡做培厚用土。浆砌石采用砂浆搅拌机拌制砂浆,人工砌筑。混凝土拌和采用0.4m3搅拌机,0.6m3机动翻斗车运输入仓,仓面内用高频振捣器振捣。砼施工要求为:砼表面光洁、无蜂窝麻面;在常温下,砼浇筑完毕36h后即可拆模;用草袋覆盖洒水养护不少于7d。亦可用砼养生剂养护,但必须喷洒均匀。

4结语

加固设计论文范文第10篇

关键词:水库特点; 除险加固; 设计; 主要问题; 对策;

中图分类号:TV697 文献标识码:A 文章编号:

一 我国水库病害特点

我国绝大多数水库修建于20 世纪50―70 年代, 限于当时的技术水平和经济能力,工程质量总体偏差,又以灌溉和防洪为主要功能, 主要发挥社会效益, 长期以来正常维护或更新投入不足, 对于存在的病害未能及时处理,往往“积劳成疾”形成病险水库。

1.1水库除险加固的特点

水库除险加固工程设计是从根本解决水库安全隐患问题的一个关键环节,有着自身的特点,主要有以下几个方面:

1.1.1 除险加固工程设计深度

水库除险加固工程分为安全鉴定、初步设计及技设阶段,要求设计报告书应达到相应设计阶段的深度。

1.1.2 除险加固工程设计内容水库除险加固工程设计包括如下内容:水文水利计算、工程地质、工程加固设计、其他项目设计、工程管理、施工组织设计、投资概算等七大部分,其中:水文水利计算、工程加固设计是主要部分,工程加固设计主要是对大坝工程、溢洪道两大件的加固设计。

1.2 水库加固设计中需注意的问题

当前,水库除险加固设计中存在一些问题,这其中既涉及到设计自身方面也有其他外在因素方面。分水文水利计算、工程加固设计主要部分进行剖析。

1.2.1 水文水利计算

水库除险加固工程―般都缺乏实测的水文气象资料,采用推理公式法或综合单位线法计算洪水,成果基本符合要求,但常发现部份水库的设计洪水偏大,使得调洪后的水库设计洪水位、校核洪水位偏高,或在相应溢洪下泄流量偏大,进而造成工程除险加固的投资加大。造成上述问题的原因是在查读暴雨参数、地形参数后取值偏大;或者来自宁大忽小的思想影响。建议在今后其他的水库除险加固工程设计中对暴雨参数、地形参数做到合理的读取,要重视―些地区流域相互平衡,或利用―些经验公式进行对比计算,选取合理的参数,得到相对合理的成果。

1.2.2 工程加固设计

大坝工程加固设计。大坝工程加固设计一般包括:大坝高度复核、大坝浸润线计算、大坝稳定分析计算、除险加固措施等设计内容。主要还存在如下一些问题:①上游砼护坡厚度小于120mm,铺设防冻垫层厚度小于500mm,冻涨现象严重;②个别项目所提交土坝的浸润线成果存在不合理问题,有些报告没有稳定性计算;③浸润线很低且下游无水情况下,不是选用贴坡排水方案,却采用棱体排水,使得投资增大;选用排水棱体方案时,断面出现偏大现象;④在坝体防渗处理设计方面,存在复合土工膜与劈裂灌浆重复使用的现象;未弄清工程渗漏的原因、部位或缺乏地质勘探资料的情况下,就对坝基、坝身、坝肩一起进行灌浆防渗,导致花费了投资,但不一定能解决问题。

2)溢洪道加固设计。溢洪道的主要尺寸是根据调洪成果、水面线计算、消能工计算、结构计算而选定的。审核中发现溢洪道尺寸的确定还存在随意性,具体有如下几个方面:①在确定溢洪道尺寸时,很少有详细的方案比较,导致工程项目的规模与溢洪道尺寸大小不匹配;②进行凋洪演算时,未合理处理好溢洪道尺寸与水库水位的对应关系,出现了溢洪道宽度过小而坝顶高程增加过大的不合理现象;③溢洪道的底板和侧墙断面偏大,溢洪道侧墙高度偏于保守,有优化的余地;④个别项目缺少消力池的水力计算和溢洪道的消能工设计成果。

二 提高加固设计质量的对策

1. 加强基本资料的收集及分析论证。由于有些水库管理体制不健全,基本资料残缺不全,加上水库建成时间长,水库资料可能存在较大偏差,甚至有的资料前后矛盾,这就需要加强水库原始资料的收集和整理工作,并对基本资料进行分析论证,确认其准确性和可靠性。

2. 加大病险水库检查、检测手段等。对于病险水库原始建设资料缺失和运行管理资料较少的情况,以及水下建筑物难以进行现场检查的部位,需要加大地质勘测工作和改善检测方法,提高病险水库诊断技术,对情况不明的建筑物做全面的检查和检测。

3. 加强地质勘察工作。地质勘察是水利工程进行可行性及合理性分析论证的基础,是对病险水库加固进行安全评价和设计工作的重要依据。① 加大地质勘察工作的投资和投入,延长地质勘察工作周期,全面准确了解区域地质以及库区近岸岸坡稳定等情况,确保地质勘察成果与实际情况相符,且具有足够的精度。② 合理布置工程地质勘探点,增加钻孔和钻孔深度,掌握更多地质资料,全面准确了解水库大坝各建筑物结构和物理参数等基本情况。③ 对于运用较少的水工建筑物,也要进行全面的地质勘查工作。

4. 加强水库工程任务的论证。根据病险水库实际情况和水库所在地区远期发展规划,在病险水库除险加固设计中,不仅要对水库现状险情进行论述,对防洪标准进行复核,而且对于病险水库正常蓄水位和汛限水位要重新分析论证和选择,对水库工程任务进行论证。

5. 提高设计方案科学性。全面了解病险水库病险情况,从水库规模、功能上对加固水库进行具体分析,设计、施工方案要在深入研究水库运行调度等情况下,考虑进行可行性和合理性论证比选。要加强推广新技术、新材料,尤其是综合治理技术。① 全面了解水库运行及地方上对于水库运行调度的要求,设计、施工方案要充分考虑地方上对水库加固中供水及灌溉的依赖性,然后进行设计方案可行性和合理性比选论证,使水库加固设计、施工方案兼顾地方上的要求,减少施工中不必要的设计变更。② 在水库加固中要充分考虑水库防洪、大坝渗漏等险情解除之后水库大坝结构安全问题。③ 在大坝加固中,与大坝结构安全相关地方,要充分考虑施工条件及方案对大坝结构安全的影响,必要时要对大坝结构进行稳定计算复核。④要全面考虑与金属结构相关的建筑物情况,特别是与金属结构相关的水下建筑物加固及金属结构更换安装的条件。⑤ 水库加固设计、施工规模与技术要与地方上施工和监理等技术力量相符。⑥ 水库安全监测设施设计方案要结合病险水库运行管理现状,使水库安全监测设施和水库管理运行实际情况相适应。

6. 加强与水库管理单位的沟通。对病险水库进行加固设计,不仅要考虑消除病险水库险情,还要考虑水库加固之后能否有利工程运行管理和水库效益发挥等问题。要使水库加固消除病险水库险情的同时,还能够方便加固后的运行管理,或者增加一些必要的工程措施使有利于管理单位能够更好、更安全方便地管理,充分发挥水库的效益。

7. 加强病险水库加固后的技术支持。水库管理运行是一个长期、持续的过程,水库病险是一个发展的过程,因此要以动态变化发展的眼光和理念对病险水库进行加固。① 全面做好病险水库除险加固完成后的运行管理调度,对水库运行管理相关的工程措施及设计方案,设计单位要及时进行交底,特殊情况下还要进行必要的培训工作。如对病险水库的安全监测设施,在完成安装调试的同时,还要对水库管理人员进行设施运行培训工作,使水库管理人员能够有效地对水库运行状况进行监测,充分发挥安全监测设施的作用。② 设计单位要和运行管理部门建立良好的合作关系,为加固水库提供技术支撑和后续的服务工作,保证病险水库长期地安全运行和稳定地发挥效益。

结束语:

我国病险水库数量多, 险情复杂,严重威胁公共安全。为适应经济社会发展的需要,由各级政府组织对病害严重的病险水库进行全面加固是必要的。病险水库加固设计专业性强,对设计人员专业要求很高。本文分析了我国病险水库的病害特点,提出加固设计的主要内容和设计中应注意的一些问题,以供病险水库除险加固设计借鉴。

参考文献:

[1] 严祖文,魏迎奇,张国栋. 病险水库加固现状分析及对策[J]. 水利水电技术,2010,41( 10) .

加固设计论文范文第11篇

关键词:路基石灰土回弹模量剂量

中图分类号: U213.1 文献标识码: A

一、引言

城市道路路基及底基层一般采用石灰土处理形式,通过石灰固化剂的掺加,提高路基的强度和稳定性,使其更好地承受由路面传递的动载及路基自身填土压力。石灰作为加固土的外加剂,因其高效、方便、价格低廉而应用广泛,但实际施工中,石灰掺加量往往是根据现场工程经验粗略确定,无明确的理论依据。本文旨在通过力学计算,从理论上探寻在一定的路基强度和稳定性要求下的石灰掺加量,为工程设计与施工提供参考。

二、加固层设计理论依据

根据公路沥青路面设计规范,道路结构层的设计采用双圆均布荷载作用下的双层弹性体系理论,其简便模型如下图1所示。在路基加固中,石灰土处治的目的是为了使路基顶部达到预定的设计回弹模量,本文认为,处治后顶面当量回弹模量与处治前路基土的回弹模量、处治层的厚度、以及处治层自身模量这三者有关,可用公式表示如下:

(1)

(2)

(3)

式中:

——处治后路基土顶面当量回弹模量,也即需要达到的设计回弹模量;

——路基未经处治时的回弹模量;

——石灰土处治层抗压回弹模量;

——石灰土处治层厚度。

对于某一确定的路段,处治前路基土的模量值是可以通过弯沉测定、承载板法或者查相应的规范来确定的,因此,在剩下的三个参数,,中,知道了其中两个便可求得另外一个。对于新建城市道路,路基顶面需要达到的模量即为设计回弹模量,如不满足设计值的要求,就需对填土进行处治以增加其强度和刚度。

图1 双圆垂直均布荷载作用下的双层弹性体系

在路基处治过程中,主要涉及两个因素:石灰掺加量和加固层厚度。前面已经提及,石灰加固土的强度是随着石灰剂量的变化而变化的。较低剂量时,石灰主要起稳定作用,随着石灰剂量的增加,石灰土的强度与稳定性均提高,当石灰剂量超过某一定量后,继续增加石灰剂量又会导致石灰土强度的降低[1]。可以认为,石灰土的强度是石灰剂量的函数,即:

E1 = f (x)(4)

x = f -1(E1) (5)

另外,石灰加固土层厚度也是影响加固后路基质量的一个关键因素,厚度越大,则必定加固效果越好。对于确定路段的路基土,是一定的,而路基顶面的设计回弹模量值是在设计中确定的,因此,只要知道加固层模量(最终将与石灰掺量建立关系)或厚度中的一个,从理论上另一个便唯一确定了。

三、灰土路基中石灰剂量确定程序

以下主要建立当处治层厚度一定时,加固土中石灰剂量的确定方法和步骤:

(1) 根据设计文件的要求,确定路基顶面所需达到的设计回弹模量。

(2) 确定路基实际回弹模量

路基实际回弹模量可根据双圆垂直均布荷载作用下的弹性半无限体理论[2],按下式确定:

(6)

式中:

——处治前土层的回弹模量(MPa);

——土的泊松比,取0.35;

——均匀体弯沉系数,取0.712;

由上述公式可知,若已知弯沉,即可求得回弹模量。如果<,则需进行处治,若两者较一致,则可不进行处治。

图2 石灰掺量设计框图

(3) 取定处治层厚度,利用双层体系理论计算处治土所需达到的抗压回弹模量。

将石灰土处治层和其下的路基看作双圆垂直均布荷载作用下的弹性双层体系(图1),根据确定的处治层厚度、路基土模量及所要求达到的顶面当量回弹模量,利用公式(2)计算处治层需要达到的模量值。

(4) 针对特定的路基土及选用的石灰材料,进行试验和回归分析,建立石灰剂量与处治土回弹模量之间的对应关系或回归关系:E1=f (x) (其中为灰剂量),根据所需的值来推算相应的剂量。具体设计流程如下图2所示:

加固设计论文范文第12篇

在各式“彩虹”桥伫立的背后,饱含着一批专门从事相关研究科学工作者的艰辛汗水,华南理工大学土木与交通学院桥梁教研室单成林教授是其中一员。

30多年前,单成林考取重庆交通交通大学桥梁专业,在此之前他没想过自己有朝一日能够用妙笔绘就“彩虹桥”。然而当他选择沉浸下去,逐渐发现了其中的奥妙和乐趣,这一干就是30余年。

30年披荆斩棘,30年风雨兼程。30年时光里,单成林走过祖国南部的许多地方,先后从事过桥梁施工、设计、监理、科研及教学工作。主持和参与了国家自然基金、省部级等多个项目,多年来共负责和参加过55座大、中桥梁的设计及加固设计工作。

“积跬步至千里,积小流成江海。”通过实践不断磨砺,单成林逐渐从一名普通的科教人员成长为专业领域的知名专家。在时光的雕琢中,他累积了丰富的经验,形成了一套自己“特有”的科研思路和方法,而善于在实践中发现问题,解决问题成为其致力创新“开花结果”的重要“秘诀”之一。

自开展科研以来,单成林将主要的精力放在新结构、新材料在桥梁上的应用及桥梁加固设计理论领域,其专著、论文、专利、评奖及推广应用大多是该领域的内容,其复合材料正交异性桥面板及桥梁加固设计理论研究都走在国内最前沿,有些研究成果国内至今未见他人有类似的成果报道。尤其在桥梁加固设计理论方面,其成果在学术性、实用性及数量上都是国内极少数贡献比较多的学者之一。

8年前,单成林在桥梁加固领域的研究设计中,注意到一个普遍现象:当时国内加固设计无章可依,大多做些加固前的复核性计算,对于真正的加固设计计算,或不做,或仅做承载力计算,且呈现出五花八门的乱象。当时国内对桥梁加固后的设计计算只有一些零散的、局部的研究,有些方面只有概念,更无相关桥梁加固设计方面的规范。

能不能将这些较为散乱的桥梁加固设计研究形成一套系统的、深入的、具有可操作性的依据呢?单成林在工作中强烈感到这一工作的重要性。凭借过去在这方面累积的深厚的研究基础和功底,2004年,开始独自撰写《旧桥加固设计原理及计算示例》专著。全书52.5万字,融入了单成林自己的一些加固设计理念,2007年年初由人民交通出版社出版。值得一提的是,该书不仅成为从事桥梁加固研究人员、设计人员的重要参考用书,还成为后来国内桥梁加固规范编写的重要参考书,他本人还参与了交通运输部的“公路桥梁加固设计规范”评审。至今,该书也是桥梁加固设计方面写得最深入、最全面、最具实用性的著作,已被发表的期刊论文和学位论文引用150次。随后2011年由科学技术文献出版社出版了单成林撰写的另一部16.7万字的《混凝土梁式桥加固设计理论及试验》专著,现今成为参与住建部“城市桥梁结构加固技术规程”编写工作的基础,负责内容最多、最复杂的预应力加固设计一章,目前已形成征求意见稿。

加固设计论文范文第13篇

关键词:ABAQUS 排水固结 数值模拟

中图分类号: TU47 文献标识码: A 文章编号:

一、前言

ABAQUS是国际上功能强大的大型通用有限元软件,其拥有能够真实反映土体性状的本构模型,能够进行有效应力和孔压的计算,具有强大的接触面处理功能来模拟土与结构之间的滑移等现象,具备处理填土或开挖等岩土工程中的特定问题的能力,可以灵活、准确的建立初始应力状态,对岩土工程有很强的适应性。本文结合工程案例,通过对比分析、验证得出abaqus在排水固结地基处理中的数值模拟具有较高的准确度,可用于实际的设计、检算。

二、排水固结地基处理原理及理论计算

1、排水固结地基处理原理

排水固结法是处理软黏土地基的有效方法之一。该法的基本原理是对天然地基、或先在地基中设置砂井、塑料排水带等竖向排水井,然后利用建筑物本身重量分级逐渐加载,或在建筑物建造以前,在场地先行加载预压,使得饱和软黏土地基在荷载作用下,土体中的孔隙水被排出,孔隙体积减小,地基发生固结变形,同时随着超静水压力逐渐消散,有效应力逐渐提高,地基土的强度得到增长。

2、排水固结地基处理中地基固结度理论计算

固结度的计算是竖井地基设计中一个很重要的内容。因为知道各级荷载下不同时间的固结度,就可以推算地基土强度的增长,从而可进行各级荷载下地基的稳定性分析,并确定相应的加载计划。已知固结度,就可推算加荷预压期间地基的沉降量,以便确定预压的期限。

由于砂井地基固结问题求解是土力学中的一个经典问题,已经有一些理论解答,因此本文采用Hansbo理论解结果与Abaqus解对照分析。

其中,Hansbo理论解给出的z深度处的平均固结度计算公式为:

考虑到时间因子,可上述公式可简化为

式中: ,渗透系数(㎡/s);

,,;

为砂井影响半径,由于砂井理论计算模型为轴对称模型,故,为砂井间距。

三、Abaqus有限元中固结计算简介

Abaqus程序以Biot理论为基础进行固结有限元计算,通过导入参数化语言来进行计算。在固结计算中,对于土体单元,一般采用孔压单元,其与常规力学分析中的连续单元的大体构造类似,最大区别在于具备了孔压自由度,可以施加孔压荷载,用于模拟饱和、非饱和土地。而对于砂井单元,由于不考虑井料刚度,除渗透系数外,其他参数均与其所在土层相同。

在初始条件设置上,对于土体这种空隙介质,为了正确定义初始状态,必须要给出初始孔隙比、初始孔压和初始有效应力的正确分布。这是应为Abaqus在计算前通过迭代来建立与荷载和边界条件相对应的平衡状态,并作为后续分析的初始状态,如果给出的初始应力状态偏离平衡条件过大,可能造成迭代的失败或迭代建立平衡后的位移多大从而造成分析失败或者分析结果与实际相差过大。

而对于时间步长的选择,一般采用自动时间步长,这是因为在固结计算的后期,孔压的变化较小,如果采用固定步长,就会造成不必要的计算时间浪费。

四、算例简述及计算结果

假设地基处理采用砂井加固,砂井为正方形布置,间距为=2m,长度为8m,砂井半径=0.1m,渗透系数为=10-2m/s。地基土厚度L=8m,土体渗透系数为=10-8m/s。为简化起见,将土体和砂井材料取为弹性模型,弹性模量=104kPa,不考虑土体的水平方向变形,泊松比=0。地基土底面不排水,顶部完全透水,土体及砂井表面作用有瞬时施加的荷载P0=20 kPa。

1、Hansbo理论解

由上述算例模型,可以求得砂井影响半径为, ,,=10-5㎡/s,由此可以推算出时间因子与土体固结度的相互对应关系如表1所列。

表1 Hansbo理论解时间因子与固结度

2、Abaqus有限元分析

在Abaqus有限元分析过程中,取模型底部固定三个方向的约束,不排水;四周仅能容许竖向位移,同样不排水;表面位移自由,且是自由排水面。荷载瞬时施加,然后根据土体表面各个时刻的竖向位移来求得时间因子与土体固结度的关系。模型中土体与砂井均采用C3D8P单元,土体与砂井的初始孔隙比均为1,设置时间总长为10天。

图1 固结结束时模型中央剖面处孔压的分布

由图1可以看出,越靠近砂井处及地表处的孔压越小,也证实了砂井加快排水的特性。

图2 固结结束时沉降等值线云图

由,2可以看出,最终的地表沉降值为16mm,由此可根据不同时间的地表沉降除以总沉降计算出相对应的土体固结度,计算结果如下表所列:

表2 Abaqus解时间因子与固结度

3、结果对照分析

(1)沉降结果对照

考虑到模型表面荷载为P0=20 kPa,土体弹性模量=104kPa,模型厚度为8m,沉降理论值应为20÷104×8=0.016m=16mm,这与Abaqus有限元计算结果地表沉降最终值为16mm是一致的。

(2)固结度对照

根据Hansbo理论解及Abaqus有限元计算结果,分别绘制时间因子与土体固结度之间的关系曲线图,发现两者结果很接近,Abaqus有限元计算结果值略高于理论计算值,总体来说时间因子与土体固结度关系曲线图能较好的重叠。

图2 Hansbo理论解与Abaqus有限元软件解时间因子与固结度关系对比图

五、结论

1、采用Abaqus软件进行排水固结地基处理的三维有限元数值模拟分析与理论计算结果、沉降发展规律是相互吻合、可靠的,且能够较好的模拟砂井在排水固结中的作用。

2、利用Abaqus软件,当建立合理的计算模型、采用有效的计算参数时,对排水固结地基处理进行有限元分析是可行的,可作为一种设计辅助方法应用到工程实践当中。

参考文献:

【1】孙吉主,高晖.ABAQUS在软基固结过程分析中的应用【J】.岩土力学,Vol.28 Supp(2007)

加固设计论文范文第14篇

关键字:岩石锚杆设计 ; 安全系数 ;试验与验收技术; 问题锚杆

Abstract: a large number of engineering safety accident investigation data shows, our country engineering construction common construction conditions,construction safety and quality can not be guaranteedand other issues, the bad situation of engineering construction mainly by anchoring construction process control is not in place due to. Bolt is a key component of anchoring engineering, and construction safety of theanchor design of anchorage engineering has direct.Therefore, strengthening the research on problem of designing safety bolt is of practical significance. In this paper, the safety of geotechnical anchor design as the research object, based on geotechnical anchor design,anchorage, anchorage engineering safety threerelationship, from three aspects of processing anchor testdesign safety factor, the anchor bolt design and acceptance standard, discussion, in order to improvesafety standards and the design of anchor bolt design.

Keywords: the design of rock anchor; safety coefficient;test and acceptance of anchor rod;

中图分类号: U455.7+1 文献标识码:A文章编号:2095-2104(2013)

目前锚固技术已被广泛应用到各大岩土工程领域,大量实践也证实了其无可取代的优越性,例如简化结构体系、提高结构稳定度、确保施工安全、加快施工进度、节约工程材料、降低工程造价等。所谓岩石锚固,它是一种通过把结构埋入地层并锚固到岩土上来获取所需应力,进而实现拉力与剪力传递的施工技术。岩石锚固技术目前已被用来抵抗竖向位移、抵抗沿基础线位移及倾倒、抵抗沿地层临界面剪切破坏及维持岩体稳定、加固地基等领域。与国外岩土锚杆设计的研究相比较,我国业内学者的研究主要考虑如下方面:钢筋等材料自身对截面积的拉力;锚固段砂浆对钢拉杆握固力的极限拉力;锚固段底层对砂浆摩擦力的极限拉力。总体而言,我国学者对岩土锚杆设计的理论研究尚不能完全实现确保施工安全、缩短施工工期、节约工程材料、降低工程造价等。基于此研究背景,本文根据我国岩土锚固技术标准的基本要求,主要对岩土锚杆标准中锚杆设计的安全性进行讨论,以期提高我国锚固工程的施工安全与施工质量。

一、锚杆设计的安全系数

锚杆设计的安全系数通常包括锚杆杆体或锚杆筋体设计的抗拉安全系数、锚杆固体设计的抗拔安全系数,其中锚杆杆体或锚杆筋体设计的抗拉安全系数=锚杆杆体极限拉力:锚杆拉力设计值;锚杆固体设计的抗拔安全系数=锚杆极限抗拔力:锚杆拉力设计值。岩土锚杆设计的安全系数通常需对锚杆结构设计的风险程度与不确定性因素进行综合考虑,其中包括锚固岩土体或地层的性态、杆体材料与灌浆的不稳定性、筋体中所有钢筋或钢绞线受力的不均匀性、锚杆群中部分锚杆承载力失效或下降对周边锚杆工作荷载的影响程度、周边环境或地下水的变化、锚杆抵御轻微腐蚀的能力等。

备注:临时锚杆的工作年限<2a、永久锚杆的工作年限>2a;最小安全系数要求当锚杆破坏引发公共安全事故时取最大值、若未引发公共安全事故时取中值、其余情况取最小值,其中前两种情况的危害程度均较后者严重。

表1-1锚杆锚固体抗拔安全系数与锚杆杆体抗拉安全系数

(一)众所周知,锚杆设计的安全系数直接关乎到岩土锚固工程的可靠性,基于此理论基础,世界各国纷纷出台锚杆规范来对锚杆设计的安全系数进行规定。表1-1为世界主要国家对锚杆锚固体抗拔安全系数与锚杆杆体抗拉安全系数的规定。由表1-1可知,世界主要国家的锚杆规范皆要求重点参考锚杆破坏后的危害程度与锚杆安全系数来对锚杆设计的安全系数取值,其中各主要国家对锚杆设计安全系数的取值基本一致。此外,表1-1中提及的最小安全系数通常是用来满足锚杆对安全工作状态的基本要求。但目前多数锚杆设计皆为严格遵循上述基本要求,具体包括如下两种情况:

1.锚杆杆体或锚杆杆筋设计的安全系数偏小

针对锚杆杆体或锚杆杆筋安全系数偏小的问题,本文以国内某永久性大型边坡锚固工程为例展开讨论。该锚固工程锚杆设计的具体情况包括:工程所用的钢绞线为12根Φ15.2mm 1860MPa级钢绞线;锚杆拉力值为2000kN。通过计算可知,该工程锚杆设计的安全系数仅为1.55,该数值较国标规定的1.80小0.25。为了更加深入探讨锚杆杆体或锚杆杆筋安全系数偏小的问题,本文再简要介绍另一工程案例。某24m深基坑工程设计的支护结构为3道锚杆背拉排桩支护,其中锚杆杆体的钢绞线为Φ152mm 1860MPa级钢绞线,通过计算可知该工程杆体的抗拉安全系数为1.00左右。

2.未明确岩土锚杆设计的安全系数及未搞清楚锚杆锚固体抗拔安全系数的真实含义,亦或采用了明确的锚杆设计安全系数,但未对其采用极限抗拔力试验(标准的锚杆基本试验)与验收试验来进行验证。

(二)研究证实,前文所提及的两种情况势必会影响到锚杆工作的安全性。基于此论断,本文以锚杆杆体抗拉安全系数偏小为研究对象展开讨论。

1.锚杆杆体抗拉安全系数偏小可使钢绞线的受力分布不均匀(此时各钢绞线拉应力之间的差距约15%)及钢绞线的截面积因外力腐蚀作用而呈减小趋势,此时极易引起锚杆局部钢绞线出现断裂现象。

2.锚杆杆体抗拉安全系数偏小可能使钢绞线过高及筋材松弛量过大,进而极易引起预应力损失超出允许标准。

3.若高抗拉强度钢绞线的拉应力>钢绞线抗拉强度的3/5,其极易引起应力腐蚀或钢绞线断裂。

二、锚杆设计的试验与验收标准

由前文可知,适宜的锚杆安全系数是锚杆结构设计必须考虑的重要内容,其中锚杆设计的合理性通常需采用基本试验与验收试验进行严格的验证,究其原因为锚杆承载力极易受到杆体制作质量、锚固地层的变化、注浆及锚杆钻孔等工艺条件的影响。锚杆的基本试验通常是指锚杆极限抗拔力试验,其操作现场的地层条件必须与拟建工程的地层条件相同,同时还需严格执行国家有关规定。锚固工程施工之前通常需采用基本试验来对锚杆设计进行验证,由此确保锚杆设计的极限拉力值与有关设计要求基本相符。如果锚固工程随意套用与拟建工程地层条件相当的锚杆基本试验数据或未进行任何基本试验便盲目开工,其必然使锚杆的安全度丧失被准确验证的良好时机,由此极易增加锚杆安全工作的风险因素。

(一)据大量调查数据显示,我国岩土锚固工程目前普遍选择降低验收试验的标准。国家有关规范明确规定:“验收试验锚杆数量应≥锚杆总数的1/20,即≥3根。永久性锚杆试验荷载的最大值应等于锚杆轴向拉力设计值的1.5倍,其中试验荷载的最大值应与锚杆设计的安全系数呈一一对应关系。”如果严格按照上述要求设计验收试验的标准,其设计出的数据必定能够证实工程锚杆的安全储备与设计规定的安全系数大致吻合。然而针对我国众多锚固工程未采取标准的验收试验等情况,本文主要从如下方面进行阐释。

1.若永久性锚杆的张拉力达到拉力设计值的1.05倍~1.10倍,那么此锚杆设计可被判定为合格;若临时性锚杆的张拉力达到拉力锁定值或拉力设计值,其验收结果可被判定为合格。若永久性锚杆仅>设计值安全储备的0.1倍,那么此永久性锚杆必定难以抵御冻融交替、暴雨侵蚀、地层开挖会变异荷载等环境改变的不良影响,同时也难以抵御锚杆局部腐蚀侵蚀现象对其安全工作状态的不良影响。

2.目前我国城市基坑支护工程普遍存在锚杆初始预应力大幅度降低、基坑边界位移量过大、基坑坍塌事故频发等情况,研究证实上述诸多情况多由随意降低锚杆验收试验标准所致。

3.我国现行锚杆标准明确规定:“若要判定锚杆验收结果合格,必须具备如下充分条件,即以最大试验作用为前提,锚杆的蠕变量及弹性位移皆要满足国家有关规范的基本要求。”由此可见,锚杆验收试验降至初始荷载之前必须事先加载到能够满足蠕变率的最大试验荷载,随后再提升该初始荷载到锁定荷载水平,同时做好相应的锁定工作。图2-1为锚杆荷载(P)-位移(S)曲线。

备注:该图所示的锚杆标准与国际锚杆标准的有关规定完全吻合,其中N1(KN)表示锚杆轴向拉力的设计值。

图2-1锚杆荷载(P)-位移(S)曲线

(二)我国现行岩土锚杆设计标准明确规定:“受最大试验荷载影响的锚杆弹性位移应>锚杆自由长度理论弹性伸长值的4/5,同时应<锚杆自由段长度+锚固段长度的1/2。其次就受最后一级荷载影响的锚杆而言,其在6min~60min以内的蠕变量应≤2.0mm。”对锚杆弹性位移的规定通常用来验证锚杆的实际自由段长度与设计要求之间的吻合度,同时用来判定锚杆的正常工作状态;对锚杆蠕变量的规定通常用来控制锚杆蠕变量在30min~50a以内≤12mm。综上所述,如果能够严格执行国家规定的验收试验标准,锚固工程及锚杆质量的安全性便可被提升至要求范围以内。然而大量锚固工程调查数据显示,我国锚杆设计验收试验尚存在诸多问题,其中多数工程根本不能够提供完全满足国家规范的验收试验资料。如果此现状不能及时得到解决,其势必会对我国锚固工程的安全性造成直接且深远的影响。

三、问题锚杆的处理

针对如何处理验收不合格的锚杆,我国制定并出台了《岩土锚杆(索)技术规程》(CECS22:2005),该规程对问题锚杆如何处理的规定预示着我国岩土锚杆标准化建设的进步。研究证实,岩土锚固工程安全链的完整性要求对锚杆设计的安全性、锚杆设计试验与验收、问题锚杆的处理一视同仁,即三者是不可分割的整体,缺一不可。《岩土锚杆( 索) 技术规程》(CECS22:2005)明确规定:“若锚杆设计验收试验不合格,则必须增加锚杆试件的数量,其中锚杆试件的增加数量要达到问题锚杆数量的3倍。此外应按照最大实际试验荷载的1/2对问题锚杆进行锁定,最后再根据问题锚杆与锚杆总量的比值来确定锚固工程锚杆的设计总抗力与实际总抗力之间的差值,进而对锚杆进行增补。”根据《岩土锚杆( 索) 技术规程》(CECS22:2005)的有关规定,本文针对如何处理不合格锚杆的问题引入如下(见图3-1)锚杆验收试验与不合格锚杆处理框架图。

图3-1锚杆验收试验与不合格锚杆处理框架图

结合图3-1及《岩土锚杆( 索) 技术规程》(CECS22:2005),本文将做如下说明:

(一)若锚杆设计验收试验未达到临时锚杆拉力设计值的1.2倍或永久锚杆的1.5倍是由锚杆验收试验的局部破坏所致,亦或锚杆设计验收试验能够满足国家验收试验规程对荷载的要求,但受最大试验荷载影响的蠕变试验不合格,此时皆应被认为该锚杆设计不合格。

(二)就不合格的锚杆而言,如果对锚杆预留有二次灌浆系统(补强系统),那么必须对二次灌浆完毕的锚杆进行补充验收试验,同时根据原验收试验标准对补充验收试验进行评定。如果锚杆结构未预留有二次灌浆系统,那么需根据最大实际试验荷载值与锚杆抗拔安全系数的比值来对锚杆结构进行锁定,同时可以把此荷载锁定值归纳到原有锚杆设计的总抗力内。

(三)《岩土锚杆( 索) 技术规程》(CECS22:2005)规定:“根据不合格锚杆与锚固工程锚杆总量的百分比来计算出锚固工程锚杆设计总抗力与实际总抗力之间的差值,同时根据此差值来对锚杆数量进行增补。”针对此规定,大量研究证实,其要求对锚杆进行补偿是非常必要的,同时也具有一定的合理性。此处提及的增补工序所产生的额外工程造价应由责任方全权负责。此项规定的意义为:针对不遵守国家规范而引起的锚杆质量缺陷,责任人必须承担经济责任,由此起到警示作用,同时也对工程后续施工安全起到防范作用。

四、讨论

综上所述,锚杆是目前锚固支护的关键性结构,其作用机理方面与分类方面皆存有较大差异,同时锚杆被应用到不同锚固工程支护施工方面时,锚杆设计人员应该充分严格制定国家现行锚杆设计规程《岩土锚杆( 索) 技术规程》(CECS22:2005)。本文以岩土锚杆设计的安全性问题为研究对象,以岩土锚杆标准《岩土锚杆( 索) 技术规程》(CECS22:2005)为理论依据,主要从锚杆设计的安全系数、锚杆设计的试验与验收标准、问题锚杆的处理三大方面展开讨论,以期提高我国锚固工程锚杆的设计水平。总体而言,此次研究可简单归纳为如下四点:

(一)锚杆设计的安全系数、锚杆设计的试验与验收标准、问题锚杆的处理对岩土锚固工程的安全性具有直接性且长远性的影响,换而言之,如果锚杆设计存有随意降低锚杆的安全系数或锚杆的试验验收标准等行为,其势必会影响到岩土锚固工程的安全性,甚至引发一系列工程安全事故。

(二)岩土锚杆设计的安全系数对岩土锚固工程安全性的影响至关重要。锚杆设计的安全系数应严格依据锚杆的工作年限和问题锚杆对公共安全的危害程度来确定。一般而言,临时锚杆锚固体的抗拔安全系数应≥1.4~1.8;永久性锚杆锚固体应≥1.8~2.2。临时锚杆杆体的抗拉安全系数应≥1.6;永久性锚杆杆体应≥1.8。

(三)锚杆设计的试验与验收标准是确保岩土锚固工程安全性的重要保障,其中就受最大试验荷载影响的锚杆而言,其蠕变率与弹性位移是判定锚杆合格与否的关键性指标。针对如何处理问题锚杆,本文任何可通过增补锚杆来实现锚固工程的长期稳定。

参考文献:

[1] 林汉伟.关于临时性支护锚杆设计安全系数应用的讨论[J].广东建材,2009,(2):102-104.

[2] 周勇,朱彦鹏,张悟成等.框架预应力锚杆柔性支护结构中锚杆设计参数研究[J].甘肃科学学报,2008,20(1):148-151.

[3] 马平,李曼,涂杰楠等.桩锚与土钉墙联合支护锚杆深部平面滑动失稳分析[C].//第三届全国岩土与工程学术大会论文集.2009:344-347.

[4] 张自成,张占国,李金华等.应变式测力锚杆设计及其在巷道支护检测中的应用[C].2009:270-274.

[5] 罗辉,杨仕教,喻清等.基于FEM-RSM-GA的边坡锚杆设计可靠性反问题研究[C].//第七届全国随机振动理论与应用学术会议论文集.2010:93-96.

[6] 邢龙龙.应变式测力锚杆设计及在煤矿巷道中的应用[J].科技资讯,2011,(10):132-133.

[7] 崔亮,张典礼,张超等.松动圈支护理论在榆家梁矿锚杆设计中的应用[J].西部探矿工程,2010,22(3):104-106.

[8] 张明聚,叶新丰,谢小春等.拉力分散型锚杆在明挖隧道基坑围护结构中应用[J].铁道建筑技术,2010,(z1):16-20,32.

加固设计论文范文第15篇

考虑四边简支方板的自由振动,外加载荷q为0,设复合材料层合板的长、高分别为a、h,边界条件为:采用满足(6)式边界条件的Navier三角函数解分别来表示u0,v0,w0,φx,φy;分别代入所求得的控制方程中,可以得到:对应的{U}={Umn,Vmn,Wmn}T;而一阶剪切变形理论和高阶剪切变形理论得到5×5的刚度矩阵和质量矩阵,对应的{U}={Umn,Vmn,Wmn,Xmn,Ymn}T;{U}为x,y,z方向的位移向量。

2数值算例

以正交各向异性对称铺设的四边简支方板[0°/90°/90°/0°]为例,方板长度为a,厚度为h,且层合板的每一层都具有相同的材料参数和厚度。表1中文献[9]是复合材料固有频率的有限元解,文献[10]是根据分层理论所求的解,都具有较高的精度。表1为JD、YJJQ和GJJQ同文献[9]及文献[10]的一阶无量纲固有频率结果对比。从表中数据可以看出,当跨厚比a/h=5时,JD的误差很大,YJJQ也有较大误差,而GJJQ相比于文献有较好的结果;当a/h=10时,JD误差减小,但仍有较大误差。此时,YJJQ和GJJQ具有较好的精度;当a/h=100时,JD、YJJQ和GJJQ同文献[9]及文献[10]的解都较为接近。由表中数据可知,GJJQ精度高,可靠性好。通常,弹性模量比(E1/E2)、跨厚比(a/h)的改变对复合材料层合板固有频率有影响。以数值分析中的方板为例,图1~图3分别是基于3种理论,层合板一阶无量纲固有频率与弹性模量比、跨厚比的关系。

3层合板固有频率的优化设计

1)优化模型建立及设计变量。基于高阶剪切变形原理,建立层合板固有频率等效模型,再将层合板固有频率等效为单层正交各向异性材料的材料属性。复合材料层合板的减振降噪性能通常受其固有频率影响,而有很多因素影响固有频率,如铺设角度、跨厚比、弹性模量比、湿热等等。对其进行优化设计,能提高层合板的性能。以上例中的层合方板为例,基于高阶剪切变形理论下,对层合板的固有频率进行优化,选择铺设角度作为设计变量。2)目标函数及约束条件。本文以上例材料参数作为层合板的初始参数,以层合板固有频率最大化作为优化目标,文中得到的(8)式则是固有频率的目标函数。铺设角取值范围∈[0°90°]。3)优化设计方法。文中以改进的适应度函数[11]遗传算法对目标函数进行优化。遗传算法引导搜索的主要依据就是个体的适应度值。也就是说,遗传算法依靠选择操作来引导算法的搜索方向。选择操作是以个体的适应度作为确定性指标,从当前群体中选择适应度值高的个体进行交叉和变异,寻找最优解。如果适应度函数选择不当,它直接影响到遗传算法的收敛速度、稳定性及能否找到最优解。本文选择种群规模(NIND)为20;遗传代数(GEN)为40;交叉概率(px)为0.7;变异概率(pm)为0.01;代沟(GGAP)为0.95,采用进化代数固定的终止策略。从图4看出,优化目标值随着遗传代数增加呈递增趋势,优化到第10代时找到全局最优解。优化结果为x=0.735,y=0.769,z=15.31;即θ1=44.5°,θ2=44.9°,为15.31。由表2可知,优化后的效果较明显,ω~11从12.40提高到了15.31。

4结论