美章网 精品范文 三维仿真论文范文

三维仿真论文范文

三维仿真论文

三维仿真论文范文第1篇

论文关键词:三维虚拟仿真技术,物流,教学

 

当前,仿真技术已经成为分析、研究各种复杂系统的重要工具教育学论文,它广泛用于工程领域和非工程领域。高职院校的物流实训中心大多数是基于软件模拟的物流实训室,这类实训室是以物流软件模拟来搭建物流模拟平台,如仓储管理软件、运输管理软件、ERP、MRP、国际货代软件、TPL软件或基于上述几个软件集成起来的供应链软件等;然而对于基于设备的物流实训室来说,由于资金等方面的限制,比较先进的设备还尚欠缺教育学论文,这就造成了学生对立体库、高速分拣机、巷道式堆垛机、AGV、码垛机器人等先进的物流设备缺乏足够的感性认识论文格式模板。三维虚拟仿真技术等够对仓库、配送中心、企业生产线等进行简单的建模,能够加深学生对各种物流设备的认识,帮助学生理解工业、企业、生产线的布置与产出平衡、物料需求计划、企业资源计划等相关知识,更好地找出生产瓶颈,加深对现代化立体仓库、配送中心的了解。因此三维虚拟仿真技术在教学中的应用教育学论文,对于学生更好地学习物流专业理论知识、培养相应的职业技能是大有裨益的。

一、三维虚拟仿真技术概述

三维虚拟仿真(3D Virtual Simulation)就是利用三维建模技术,构建现实世界的三维场景并通过一定的软件环境驱动整个三维场景,响应用户的输入,根据用户的不同动作做出相应的反应,并在三维环境中显示出来。三维仿真的关键技术主要有动态环境建模技术、实时三维图形生成技术、立体显示和传感器技术、应用系统开发工具、系统集成技术等论文格式模板。该软件提供了原始数据拟合、图形化的模型构建、虚拟现实显示、运行模型进行仿真的实验、对结果进行优化、生产3D动画影像文件等功能。

利用三维虚拟仿真技术教学具有以下优点:

1、教学内容视觉化

2、学习中的交互性好

3、沉浸感真实感强

二、三维虚拟仿真技术在物流教学中的应用

基于青海交通职业技术学院物流实训中心3D实训室的应用系统及操作流程。

1.开机步骤

开机顺序依次为:

2 AP转换器(数量两台):

按下电源按钮教育学论文,

2 工作站(数量两台)

2 投影机(数量四台)

进入控制工作站,进入中控程序,点击投影机控制,选择开

等投影机启动完毕后再进入下一步

2 边缘融合机(数量两台):

按下电源按钮

关机顺序依次为:

立体图像工作站——边缘融合机——AP转换器——投影机——控制工作站

2.基本操作设置

立体图像工作站设置

(1)多显示器设置

鼠标在桌面上右键

进入NVIDIA控制面板

点击设置多个显示器

设置作为一个大水平桌面(水平平移模式)

显示的结果是,显卡双头输出两个通道的桌面。

(2)分辨率设置

单屏分辨率1024×768教育学论文,重叠像素为192

整体分辨率为1856×768(含边缘重叠区192个像素)

重叠像素设置图如下:

立体设置为管理3D设置里面,基本设置,选用立体启用

3 .基本演示操作

(1)立体电影

检查左右眼是否正确?

2 将图像移动分别移动到第一个通道和第二个通道进行检查论文格式模板。

如果第一个通道和第二个通道都不正常,点击一下软件里面L/R

2 如果图像只在第一个通道出现左右眼反的现象?

在第一台AP转换器后面的绿色按钮按两次切换左右眼

2 如果图像只在第二个通道出现左右眼反的现象?

在第二台AP转换器后面的绿色按钮按两次切换左右眼

(绿色按钮按两次表示切换左右眼)

(2)NVSG演示软件

同样观看立体是否正常,可以通过软件切换左右眼

(3)VEGA演示软件

同样观看立体是否正常教育学论文,可以通过软件切换左右眼

4系统连接图如下

5投影机图像不正确的调试方法

(1)首先检查画面比例是否正确

再点击高级:

水平位置和垂直位置,如图所示。

6融合机出现故障处理方法

出现基本问题首先重新启动融合机来解决

如重新无法解决可以采取如下步骤:

(1)找到是那台融合机出现的问题,并接入键盘鼠标

(2)ALT+F4退出融合服务软件

(3)点击桌面上的blend文件夹

(4)复制setting.cfg文件到其他地方

(5)将备份的该文件copy到blend这个文件夹下面

(6)双击STEREO_CAP程序

(7)按ESC,再点击开始扑捉、全屏幕、下一次开机启动,保存设置、开始

(8)重新启动

7注意事项

(1)投影机开启后遥控器上的auto、aspect两个按键不能按教育学论文,正常使用情况下不需要遥控器;

(2)投影机机械结构不能轻易触碰

(3)屏幕位置不能挪动,屏幕表面不能触碰,灰尘可用干净的柔软布沾水擦;

(4)投影机关机后不能立即断电,同时投影机电源需接入UPS稳压电源,UPS后备电池时间不小于10分钟;

(5)不能随意拔插设备连接线缆;

(6)立体工作站显卡、立体、分辨率等设置不能改变

(7)控制工作站IP:192.168.1.10不能改变。

开机先后顺序要严格按照技术要求顺利

三、结束语

三维虚拟仿真技术软件在高职的教学中能发挥出积极的作用,一方面能提高学生的学习兴趣,学生在学习的过程中能够对仓储、运输、配送、生产加工等有一个感性的认识,同时也提高了学生分析问题、解决问题的能力,实践证明三维虚拟仿真技术软件的应用对于高职物流专业的教学具有积极的意义。

参考文献:

[1]吕明哲,物流系统仿真,东北财经大学出版社,2008.10。

[2]贺国先,现代物流系统仿真,中国铁道出版社,2008.12.1。

[3]青海交通职业技术学院物流实训中心3D实训室操作手册

三维仿真论文范文第2篇

1电力仿真框架

电力安全培训的三维仿真系统要想真实地反映电气设备的外观结构和运行环境,就需要三维仿真系统能够展现规模庞大的现实虚拟场景,所以,在开发系统的逻辑控制程序时,就需要将三维仿真系统的整体架构分为电力仿真框架和通用三维仿真引擎两部分。在现实的操作过程中,操作人员是通过仪表设备操作控制电气设备的,而在三维仿真培训系统中,则是通过复杂的逻辑系统实现对其的控制,将现实中的电气设备和仪表转化为抽象的虚拟设备和操作逻辑。为了使各种动作状态在三维效果中显示得更加正确、合理,达到预定的视觉属性,往往需要重新组织节点名称和节点坐标。

2通用三维仿真引擎

通用三维仿真引擎的功能是达到图形渲染、交互控制和网络通信的目的。它是由资源管理、场景管理和动画系统三个子系统组成的。通用三维仿真引擎与逻辑操作无关,它主要是为了实现三维虚拟场景的重建和环境渲染。电力仿真系统与通用三维仿真引擎共同组成了一个完整的三维仿真培训系统。

二、系统实现的主要技术要求

1仿真对象和电气属性的同步

在三维虚拟环境下,为了保证虚拟对象和行为的一致性,往往需要借助事件、属性、对象的三位一体机制来实现。电气设备的虚拟设计是电力安全三维仿真培训系统的主要对象,除了颜色、缩放比例等常见的属性外,还需要对仿真对象的电气闭合状态和相关参数等重要的属性进行逻辑设计。当虚拟操作导致电气设备的闭合状态发生变化时,电气设备的相关属性就会发生变化,最终使得电气设备的参数发生变化。当信息传递到设备管理器时,就可以重新计算电网的参数来更新事件的状态。

2逻辑控制与复杂操作的对应关系

电力安全三维仿真培训系统的操作过程应当全面支持操作者的各种开放式操作行为。简单来讲,虚拟的操作逻辑应当及时地判断和反馈操作者的操作行为。开放式的操作控制逻辑与封闭式的操作控制逻辑相比,其应变能力和复杂程度都大幅提高了,在这种操作控制逻辑下,用户可以根据自己的操作习惯灵活操作,避免复杂的操作流程带来一定的操作压力。在错误的操作下,操作系统也会及时给予警告或提示,这样便可以更好地实现智能化培训的目的。

3大规模场景的情境渲染技术

由于电力安全培训的三维虚拟场景范围比较大,需要仿真对象根据培训人员的操作产生动态移动,这就要求在具体的逻辑设计中,不能把全部的仿真对象放置在同一个渲染列表中,以免影响操作过程控制。在实际设计中,可以将仿真对象分为可渲染对象和可移动对象两种。可渲染的仿真对象一般是指场景对象的模型数据,它只要求有显示的功能,而可移动仿真对象则需要能够在三维坐标中来回移动。当场景数量较大时,可以分别优化处理静态场景和动态场景。只更新动态场景的空间信息而忽略了静态场景的空间信息,不仅能够提高渲染速率,还可以有效地节约计算资源。

4三维交互模式的实现

三维交互模式的首要功能是当用户轻点三维场景中的某一个物体时,系统就可以快速地检测到该信息的传送情况,并快速反应,从而实现三维交互模式中的人机交互。三维物体是根据射线相交的原理实现的,当鼠标点击的位置发射一条平行于视线的射线与场景射线相交计算时,交点即该物体的位置标识。常用的三角形检测方式往往会占用较多的计算资源,影响定位速率。为了避免这种情况的发生,可以采取包围球体的检测方式与三角形检测方式混合使用的方法,提高检测速率。

三、三维仿真培训系统的应用

根据上面的整体架构设计和主要问题分析,可以初步实现包含场景编辑器、逻辑编辑器、地图编辑器在内的三维仿真培训系统。场景编辑器可以实现三维场景的构建功能,逻辑编辑器可以将复杂的逻辑语言转化为可视性的操作过程,实现虚拟设备的响应控制功能,而开发人员则可以通过地图编辑器实现三维场景的布置功能,并且可以及时查看编辑结果。

四、结论

三维仿真论文范文第3篇

【关键词】三维仿真教学法;内涵阐释;构建;构造课程

随着世界仿真技术的高速发展和教育思想、教育理论的进一步现代化,教育领域中引入仿真技术并广泛运用到教育的各个方面已成必然趋势。发达国家已经把仿真技术与多媒体技术相结合进行辅助教学,而且日臻完善。发展中国家和不发达国家也开始把仿真技术引入到教学中作为本国教育现代化的努力方向和奋斗目标。

一、三维仿真教学法的内涵阐释

教学方法是指在一定的教育思想、教学理论、学习理论指导下老师向学生传授知识,进行教学活动的方式方法,它是教育思想、教学理论、学习理论的集中体现。三维仿真教学法是指模仿真实的实体结构,建立实体的三维模型,并通过三维模型进行虚拟拆装和工作原理演示来进行教学,以达到理论与实践结合的一种教学方法。它实际上是将虚拟现实技术引入教育领域,也是虚拟现实向教学领域延伸和应用的一个重要方面。三维仿真教学法通过多媒体技术与仿真技术相结合,生成一种逼真的模拟在自然环境中的视觉、听觉、触觉和运动等行为一体化的虚拟环境,使老师或学生以自然的方式与虚拟环境中的客体进行体验和人机交互。采用三维仿真教学法的教学方式不再是单纯依靠书本、教师授课的形式,从而弥补了传统教学所不能达到的教学效果。三维仿真技术结合多媒体技术可以方便、准确、形象、逼真地对形态造型、技能、实验和声音等进行再现,甚至可以进行复杂的人体虚拟。

在进行构造课程(如:物理、建筑学、机械制造、汽车构造学等)理论教学中,构造类课程是一门具有自身特点的课程。尤其是一些复杂的结构采用文字表述和平面构造图显示,学员仍然无法还原为完整的空间结构,所以教学效果不是很理想。如果将三维仿真教学法应用于构造课程理论教学中,通过建立三维模型,并将三维模型通过三维仿真软件处理得到可交互的三维模型,并将其直接嵌入到多媒体课件中。此交互模型可直接用鼠标操作,可进行放大、缩小、旋转、虚拟拆装等操作,使学生对任何一个结构都有更加直观的认识和了解,教师对结构的讲解也更加方便和简洁,从而达到事半功倍的效果。笔者尝试将三维仿真教学法应用于汽车结构课程教学,实践证明,效果明显。

二、三维仿真交互多媒体课件的构建

1.零件尺寸整理及建模。各零件尺寸整理及建模主要在Pro/E中完成。具体Pro/E中的建模操作不冉赘述,但要注意尺寸整理一定要准确表达,避免数字模型的失真。尺寸整理与放样完成后建立各零部件的三维模型。每个模型文件要保存为(*.stl)格式,以备导入3DSMAX后使用。

2.在3DS MAX中对三维模型进行整理。进入3DS MAX操作界面,在File菜单中导人各个零部件并赋材质和贴图处理,并且把各个零部件都摆放在正确的相对空间位置,最后把它们组合成一个整体并重新命名。最后将模型从3DS MAX导出(*.C3D)格式的模型文件。

3.在Clut3D中导入模型、添加交互行为并渲染作品。在Cult3D软件中导入(*.C3D)格式的模型文件。Cult3D软件中的操作关键在于交互行为的添加。其步骤如下:(1)完成交互操作。将Cult3D的Arcball行为施加于所有零部件;(2)运用Event中的触发事件、复位事件等对三维模型进行控制,实现三维模型总成的旋转、缩放、虚拟拆装等;(3)将添加交互行为的模型保存为(*.CO)文件,此文件能在internet、PowerPoint中使用。

4.将三维仿真交互模型嵌入课件。下面主要将三维仿真交互模型嵌入PowerPoint文档为例来进行介绍。在PowerPoint中点击控件工具箱命令,在其它控件按钮中选择Cult3D

ActiveX Player选项即可嵌入相应的(*.CO)文件。这样制作的三维仿真交互课件就可以在课件播放时交互操纵这个三维仿真模型。这种三维仿真交互课件可用于课堂教学,也可到网络上让学生自学。

三、仿真教学法的教学评价和优势分析

(一)教学评价

为了了解三维仿真教学法在构造课程中的应用情况和教学效果,笔者曾多次把制作的三维仿真交互多媒体课件应用于课堂教学并进行了问卷调查。问卷的对象有两类:一是从事过构造教学的教师,一类是授课的学生,调查总人数为870人。问卷调查结果如表1所示。调查表明,在构造课程教学时使用三维仿真教学法可以明显地提升教学效果,有效地帮助教师进行教学。

(二)仿真教学法的优势分析

在《机械设计与制造》、《汽车构造》等构造课程教学中,由于机械结构关系复杂,工作原理抽象,一直是相关构造课程中的难点与重点问题。三维仿真交互多媒体课件利用三维可交互模型等虚拟仿真技术,结合三维动画、平面图形、声音讲解,文字图片等手段对相关结构和工作原理详细进行描述和分析。三维仿真教学法就是通过多媒体技术与虚拟仿真技术相结合,可以生成一种逼真的模拟在自然环境中的视觉、触觉、听觉和运动等行为一体化的虚拟环境,使人们以自然的方式与虚拟环境中的客体进行人机交互。由此可见,采用三维仿真教学法进行教学,使构造课教学提升到了一个更高的层次,这也是构造类课程的一个发展趋势。

四、结论与展望

通过对三维仿真交互课件的构建和在教学中的尝试,教学后的良好评价,已经能够证明三维教学法在构造课程中应用的可行性和先进性。三维仿真教学法和三维仿真交互课件的使用为构造教学提供了一种全新的手段和方法,特别是在教学改革的环境下,在更加注重师生交互性和教学实践性的教学模式下,必将更加充分发挥三维仿真教学法在构造教学中的优势,使其更好地为任职教育服务。

参 考 文 献

[1]线恒录.强化实践教学提高实践能力[J].中国高等教育.2004(4)

三维仿真论文范文第4篇

关键词:计算机;计算机组装与维护;仿真教学;仿真实验

一、引言

《计算机组装与维护》是职业学校计算机类专业的一门重要专业课,旨在培养有一定理论基础,能对计算机进行日常维护的应用型人才。目前,《计算机组装与维护》的实验设备存在更新周期短、设备损耗快、实验时间过长的情况,使得该课程的实验难以开展,有部分章节的教学内容甚至不进行实验,最终影响教学质量,以至学生未能充分掌握计算机组装与维护技术。

随着虚拟仿真技术、多媒体技术等计算机技术的飞速发展,通过计算机软件开发的虚拟仿真教学系统为课程的实践改革提供了可能。通过虚拟仿真的场景,可以对学习者的元认知进行引导,为最近发展区提供模型。学生能身临其境地观看各种实验硬件,体验操作系统的安装与维护,获得比传统实验更深刻的学习体验,有效提高教学效果。

二、仿真教学对《计算机组装与维护》教学的意义

《计算机组装与维护》课程中的硬件组装、BIOS 设备、硬盘分区、操作系统安装、系统备份与还原等教学内容,均适合利用虚拟仿真技术进行教学。学生沉浸在虚拟仿真的场景中,动手操作相关实验,在与仿真实验设备的交互过程中,领会教师的设计思想,从而达到教学目的,有效改善了传统教学过程中学生以获得间接知识经验为主的教学弊端,促进学生对知识的理解。

(一)缩短课程时间,提高教学效果。

引入仿真教学之前,在“ghost镜像的制作”的教学中,镜像的制作过程需要20分钟的等待时间,教学过程出现“真空层”,令教学效果大打折扣。仿真教学系统可以将教学资源便捷地呈现在计算机桌面,省略了累赘的实体展示、作业过程的等待,各教学环节衔接紧密。学生在秩序良好的仿真环境下学习和实验,争取到更多的实验时间,通过多次重复的仿真实验,也可以充分积累操作经验,形成标准的作业习惯。

(二)寓教于乐,提高学生学习兴趣。

中职生由于年龄、心理、知识结构特点等原因,大多数学生均排斥概念、原理等陈述性知识,对实际动手操作的实践实验有着浓厚的兴趣。仿真教学环境提供可交互、系列化的教学方案,将枯燥的理论知识变得生动有趣,在一对一的仿真实验场景中,带“智能提示”的实验任务将仿真实验变成了探索知识、形成技能的游戏,使学生对仿真实验充满热情。

(三)降低设备损耗,减少实验成本。

《计算机组装与维护》普遍存在的问题是学生多、实验硬件少。由于学生的基数大,每个学生接触实验硬件的机会少,对硬件的性能不尽了解,在真实实验过程中比较盲目,导致硬件无谓损耗严重,使得实验任务无法完成,很多实验都被教师放弃。仿真教学系统能在极少的成本和最快的时间更变仿真对象,使学生在仿真的环境下能利用社会主流的硬件设备进行学习、实验,既能达到真实作业的效果,又能便捷地进行反复的仿真实验,同时也避免了因误操作引起的设备损坏。

三、仿真教学系统的应用

目前,我国职业学校《计算机组装与维护》教学大多延续着以“理论—实践”为主的传统教学方法。例如,在计算机硬件组装的教学中,教师通过展示图片示范硬件的拆装过程,然后组织学生现场分组实操,许多学生在未完全吃透理论知识的情况下便进行实操,容易出现误操作等情况,影响教学的有效性。为了更好地衔接“理论”和“实践”两大教学模块,我们通过分析学生的特征,依据认知学习规律,借鉴“三段式”教学模式的精华,并在此基础上进一步优化,创造出了“新三段式”教学模式。

(一)“新三段式”仿真教学模式。

“三段式”虚拟仿真教学模式就是按照学生的学习认知规律,划分理论教学、仿真实验和实验实训三个阶段。在虚拟仿真技术的辅助下将传统的“理论—实操”转变为“理论—仿真实验—实践”的新型学习方式,仿真实验是理论与实践之间一座新的桥梁。在实际应用中,“三段式”的仿真实验环节还未检查学生的实验效果便单向指向真实实验,有些学生在未完全掌握操作技巧的情况下便进入了真实实验环节,导致学生在真实实验中出现误操作。

为提高仿真实验的效用,保障真实实验的教学效果。我们将原单向的“三段式”教学模式改变为带回路的“新三段式”教学模式,即在教师主导教学下,学生进行理论学习,学生在仿真实验模块进行探究式自主学习、实验,在进入真实实验前,仿真系统会自动对学生的仿真实验进行一次评价。具体教学流程如图所示。

(1)理论教学:教师根据教学目标的要求,分析教学内容,在课堂上讲解知识要点,明确教学目标和实验任务。

(2)知识巩固:学生通过仿真教学系统对理论教学的知识进行再认,强化理论教学的效果。

(3)仿真实验:在教师的引导下,采用“以学生为中心”的教学方法,让学生反复地进行仿真实验,使学生从初步了解实验操作步骤成长到充分掌握操作技巧。

(4)系统评价:仿真教学系统根据学生的操作情况,对学生的仿真实验效能进行评价(取决于某几个关键步骤),没出现一次误操作为合格。学生取得合格的评价后,可以向教师申请到实践实验环节,不合格则可返回知识巩固环节。

(5)实践实验:学生在教师的指导下,在真实环境下验证仿真实验的实验结果。

(6)综合评价:教师根据学生的学习情况、仿真实验情况和实验的情况,综合评价学生在该教学项目任务中的成绩。

(二)“新三段式”教学模式的特点。

学生自主学习与教师主导相结合的“新三段式”教学模式,以仿真实验为核心,从理论知识的教学开始,在教学形式、实验手段等多个方面均体现出与传统教学不同的特点。

三维仿真论文范文第5篇

【文章编号】0450-9889(2017)04B-0027-03

计算机仿真是在计算机上建立形式化的数学模型,然后按一定的实验方案,利用系统的模型通过模型解算的方法来获得系统动态行为的一种研究系统的过程。计算机仿真技术是以计算机为工具,以相似原理、系统技术、控制理论、信息处理技术以及各种相关领域技术为基础,以计算机和其他专用物理效应设备为工具,根据系统试验目的,建立系统模型,并在不同的条件下,对模型进行动态运行试验的一门综合性技术。随着计算机仿真技术的迅速发展,仿真技术由二维平面图形向三维虚拟现实逐步转化。三维仿真技术具有生动、形象、经济实用等优点,已广泛应用于科学研究、工业制造、交通运输、工程设计、教育培?、军事、医疗等众多领域之中。

一、三维仿真技术在职业教育领域的应用

仿真教学是利用实物或计算机创设各种虚拟环境来模拟真实环境,并根据真实环境中的理论和实际操作情况在虚拟的环境中进行操作、验证、设计、运行、优化等的教学方式。它的出现对职业教育的发展产生了极大的推动作用,为新的教学手段开发奠定了基础,使教学方式、方法的改革和创新成为职业教育发展的必然趋势,结合互联网使用,可以使职业技术教育实现远程学习、在线学习,突破传统职业教育依赖于硬件设备进行教学的局限,促进职业教育跃上了一个新的台阶。目前,许多职业院校充分利用现代计算机技术和仿真技术开发了三维仿真教学软件、实验或实习仿真教学系统,开展仿真教学和实验、实训操作训练,如利用数控加工仿真教学系统,可以实现学生编程刀具路径轨迹校验、检查碰撞、工件过切、程序优化等教学过程,尽可能避免未经校验的程序在实机操作过程发生碰撞等危害事故。电梯技术实训仿真教学系统可实现电梯技术中的机械、电路、传感器、变频调速、PLC 控制等技术实训的仿真教学。建立与课程相对应的仿真实验室、仿真实训室、仿真实训车间、工厂,利用仿真实训室开展单项技能训练和综合项目实训,如数控仿真实训室、三维电子导游仿真实训室、财务仿真实训室、冶金仿真实训室、变电仿真实训室等仿真实训室,使学生直观地、低成本地体验生产环境,完整地、清晰地了解生产流程和各个岗位的工作任务等。

二、三维仿真教学软件的开发方式

教育部的《教育信息化十年发展规划(2011―2020年)》明确提出:加快职业教育信息化建设,建设职业教育虚拟仿真实训基地。由此可见,虚拟仿真实训基地是专业实训基地的一个重要组成部分,职业院校要积极建设仿真实训基地等信息化教学设施,组织力量开发适合学校发展需要的仿真教学软件,以满足信息化教学的需要和专业建设的需求。三维仿真教学软件的开发通常有学校自主开发、校企合作开发、软件购置三种方式。学校组织教师自主开发虚拟仿真教学软件,主要是解决教师教学中特定的教学问题,这是提高教师信息技术水平的一个重要举措,也是解决学校信息化教学资源不足的主要途径。例如,广西机电工业学校教师自主开发的基于单片机技能大赛的三维虚拟仿真软件,仿真度高,可以根据训练项目进行编程和调试程序实训操作,包括单片机控制的机械手进行实时仿真等。校企合作开发的虚拟仿真教学软件主要是学校根据自身需要定制的产品,学校根据自身教学需要提出仿真软件系统的总体要求、技术要求、教学模块功能、产品的指标等需求,成立由学校专业教师和企业专家组成的开发小组,教师根据教学目标、教学内容、教学方法、教学认知规律和企业的岗位要求及工作过程进行教学设计,再由软件技术开发公司来负责技术实现。例如,广西机电工业学校开发的基于工作过程的模拟电路分析与制作三维仿真、地质灾害三维仿真等与教材配套、具有学校特色的教学软件。软件购置是学校根据教学需要和使用场所,购置易于实现与其他设备、软件衔接的行业中具有代表性的教学软件系统。

三、三维仿真教学软件开发的流程

教学软件是为实现特定的教学目标、实施特定的教学过程而设计开发的应用软件,教学性是它固有的属性。在开发过程中应将教学设计和软件工程二者有机结合,软件开发团队应该由职教专家和专业技术专家等组成。自主开发和校企合作开发仿真教学软件一般由分析、论证、设计、实现、测试、验收这六个阶段组成,而软件购置则省略了设计和实现这两个阶段,三维仿真教学软件开发的流程如图 1 所示。

(一)需求分析。教学软件的需求分析是保证教学软件开发质量的重要前提。其主要任务是回答“软件必须做什么”,从而确定软件开发的目标和预期效果,并在使用条件分析、软件功能分析和教学特性分析的基础上,确定软件的使用条件、教学功能、教学特性等其他方面的要求。

(二)方案论证。根据软件开发的目标和预期效果,对所要开发的软件产品现状进行比较分析,明确已有教学软件同类产品可以解决的问题和不能解决的问题。依据教学需求分析和已有产品现状分析的结论论证教学软件开发的必要性,从教学软件开发的经费、开发团队的组成及其成员的技术水平、教学功能实现的技术手段等方面论证教学软件开发的可行性,进一步确定开发软件的总目标。

(三)软件设计。为了保证教学软件的教学性、科学性和可操作性,软件设计很重要的一部分工作就是进行教学设计,围绕教学软件的教学目标、教学内容、教学策略和评价方式分别进行分析设计,确定教学软件整体框架结构,功能模块等。

(四)软件实现。软件实现是教学软件开发流程中最能体现教学软件特色的重要环节。首先要进行技术预研,选择合理的开发平台以及软件工具,然后根据软件设计的结果,围绕教学软件的界面、数据库、功能模块等详细规划。比如,对机械部件的实物原型进行三维建模、运动功能、驱动控制、外部数据接口等功能设计。最后,使用 Unity3D 软件作为开发平台,实行仿真环境的场景、环游功能和人机交互功能。具体实现步骤包括:先测量实物的实际尺寸,使用 CAD 软件绘制二维图像(.DWG 格式),然后利用二维图像在 3DsMax 软件中建立三维模型(.FBX格式),最后在 Unity3D 软件中导入三维模型,针对三维模型的碰撞检测以及人机交互功能进行代码的编写。

(五)软件测试。软件测试是确保教学软件?|量的重要环节,分为单元测试、整体测试。由教育专家、技术专家、教师和学生对所开发的软件产品进行功能和效果等测试,及时发现软件产品存在的问题,再根据存在的问题和修改建议进行修改优化。

(六)评审验收。教学软件的评审验收需要专家、同行和用户三方结合进行。专家和同行的评审可以保证教学软件的教学功能和技术性功能,用户评审有利于积累教学软件的开发经验。

四、三维仿真教学软件的应用机制

仿真教学软件(系统)应用的主体是教师、学生和在职培训者。应用仿真教学软件的目的主要有三个方面:一是通过仿真教学软件的虚拟交互,使抽象内容形象化,学习活动变得生动有趣味,降低学习难度,调动学习者的学习积极性,从而提高教学效果;二是利用仿真软件开展教学,可以弥补场地、设备和师资的不足,实现理论与实践的同步教学,提高教学效率;三是利用仿真教学软件和网络搭建的平台,打破地域和时间的限制,实现网络教学和远程培训。为更好实现上述目标,必须建立相应的仿真软件运行管理机制、学习者学习机制、教师培训机制、仿真软件应用的考评机制、仿真软件使用评价机制,如图 2 所示。

(一)仿真软件运行管理机制。为教师、学生和培训者提供便捷的教学使用平台是仿真教学软件应用的基本前提,因此教学软件运行管理机制是教学软件应用中最重要的机制。经评审验收后仿真教学软件由学校信息中心或相应的部门进行集中管理,负责教学平台的运行管理和维护。相关的专业教学部门或开发部门负责开发与之对应的教材、学习指导等教学资料,并建立相应的教学平台,为仿真教学软件的应用提供基本的保障。可通过建立完善相关管理制度和明确工作职责来建设仿真教学软件运行管理机制。

(二)学习者学习机制。网络课程在线学习和远程培训的主要对象是在校学生和在职职工。可通过把学生利用网络课程学习或职工参加远程学习的情况与对应课程考核成绩挂钩的方式建立学习者的学习机制。

(三)教师培训机制。教师是仿真教学软件的主要用户之一。教师要对软件的使用方法、应用场合及其主要功能、教学性能要十分清楚,并能熟练演示和操作仿真软件,才有可能在教学实施过程中应用仿真软件进行教学。可采取企业培训、校本培训和开展相关教学教研活动的方式对教师开展培训,并建立教师学习培训跟踪考核评价制度,确保教师会用、想用,使之成为教学中不可缺少的重要手段,提高教师信息化教学应用水平。

(四)仿真教学软件应用的考评机制。教师是教学的组织实施者。要充分调动教师利用仿真软件开展课堂教学或组织实施项目的积极性,改革教学方式、方法和教学模式,(下转第38页)(上接第28页)更好地利用仿真软件辅助教学,提高教学效率和教学质量。建立教师应用仿真软件的考评机制可以从以下几个方面入手。一是将教师应用仿真软件(信息化)教学明确为工作职责之一;二是把教师应用仿真软件(信息化)教学的考评机制纳入教师学期业务考核内容;三是与教师的专业技术职务晋升挂钩,将教师运用应用仿真软件(信息化)教学的能力作为教师的岗位能力,作为资格晋升的必要条件之一;四是建立奖励制度,对教师开发仿真软件和应用仿真软件参加信息化教学比赛给予业务考核加分和物质奖励。

三维仿真论文范文第6篇

【关键词】载运工具运用工程 研究生仿真训练 汽车综合仿真

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2016)06-0161-01

随着计算机技术和专业仿真技术的发展,要求汽车生产企业在设计研发阶段要加快进度。在这样新的形势下,对高校机械相关专业研究生培养提出了更高的要求:不仅要求研究生掌握数学、力学、机械、电子电工等传统基础课程知识,同时还要掌握现代设计方法,会运用成熟的专业仿真计算软件进行建模与优化设计。一个只懂得用传统机械设计方法进行设计计算、并根据计算结果作机械零部件图的学生,已经远远不能满足现代企业的需求。

我校载运工具运用工程学科,在充分利用中央地方共建资金和交通运输部建设资金基础上,建立了独立的载运工具运用工程仿真实验室。目前该仿真实验室有服务器一台、工作电脑20台。购买了Hyper-mesh、AVL-FIRE、GT-suite等专业仿真软件。本综合仿真实验项目通过利用这些专业仿真软件,分步骤、分阶段进行模拟仿真训练,在研究生开题之前,将课题研究中所用专业软件和基本技能训练一遍。下面以“汽车综合仿真实验项目”为例,将综合仿真实验项目分解为三个子训练项目,说明整个训练项目的流程。

一、发动机燃烧室三维设计仿真训练项目

本训练项目利用Hyper-mesh软件建立发动机整机三维模型,主要是包括燃烧室和进气道部分。然后将发动机燃烧室及进排气道模型分离出来。对燃烧室模型进行网格划分,进行缸内三维仿真计算,可以得到燃烧放热规律及缸压曲线。在进行改进设计过程中,可以对气道、活塞、凸轮轴(配气相位)等零部件进行优化设计。利用缸内三维仿真模型还可以进行气道流动仿真计算。特别针对带有进排气气道的燃烧室模型,可以对凸轮轴进行优化设计,开展进气流量、发动机回火等问题的研究。

本项目要求学生能够熟练掌握三维模型分离技术、掌握网格划分技术、初步掌握三维仿真的理论基础和三维仿真分析能力。

二、发动机整机性能仿真训练项目

在本训练项目中,首先获取发动机整机性能仿真所需要的基本几何参数数据,利用GT-POWER软件建立发动机整机仿真计算模型。在模型中,输入发动机管路及缸内几何尺寸、发动机点火顺序、气门升程曲线、摩擦功曲线、过量空气系数及边界等条件,将训练1中所得到的发动机燃烧放热规律带入到整机模型中,进行整机性能仿真计算。根据不同转速和不同负荷条件设置一系列计算工况,计算发动机在不同工况条件下的动力性、经济性,可以得到发动机的外特性曲线和万有特性图。

本训练项目要求学生掌握发动机整机仿真模型的建模方法,理解模型中参数的物理意义,掌握vibe等燃烧模型的设置方法。能够根据发动机不同工况对燃烧放热规律进行合理调节,得到精确合理的计算结果。

三、整车性能仿真训练项目

根据某整车的基本结构,简化物理模型,从GT-DRIVE的模板中选用复合模块、控制模块、连接模块、传感器及执行器模块等,搭建仿真模型,建立汽车系统的各总成和部件的机械连接和信号连接,并对各部件和总成进行参数化处理,完成整车建模。然后进行仿真计算得到各个挡位下的加速度、最大爬坡度、最高车速、最大功率等整车动力性指标和百公里油耗等经济性指标。可以进一步加深学生对动力传动一体化研究的认识。

本项目要求学生在掌握汽车基本结构和电控基本知识的基础上,掌握整车仿真建模方法、能够根据不同的设计目标进行仿真计算,并能够对计算结果进行分析。

四、小结

汽车综合仿真实验项目包含了发动机零部件优化设计、发动机缸内三维仿真于燃烧排放特性分析、发动机整机性能仿真分析、整车动力传动性能仿真等一系列优化设计与仿真的子训练项目。即使不能让每个学生全都做一遍,但通过团队合作,将与本学科领域相关的学生分组,可以分解完成每个子项目。既可以让学生充分认识仿真技术在汽车现代化设计中的作用,又锻炼了学生开展实际项目的科研能力和团队合作能力。

参考文献:

[1] 高琪瑞,李东海.能源动力仿真实验教学系统设计与应用[J].,实验技术与管理,2006.05.

[2] 杨秉耀,刘丽葵.加强研究生实验技能培训的研究[J].实验室研究与探索,2009.6.

三维仿真论文范文第7篇

关键词:电路维修教学;Mulitisim 10软件;故障仿真

中图分类号:TP311 文献标识码:A 文章编号:1009-3044(2014)25-5924-02

应用电子技术专业实践教学中,电路维修是难度较大的实践教学项目,如何开展维修教学一直是实践性教学需要解决的难题。笔者通过对Multisim10仿真软件的学习与研究,利用Multisim 10软件中的故障设置功能,简单方便地设置、模拟电子电路故障,学生通过虚拟仿真方式维修电路,进而进入实际维修过程,能够快速掌握电路维修知识与技能。

1 掌握电子电路维修技术的重要性

维修是指设备技术状态劣化或发生故障后,为恢复其功能而进行的技术活动,是理论知识与实践技能高度结合的工作,通过检测、代换、试误等技术手段,分析判断故障产生的原因并替换损坏的元件,从而解决问题的过程。 通过电子电路维修过程,学生能够学习掌握相关电路的理论知识与实践技能:

1) 掌握各种电子元器件的测量与检测技术,熟悉常用电子测量仪器的使用。

2) 加深对模拟电子电路、数字电路理论的理解。

3) 掌握电路分析能力、维修方法,提高维修的技能水平。

4) 培养学生自主学习能力,锻炼克服困难的品质,为未来的发展夯实基础。

2 电子电路维修实践的困难

2.1 电路故障复杂多样

电路故障产生原因多种多样,一种元器件的损坏会出现不同的故障现象,同一故障现象也可能由不同元件引起。探究未知的问题对于职业院校的学生来讲是个不小的挑战。

2.2 在实物电路中模拟电路故障比较困难。

要学习维修技术,必须在电路中设置的故障,引导学生运用所学习的知识和技能,使用仪器,通过仪器测量检测,判断故障产生的原因。教师要为众多学生的实训电路设置故障,工作强度大,教学中设置的故障应明确、安全、隐蔽,对于教师能力要求也比较高,在实践教学中较难实现。

2.3 教学成本高效率低

为了培养学生的维修能力,教师必须为每个学生准备相应的电路产品,而且需要设置多种各种不同的故障。由于学生没有任何维修经验,必然的会犯不少错误,维修过程中会造成电路板、元器件损坏报废,影响以后维修实践教学开展。

3 应用multisim 10电子仿真软件破解维修教学难题

Multisim 10是美国国家仪器有限公司推出电子仿真软件,具有强大的SPICE仿真和原理图捕获、电路分析、仿真仪器测试等功能。通过应用该仿真软件模拟维修过程,学生学习电路维修的方法、步骤,培养理论分析能力、仪表的应用能力。在经过软件仿真训练后,再用实物电路维修训练,能够较好的解决维修教学中的难题。

下面通过串联稳压电源电路展示软件仿真维修的过程。

3.1 绘制电路原理图

通仿真软件绘制串联稳压电源电路如图,在电路中安装虚拟万用表用于电路工作室读数。串联稳压电路由整流、滤波、调整、取样等单元电路组成。

3.2 电路仿真

按下电路仿真按钮

通过测量的数据,学生可以了解到实际电路正常情况下的电压及其变化规律。

3.3 故障设置

软件可以设定元件的四种状态,三种故障模式,“Open”表示元件相关电极之间开路,“Short”表示元件相关电极之间短路,“Leakage”表示元件相关电极之间漏电(有电阻),“None”表示元件正常无故障。故障设置步骤:双击需要设置故障的元件,本电路选择Q3,打开故障设置界面。在工具栏中选择“Fault”,元件出现四种状态选项。

3.3.1 设置短路性故障

选择“Short”同时钩选B、E电极,表示三极管Q3的B、E极两极短路,设置完毕退出故障设置状态。按下仿真按钮,出现故障现象,电位器为50%时电路输出为14.06V,而且输出电压在电位器RP变化时不变化。附表中记录了四只虚拟万用表的电压值。

数据分析:通过表2的数据分析,输出电压基本不随RP变化而变化,一直为14V,基准电压基本不变化,比较表1中电路正常工作时的电压数据,发现Q3的B、E极电压VBE=0,不正常,正常应该为0.6V左右,说明三极管Q3的B、E极短路。电路故障是由于Q3的B、E极短路引起的,Q3不工作,使得Q3对调整管Q1的基极没有分流作用,Q1饱和导通,输入端电压通过Q1的C、E极直接加到输出端,使得输出端电压升高而且一直不变化。将Q3的B、E极设置正常后电路恢复正常。

3.3.2 设置开路性故障

选择“Open”同时选择B、E电极,表示三极管Q3的B、E极两极开路,设置完毕退出故障设置状态。按下仿真按钮,出现故障现象,电位器50%时电路输出为14.09V,而且输出电压不随电位器RP变化而变化。附表中记录四只虚拟万用表的电压值。

数据分析:通过表2的数据分析,输出电压基本不随RP变化而变化,一直为14V,基准电压基本不变化,比较表1电路正常工作时的电压数据,取样管Q3的B极电压从低到高变化,基准电压基本不变化, Q3的B、E极电压VBE不能保持放大状态的0.6V电压,而且VBE之间的电压值大于0.7V,不正常,表明三极管Q3的B、E两极之间开路。Q3不工作,使得Q3对调整管Q1的基极没有分流作用,Q1饱和导通,输入端电压通过Q1的C、E极直接加到输出端,使得输出端电压升高而且一直不变化。将Q3的B、E极设置正常后电路恢复正常。

4 结论

我们看到同一元件的不同类型的故障,虽然故障现象一致,但是却有着不同的工作机理,特别是关键点电压有诸多不同。通过这两例简单故障的仿真维修过程,学生能够更好地了解电路工作原理,提高维修能力。

5 结束语

Multisim10 软件功能强大,除了电路设计,还有故障仿真功能。在维修实践教学中通过故障模拟仿真,结合虚拟仪表测量的数据,运用所学电子电路的理论知识,比较直观地分析判断故障产生原因,通过掌握故障电路电压变化的规律,能够解决实际维修问题。当然,在维修实践教学中不能一味依赖仿真教学,轻视实操训练。实践证明,仿真与实操训练课时比例为7:3时,实践成本下降、教学效果明显。虚拟仿真维修教学作为应用电子技术专业电路维修教学手段值得在职业院校推广。

参考文献:

[1] 董佳辉.Multisim 9在电子电路故障诊断中的应用[J].机电设备,2009(4).

[2] 钱月花.使用Multisim 进行电子电路故障诊断[J].沙洲职业工学院学报,2009(2).

三维仿真论文范文第8篇

关键词:车辆;活性碳罐;三维数值模拟;CFD

中图分类号:U464.149文献标文献标志码:A文献标DOI:10.3969/j.issn.2095-1469.2012.06.05

碳罐是属于汽油蒸发控制系统(EVAP)的一部分,该系统是为了避免发动机停止运转后燃油蒸汽逸入大气而引入的。自1995年起,我国规定所有新出厂的汽车必须具备此系统。在整个汽油蒸发控制系统中,活性碳罐具有至关重要的作用。其主要工作原理为:当发动机不工作时,汽油箱内的燃油蒸汽进入碳罐,在碳罐内部被活性碳吸附并储存起来;当发动机起动后,由于进气歧管的负压作用使脱附口的电磁阀打开,同时碳罐内所储存的汽油蒸汽与大气口所进的空气一起进入缸内并燃烧,从而可在降低汽车蒸发排放的同时降低油耗[1]。当前,在部分小型车上,碳罐的安装方式是在车的大梁上开孔安装,这样对车身的强度势必造成影响,而对车身强度影响的大小主要取决于大气口孔径。因此本文根据工程项目实际要求在满足碳罐性能的前提下,通过尽量减小碳罐大气口的孔径从而尽可能地降低碳罐安装时对车身强度的影响。

目前,国内对于碳罐的研究一般都是通过试验研究与经验相结合来使碳罐满足相关行业的要求,但传统的试验费时费力。随着计算机处理能力的增强,利用计算机进行数值模拟的方法,可以较快地得到碳罐内部流场的速度、压力、流动迹线等分布的具体情况,为碳罐的性能分析和改进设计提供了很好的依据,可以大大缩短开发的周期,降低研究成本,提高开发效率[2]。此外,国外也曾采用计算流体力学进行过碳罐内部流场的模拟,并得到了碳罐内部的流场分布,但据查阅的相关文献未曾结合具体的项目进行过相关研究[3-4]。

本文根据项目实际要求,首先结合碳罐的相应国家标准要求以及进行的相应稳态试验所得数据进行理论计算,得出该要求下大气口孔径可修改的极限尺寸;再通过FLUENT采用多孔区域模型进行碳罐的三维流动仿真以验证在该极限尺寸下碳罐能否满足其它要求;最后将试验数据、理论计算以及CFD仿真三者结合,进行通大气口孔径尺寸可修改范围研究,得出碳罐大气口孔径的可修改范围,并证明三维CFD仿真在碳罐研发中的可行性。

1 试验方法及理论计算

某型号碳罐结构如图1所示。

1.1 试验方法

试验是通过该型号碳罐生产商采用空气压缩机从吸附口充入空气,堵住脱附口,使空气从通大气口流出,采用流量传感器分别测量流过大气口和吸附口的空气流量,并调整流量控制阀,使流量稳定在10?L/min,再通过压差传感器测量吸附口与通大气口两端的压差,试验如图2所示。

试验测得数据如下(本文涉及压力均为表压)。

空气压缩机所提供的压力为0.7?MPa,两端空气流量均稳定为10?L/min,在未修改孔径时吸附口与通大气口压差由压差传感器可测得为0.6??kPa。

1.2 理论计算

由国家环境保护总局2007年的汽油车燃油蒸发污染物控制系统技术要求中对碳罐的通气阻力、吸脱附性能等都有明确规定。其中国家标准要求为:

(1)空气从碳罐的吸附口流入,从大气口流出,脱附口堵住。当流量稳定在10?L/min时,吸附口和大气口的压力差不大于0.98 kPa。

(2)同时还应保证碳罐在车辆使用生命周期内正常脱附负压下(10~101 kPa)吸附口内部压力(负压绝对值)不大于 6 kPa。

这两点主要是用来限制通大气口的孔径不能太小,其中第2点涉及到碳罐内部压力的求取,但是由于计算量较大,普通方法难以求得吸附口内部的压力,因此本文根据要求中第1点结合试验测得的数据先进行理论计算,得出该要求下的极限尺寸,再结合CFD仿真计算求得在该极限尺寸下是否满足第2点要求。主要理论计算过程如下。

该过程中由于空气是可压缩的,所以应采用可压缩气体流动的伯努利方程进行计算,计算过程如下[5] 。

据可压缩流体的伯努利方程

式中:空气绝热系数k=1.4 ; P 为压力,Pa;ρ为该压力与温度下空气密度,kg/m3;V为流动速度 ,

m/s;C为常数。查空气在不同温度和压力下的密度表得空气密度ρ为8.253 kg/m3(T=300?K),由试验数据知压差P1-P2=600?Pa,其中P1为吸附口压力,P2为大气口压力。

根据已知的进出口截面参数可知:

吸附口截面积 A1=1.134×10-7?m2 ;

大气口截面积 A2=1.246?3×10-8?m2 。

所以,吸附口空气流速

大气口空气流速

根据能量守恒方程,将上述所求的参数代入下式。

式中:hf是沿程能量损失,其它参数同式(1)。

通过式(4),将试验测得的压差600?Pa代入,可以求出在原尺寸下的沿程能量损失hf=319.19,再根据国家标准要求P1-P2<980?Pa,故将P1-P2=980?Pa代入式(4)可求出极限的大气口空气流速

V3<14.3?m/s.

将V3代入式(3),可得极限截面积从而求出极限直径

d>3.85?mm.

所以根据试验的数据以及理论计算的结果可以得出结论:据要求中第1点,该大气口的孔径可以在3.85~12.7?mm之间选取。

2 三维模型建立及边界条件设置

由于上述理论计算仅针对国家标准中的第1项要求进行计算,要进一步验证上述理论计算所得的极限尺寸是否能够满足国家标准中的所有要求则需进行进一步的仿真计算。其中碳罐三维模型采用PROE建模,具体过程在此不详细介绍。采用gambit导入三维模型并划分六面体混合网格,总计网格单元数为960?582个。将所生成的网格文件导入FLUENT中进行分析,其中活性碳及无纺布区域设置为多孔区域,吸附过程时分别设置吸附口为速度入口,通大气口为压力出口,因为脱附口是堵住的所以设置为壁面。脱附过程时则设置通大气口为压力入口,脱附口为压力出口,吸附口堵住设置为壁面,由于不考虑吸脱附过程中空气分别与碳粉和碳罐壳体之间的热交换,壁面设置为绝热,壁面边界采用固壁条件。流体材料选取空气[6-7]。

活性碳区域采用多孔区域进行设置,由该型号活性碳的物性表查得活性碳孔隙率为0.3,粒子直径平均值为1.6?um。根据下面公式可以计算[8]。

式中:为粘性阻力系数;DP为粒子直径,um;

为孔隙率;C2为惯性阻力系数。

代入参数计算可得粘性阻力系数设为8.26e+08,惯性阻力系数设为45?400。

无纺布区域也采用多孔介质类型,孔隙率以及阻力系数分别采用经验值,其中孔隙率设为0.7,粘性阻力系数和惯性阻力系数分别设置为10?000和1?000[4] 。

3 三维仿真结果分析

3.1 原尺寸吸附过程

原大气口的孔径为12.7?mm,吸附过程流域的压力分布如图3所示。

由图3可看出,压力梯度分布明显,在通大气口处压力接近大气压(0?Pa),吸附口处表压为571.08?Pa,因此吸附口与大气口压差为571.08?Pa,与所提供的试验数据600?Pa相接近。同时也证明仿真结果与实际较吻合。

图4、图5、图6分别为脱附口、吸附口、通大气口截面的压力分布云图,图7为中心截面速度分布矢量图。

由图4-图7可以看出,各流通截面的压力分布梯度非常明显,说明仿真结果较为合理。同时仿真所得的结果为571?Pa比实际的压力600?Pa要小一些,这是因为在仿真过程中忽略了一些内部的阻力因素如活性碳托板、弹簧、内部传热及摩擦损失等。速度分布在吸附口处最大为14.7?m/s,通大气口处速度较大接近1.1?m/s,流场内其它区域的流速都不高,碳粉区域的流速很低,这些数据都与实际测得的以及计算所得的数据具有很好的一致性。结果表明,该仿真结果可以较好地仿真碳罐内部的流动及速度和压力分布情况,且具有较高的准确性。

3.2 极限尺寸吸附过程

根据计算所得的极限尺寸进行仿真验证,即大气口孔径取极限值3.9?mm时,吸附过程流域的压力分布如图8所示,?速度分布如图9所示。

由图8和图9可以看出,大气口压力为大气压,吸附口处压力为917.50?Pa,压力差为917.50?Pa,整个碳罐内部流场区域的压力分布比较均匀,具有明显的压力梯度。速度分布在吸附口处最大为14.7?m/s,通大气口处速度较大接近13.6?m/s,流场内其它区域的流速都不高,碳粉区域的流速很低。上述仿真结果与计算结果接近而且与理论分析的变化趋势符合,因此可以较准确地得出碳罐修改大气口孔径后的内部流场特性,同时吸附口和大气口的压差为917.50?Pa小于980?Pa,满足国家标准。

3.3 极限尺寸脱附过程

针对要求中第2点,通大气口孔径取极限值3.9?mm时,分别在工作压力为10?kPa和101?kPa时进行脱附过程仿真,所得的压力云图如图10和图11所示。

由图10可以看出,在脱附过程中,当工作压力为10?kPa时,即在脱附口处压力为-10?000?Pa,仿真得到大气口处压力为-1?726?Pa,吸附口处压力为-4?908?Pa,满足要求2。

由图11可以看出当工作压力为101?kpa时(通大气口孔径为3.9?mm),在脱附口处压力为-101?000?Pa,大气口处压力为-19?138?Pa,吸附口处大气口极限尺寸3.9?mm,已不能满足要求2,所以需通过适当增大碳罐通大气口孔径以满足正常脱附情况下吸附口的负压值不能大于6?kPa的要求。

3.4 符合国家标准要求的脱附过程

通过调整尺寸进行FLUENT仿真,分别试算了5?mm、6?mm、7?mm几组数据后可以得出在通大气口的孔径为7?mm时可以满足该要求,其仿真的压力分布云图如图12所示。

由图12可以看出,在脱附过程中,当工作压力为101?kPa时(通大气口孔径为7?mm),即在脱附口处压力为-101?000?Pa,仿真得到大气口处压力为-2?208?Pa,吸附口处压力为-5?054?Pa,吸附口处压力绝对值小于6?000?Pa。所以通过该仿真过程可以得出结论:在通大气口的孔径为7?mm时可以满足第2点的要求。

综合上述4点分析可以得出仿真结果对比,见表1。

由表1可以得出:在大气口孔径为12.7?mm时吸、脱附过程均可以满足技术要求,在大气口孔径为7?mm时吸、脱附过程也均可以满足技术要求,在3.9?mm时吸附过程可以满足,但是脱附过程时压力值却是远大于技术要求的值。所以综合上述分析的结果,在满足行业标准所有技术要求的前提下,可以得出大气口孔径的最终可修改尺寸范围为7~12.7?mm。

4 结论

(1)本文所针对的某型号碳罐根据国家标准相关要求,通过结合试验数据、理论计算及CFD仿真,得出结论:该碳罐的大气口孔径可以在7~12.7?mm之间选择。

三维仿真论文范文第9篇

关键词:数控机床;仿真系统;三维建模

0 引言

所谓数控,是数字控制的简称,其指的是就是建立在数字化信息技术的基础上,完成对机械运动设备以及加工设备的数字控制,实现自动化操作和管理。而数控仿真系统,其就是通过在数控技术的基础上,完成对真实数控机床的作业的流程和操作环节进行模拟,并结合编程技术实现对数控机床实现全自动化操作,并在构建数控仿真系统的基础上提高操作人员或者编程人员的工作效率。

1 建模思路

在三维建模的过程中,其具体对象为数控机床,通过利用几何原理、空间点离散原理以及数控仿真系统的构建原理,来整理出如下建模思路:

第一,数控机床的本体建立三维模型。以基本硬件设备为基础,从宏观构建到微观零部件的角度完成建模思路的规划,并结合旋转模型对数控机床的真实操作状态进行规则化比对,从而能够更加清晰和直观地描述出数控机床的本体。第二,数控机床加工过程中的动态建模。利用NC码进行实施监控与描写,提取每个时间点的运动轨迹和几何定位点[1]。

2 建模过程

2.1 数控机床本体的三维建模

在数控机床仿真系统的构建过程中,通过利用三维建模中的CSG建模理念,使数控机床仿真系统的总体构建趋于多层次化和多结构化。并在三维建模的基础上将复杂、繁琐建模过程转化为更加清晰、更加明了的简易结构,从而在简易结构的基础上完成简单形体的建模组合,实现数控机床仿真系统的模型构建。在数控机床本文的三维建模中,其具体的建模方法为[3]:

首先,以数控机床的操作规则为基本原则,以实际具体的工作状态进行真实模拟。在理想状态的环境中忽略数控机床内部的传动装置与后备服务装置,从而在最大程度的简化内部要素的结构,实现三维模型构建的程序化。其次,利用三维理念对数控机床的几何结构与物理结构进行区分和划分,对每种结构的内部构造层层细分,在宏观环境下对微观因素按照相似性规则进行详细区分,并利用三维维度进行简化处理,降低数控机床仿真系统构建的难度和复杂度。最后,通过利用三维建模数据库中的几何实体进行模型构建,将具体的立方体、圆柱体以及圆环体等做种几何立体模型与数据库中的具体数据进行比对和配对,在数控技术的基础上实现最优化组合。与此同时,采用方差计算的方式使组合的计算结果更加精确,立足于OpenGL软件内部强大的三维图型库,找到最符合数控机床本体的最佳三维模型,从而完成机床本体的三维建模工作。

2.2 加工过程的动态仿真三维建模

在数控机床的加工过程中,为了使数控仿真系统的动态性能实现最优化发展,通过利用三维建模中的空间离散法,来促使数控机床在加工过程中的数控仿真系统构建的更为精确和高效。在空间离散法的运用下,要将数控机床内部的空间物体转换为不同三维位置的“空间点”,并对这些“点”进行均匀布阵,按照这些“点”分布的具体线条关系连结成三角片矩阵,从而形成了初步的三维建模。当程序处于运行的过程中,要不断按照真实的路径进行重新描写,并对这些“点”的真实属性进行程序化渲染,从而保证数控仿真系统运作状态的自身“分析”能力更加准确无误[4]。

在空间离散法的应用下,对数控机床的车削和三轴铣削进行三维建模并做出进一步加工。首先,数控机床的车削毛坯呈现为圆柱形的状态,且其多利用在打磨和加工机床的回转表面。其次,三轴铣削的毛坯多呈现出长方体的形状,其只有在毛坯体的表面进行加工,因此只具备了独立的加工面。通过在数控机床的毛坯体上进行离散化和三维建模,来构建属于数据机床的仿真系统。下图为数控机床中车削和三轴铣削毛坯的三维立体离散图:

在该图中,以独立面为中心构建三维函数轴,即X轴、Y轴与Z轴,那么在该三维函数轴基础上对车削进行空间点离散化,使其形成三点共面的状态,作为三维建模的基本模型。与此同时,针对数控机床中的三轴铣削设立A、B、C、D四个点,以四个点形成的不同三维空间模型进行细细划分,比如ABD之间的三角网格、BCD之间的三角网格等,从而以网格为单位进行三维建模。当前使用的数控仿真系统多是建立在windows系统基础上,那么在windows的环境下通过利用Visual、OpenGL以及C++6.0技术软件,使数控机床的毛坯体离散化过程得到细节分析,结合数据结构和各个节点的具体数据构建三维模型,实现数控机床仿真系统的多元化建设。

2.3 粒子系统的建模

为了更加真实的模拟数控机床在冷却液喷出状态下的具体工作细节,需要立足于粒子系统,完成细致环节的三维建模,体现液体粒子的冷却状态与运动状态。在粒子三维建模的过程中,要周而复始的完成以下四个环节的工作:母粒子源产生新粒子;准确计算、复核并实时性更新新粒子的基本属性;定位删除死亡(淘汰)粒子;绘制粒子的具体运动线路,从而构成源源不断、持续运作的粒子流。在以上四个环节的循环运动下,完成了更加具体的三维建模工作,这样在粒子系统的基础上,构建了更为清晰、细致化和高度仿真性的数控机床仿真系统。

结论:

综上所述,本文以上通过围绕三维建模的过程进行分析,并结合三维建模技术进行展开探讨。通过结合三维建模技术对数控仿真系统进行真实还原与模拟,形成的三维图示更加具有真实感,并且形成的三维立体Flash实时性与可视性都很强,实现了数控仿真系统研发与运用的高效化与集约化发展。

参考文献:

[1]陆宝春,徐开芸,等人.数控仿真教学系统的研究与开发[J].中国制造业信息化,2013,19:30-33+37.

[2]张天其,于忠海,等人.数控机床三维建模与加工仿真技术研究[J].机械工程师,2014,01:62-63.

[3]邢吉利,李翔龙,等人.数控铣削仿真系统关键技术的研究[J].机械设计与制造,2015,06:170-172.

[4]唐宇鸿,高丽娜,等人.仿真系统中三维建模技术的研究[J].电子制作,2014,19:48-49.

三维仿真论文范文第10篇

关键词:电脑模拟仿真技术;电子维修教学;运用

中图分类号:G71 文献标识码:A

文章编号:1009-0118(2012)08-0125-02

随着电脑技术的飞跃,人们进入了数字化网络时代,相应的电脑电子技术的应用率也大大提高,特别体现在教学实践过程中,由于电脑模拟仿真技术的应用,填补了传统教学的抽象化,不但一定程度上提高了教学层次,而且节约了教学材料的成本。像利用电脑模拟仿真技术做成相应的电路模型,然后利用仪器器材去进行实验研究,不仅节约了实验器材,而且培养了学生的兴趣。

一、电脑模拟仿真技术的定义

仿真,Simulation,就是利用项目模型使得在某个具体层次上的不确定性因素转化成对目标的影响。仿真又被叫做蒙特卡罗方法(Monte Carlo),是一种通过使用随机数做实验来求解随机问题的技术方法。所以,蒙特卡罗方法,又名随机抽样或者统计实验方法,它属于计算数学的分支之一,是本世纪四十年代中期为了适应当时原子能发展而出现的。蒙特卡罗方法的基本思想是:当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“实验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。

蒙特卡罗方法起源于1876年,从1946年到1952年,数字电脑发展于科研机构,从而冗长的计算成为可能,而这样的计算就是蒙特卡罗方法所需求的。

电脑模拟仿真技术是一门综合性技术,它的基础是数学理论、相似原理、信息技术、系统技术等专业技术,电脑以及各类物理效应设备则是工具,利用的则是系统模型对实际的或者设想的系统,从而进行实验研究。它是多个高新技术领域知识的集大成者,包含了电脑、网络、图形图像、面向对象等技术以及多媒体、软件工程、信息处理、自动控制等。

二、电脑模拟仿真技术的特点

(一)更加直观,简化学习

因为使用电脑模拟仿真技术进行电子维修教学时,可以制作出和实际状况一致的仪器与图标,所以,方便了学生们进一步的学习。

(二)分析手段多样化

电脑模拟仿真技术制作的模型,拥有相对完整的元件库,同时,电脑模拟仿真技术的混合模拟功能以及数字信号模拟功能,对电路仿真图形中的电波及各工作状态下的数据不仅具有储存作用,而且兼备打印作用。电脑模拟仿真技术具备静态、动态以及失真等各种状态的分析,同时对于电路中出现的短路和其他故障能及时做出判断分析。

(三)教学结合优点多

首先,电脑模拟仿真技术提供的实验方法相对简单易操作,实践于电子维修教学不但成本低,而且系统的自动检修和维护使得系统的长期使用得到了保障。所以,学生们在实际进行实验的时候,不必担心由于自身的操作错误从而造成不良后果。其次,假使实验中遇到不懂的问题,还可以寻求在线帮助,保证了实验的独立完成性。然后,在实验的反复操作过程中,不存在实验器材以及相应原料的浪费。最后,电脑模拟仿真技术在进行一些难度系数较大的实验的时候,可以有很强的真实感。

三、电脑模拟仿真技术应用于电子维修教学的意义

电脑模拟仿真技术运用到实际实验以后,实验中,学生们通过更改一部分的电路参数值,以至于改变主要的电路输入以及输出的性质,清晰地展现电路的变化趋势,从而帮助对电子维修理论相关知识有更大程度的感性上的认识,达到对知识的深层次的理解。电脑模拟仿真技术绘制的图形,结合实际测试数据,能够降低由于不确定因素导致的误差,同时可以观测得出瞬间发生的不容易被观测到的参数。和传统型的实物实验相比较,不难发现:电脑模拟仿真技术一定程度上,不但可以填补传统型实物实验不可以随意变更电路参数的缺陷,而且对于不更换实验元件的大前提下,同等的实验时间内,运用电脑模拟仿真技术进行电子维修实验相应课程教学,学生们在实验的过程中,能够利用变换电路参数,然后观测出性质的曲线型变化,并且观测出相对精准的数据。

电子维修实验教学的真正意义在于:通过学生们的自己动手实践验证理论知识,并且加深理论知识印象,填补理论上的空洞,从而形成自己的电子维修理论基础。将电脑模拟仿真技术和电子维修教学相结合,很好地解决了传统型教学由于时间相对短,学生们无法真正意义上理解电子产品电路的构架和相关原理的问题,更重要的是,利用电脑模拟仿真技术进行电子维修教学最大程度的开发了学生们的潜力,与此同时,激发了学生们的兴趣。

因为学生们对于电子维修理论知识的掌握程度以及熟练状况因人而异,而且学生们的认知能力也存在着一定的差异,直接导致了电子维修教学需要结合各学生实际,因材施教。而电脑模拟仿真技术引进电子维修教学,使得电子维修教学课程内容逐步趋于标准规范、差异化。

四、电脑模拟仿真技术在电子维修教学中的应用

三维仿真论文范文第11篇

[关键词]机场;环境影响评价;系统仿真;

中图分类号:X593 文献标识码:A 文章编号:1009-914X(2015)46-0320-01

随着我国航空事业不断发展,机场噪声问题日益突出,如何合理地评价机场航空噪声污染程度,利用何种有效的治理方法对噪声污染进行控制已成为摆在环保部门、民航管理部门以及机场规划人员面前的重要课题,针对机场进行噪声污染模拟分析及周边环境影响防控研究是十分必要的,因此,本研究以桃仙机场为例进行机场噪声环境影响评价系统仿真研究。

1 机场噪声的特点

航空噪声是对航班起、降、滑、试过程中产生的不规则声响,尽管在飞机的飞行过程中,机身会产生一些空气动力噪声,但航空噪声主要还是来源机的发动机,特别是各种喷气式飞机的发动机[1-2]。航空噪声最显著的特点是独立且间断噪声的不规则发生,具有声级高、频率低、影响范围大、间断性、非稳态等特点[3]。

2 噪声预测

3 仿真方法

(1) 桃仙机场建模方法

搜集有关的素材,它包括表示地形的海拔数据,表示河流山川道路等的文化特征数据,仿真中所需要地形的尺寸以及地形纹理等。然后,构建地形原始数据的高度场,通过Global Mapper整合3S数据和DEM等高程数据,进而生成三维数字化地形,项目将通过收集的相关数据实现对研究区域的三维模型的仿真。

(2) 飞机实体及飞机噪声建模

研究采用Deep Exploration将生成的数据采用文件格式转换为ads格式,然后再在Creator中转换成flt格式。将飞机作为点源,依据预测模型LWECPNL构建三维立体噪声源。

4 机场噪声环境影响评价仿真系统

根据以上建模方法,针对桃仙机场进行仿真模型构建的机场噪声环境影响评价仿真系统见图1。

5 结论

(1) 飞机噪声综合仿真结果表明富家屯、桃仙镇、达子堡三个村屯均位于《沈阳桃仙国际机场远期规划》和《沈阳民用航空产业园区规划》用地范围内,富家屯、桃仙镇、达子堡三个村屯均有部分住宅LWECPN超过75 dB。

(2) 噪声污染模拟模型还需要根据实际工作进行不断的修正。3D建模技术在机场噪声污染模拟中的应用,能够更加直观的反映出机场噪声影响范围和程度,有利于机场噪声环境影响评价的分析。目前,国内还没有成熟的用于机场环境影响评价的大型三维仿真软件系统,本研究将为此类软件系统的研究提供一定的借鉴。

参考文献

[1] 田婴.民用机场航空噪声控制及其标准研究[D]:硕士学位论文,天津:中国民航大学交通工程学院,2005:1-63.

[2] 中国民航学院航空港工程系课题组.民用机场航空噪声影响控制研究报告[R].国机场噪声影响控制研究及相关参考资料汇编,2001.

[3] 刘皙皙. 沈阳桃仙国际机场扩建噪声模拟及噪声防控规划[D]:硕士学位论文,沈阳:东北大学,2014:1-58.

三维仿真论文范文第12篇

关键词:船舶;虚拟仿真技术;建造评估;应用

中图分类号:TP391.9 文献标识码:A 文章编号:1006-8937(2013)08-0084-02

1 船舶虚拟仿真技术研究及应用现状

在船舶工业里面对虚拟仿真技术加以应用,能使敏捷造船、并行工程以及数字化造船得以实现,同时它也是我国传统造船模式转向现代化的重要环节之一。对虚拟仿真技术加以运用,在建造船舶之前,工程师可在虚拟环境下对船舶的建造过程进行仿真,从而改进和评价船舶的工艺与设计,这样便于指导船厂进行现场生产作业。在船舶行业里运用虚拟仿真技术,能使生产效率得到提升,降低生产成本,使建筑周期缩短,从而为我国船舶行业的发展奠定良好的基础。

船舶的建造评估和设计可以使先前工艺或前期设计导致的工程修改得以消除,进而对船舶企业的成本、质量以及生产效率产生直接的影响。现如今,许多国家正在开展以虚拟仿真评估和数字化描述相结合的船舶虚拟制造、设计仿真技术的应用研究,并且在船舶建造中也应用了多种仿真评估软件,而且其研制水平和效率还在近年来得到了大幅提升,包括我国在内的许多国家都正在寻求提升研制质量、节省研制费用、缩短研制时间的新方式。

挪威UD公司作为船舶设计的佼佼者,现如今,他们在对新船型进行设计时,全都会对三维模型加以利用,然后在虚拟环境下综合评价钻井船的设备布局、布置、外观等,分析虚拟船舶水动力,对虚拟评估进行分段划分,并仿真船舶的作业过程。

自20世纪90年代一来,我国开始对各种先进的仿真技术加以研究,并开展大规模系统仿真。但将虚拟仿真技术应用在海洋和船舶领域的起步还比较晚,现如今,其工作最主要集中在初步实施和理论研究的应用阶段,此外,国内的船舶研究所也开发有虚拟仿真的软件系统和硬件平台。

2 将虚拟仿真技术应用在船舶的建造评估中

此项技术通过对虚拟实体模型加以利用,来实现评估船舶建造过程的目的,包含船舶生产工艺规划、操作顺序验证、生产系统创建。它能支持船舶生产管理、机器人仿真、人机功效分析、作业时间测定、工艺规划与验证等的内容。

2.1 在建造前期的论证评估中运用

船舶建造的内容之一便是根据企业生产力布局要求以及实际能力,对船舶企业的经济、技术和发展条件加以研究,对船舶企业的发展方向和规模进行预测和论证,将企业建设技术经济指标拟定出来。在建造船舶的前期对生产规划进行论证评估是一项综合性非常强的工作,这个过程需要对企业多方面信息进行分析。此项技术可用于对当前企业环境、生产规模以及结构分布进行虚拟,并由设计人员在虚拟中模拟各种设想,经由分析信息数据库对各种设想利弊进行分析,同时对其可行性加以论证,这就包括环境影响、船型选择、生态保护、现状分析等工作。此项技术为船舶的建造前期论证提供了论证方式和技术手段。

2.2 在建造方案的设计评估中运用

船舶建造方案通过设计人员将各种想法不断形象法和概念法,同时用相应生产手段加以表达出来,这个过程需要对前后进行参照,在设计方案时,要求方案的初步设计和深入设计必须具有交互性。对虚拟仿真技术所具备的交互性和真实性特征加以利用,可用于对三维空间进行虚拟,从而使设计人员可以对他们的设计思想进行更精确的表达。例如,由中国船舶工业集团研究所开发出来的虚拟仿真评估系统。通过对不同总组方案的比较,将船舶的建造设计思维在虚拟环境里展现出来,让设计人员可直观的对其进行评析,通过对方案生产环境、结构布局的协调性进行观测并比较,可对设计思维进行修改完善。对虚拟三维空间加以利用,进而为生产方案在场地位置设计、动态调整、生产布局选择、结构调整等方面提供依据,从而使后续生产过程可以更为合理。

2.3 在生产方案的比较中运用

此技术所创建的环境为三维虚拟环境,它可对构建环境进行全方位展示,并且通过虚拟现状,让建造方案可以更加真实。此技术可以让建造方案在表现上突破原有平面、静态的模式,让建造人员的思想可以更形象和直观的呈现在操作者面前,使规划方案与操作者之间能有更强的交互性,从而对多人员多层次协调参与船舶的建造有利。

可通过许多途径来实现方案设计需要达到的目标,而这当中必不可少的一环便是方案比较。虚拟仿真技术为方案比较提供了一个更为有效和方便的应用工具。在进行方案比较时,可在船舶建造的虚拟系统中对生产方案加以直接使用,让设计方案可以在虚拟三维空间里得到体现。对试用不同的方案,并考察其对生产环境所形成的影响,对各生产要素不同的设想进行评价比较,并进行不同方案的实时切换,然后在同一建造序列和生产项目中感受不同的生产效果,从而对设计合理性加以判断。与此同时,还可运用技术手段量化分析比较方案中的具体指标,从而使船舶生产方案能更加合理。例如,运用SPD-V3.2设计软件虚拟布置机舱管路的结构方案。在评估方案的基础上,对机舱管路设计合理性以及工艺合理性进行验证,进而将设计中存在的缺陷找出,从而使生产现场返工率得以降低。

2.4 在建造过程中运用

在建造船舶时,对虚拟仿真评估技术加以利用,可以实现对船舶建造方案实施效果进行先期检验,也就是看其能否达到环境、生产的最佳综合效益,并在实施中不断选择和修改,最终帮助决策者来决定后续的生产方案。比如,可通过虚拟仿真技术将某虚拟方案和船舶生产实际相结合,进而将建造方案实施状况予以真实展现,从而使由于方案欠缺而造成的效益损失状况得以减少。此外,此技术还能对温度、噪音等不可见现象进行模拟,从而达到检测影响船舶生产各因素的目的。

3 船舶虚拟仿真的评估应用实现现存问题

①虚拟仿真技术标准化应用。作为船舶建造领域极为重要的技术,虚拟仿真技术一定要与建造技术规范、规定等相符。但由当前情况可知,因为船舶建造标准化问题尚未解决,为保障虚拟软件商的软件独立性,使得软件系统之间存在较差的兼容性,要想使仿真成果的协调和共享得以实现,就必须对仿真技术应用标准化问题加以研究。通过对同一设计平台的开发,使协同平台集成效率得到提升,从而在更大范围上实现信息的共享和设计的协同。

②改进建造设计技术。在传统船舶的设计中绝大部分平面结构图的表达方式为二维表达,最近几年开始引进三维技术,从而形成了三维与二维相结合的建造技术模式。但在我国,由于虚拟仿真技术欠缺完善化和标准化的仿真软件作为载体,假如能将生产技术改为规范化的三维表达和设计模式,将会对此技术在生产设计中的进一步应用有利。

③生产设计习惯与传统观念问题。因为此项技术尚且处在推广使用期,现如今设计人员对此技术的认识尚且不足,并且传统观念并未随着技术进步而有所改进。绝大部分船舶企业在此项技术上尚且停留在演示层次,并未认识到此项技术的深层效用。此外,由于传统设计习惯对新方法的使用形成了一定制约作用,要想在短时间内改变此种设计习惯还有一定难度。对此技术进行及时的开发利用,对此技术的三维平台设计平台加以搭建,将对培养设计人员普及性有利。

④虚拟仿真技术有待完善。因为此项技术自身存在一定局限性,使得此技术在船舶设计某些场合中的应用尚且存在一定难度。比如,对建造方案在构思期的表达模糊性问题以及修改实时性问题,建立标准化的指标评价体系统、建立预测分析模型等问题上依旧存在一定的技术障碍。

⑤船舶行业中虚拟仿真技术应用效果不显著。此项技术的开发需要投入大量资金和尖端设备。尽管此项技术在研究船舶生产作业形式和建造方案上属于高科技手段,但由于开发此项软件产品的价格确实相当昂贵,并且其系统兼容性也比较差,现如今,国内对此系统的应用还多半依赖于进口提供,因为目前我国的科研院无法对相关设备进行全面配置,在各高校也无法运用多系统来实现学员的全面培训,导致此项技术在船舶行业中并不能取得很好的应用效果,这也是实现此项技术在船舶设计中应用的一个难点。

要想使上述问题得到解决,极为重要的一点便是全面应用此项技术,在软件开发公司的作用下,开发具有普及型的仿真技术软件是非常必要的,同时需要科研院和相关院校合作,对此项技术进行大规模的培训。

4 结 语

因为在国内的船舶生产评估过程中应用虚拟仿真评估技术尚属起步阶段,并且在国外也并无标准应用模式可供借鉴,再加上国内造船现状有别于国外,此外,由于船舶虚拟仿真的评估技术是伴随船舶制造工艺以及技术的发展而发展起来的,所以,它的研究工作、虚拟维修、新工艺等许多方面还有待完善和改进。现如今,集成化仿真已经成为船舶制造的发展方向,此项技术的应用也已经成为船舶制造模式最为关键性的技术,并且已经变成船舶制造能力得到提升的手段之一,此外,在船舶企业中应用此项技术,将会为企业进一步的发展提供技术支撑。

参考文献:

[1] 谢荣.船舶虚拟仿真技术在船舶建造评估中的应用研究[J].船舶工程,2011,(5).

[2] 蒋艳会,甄希金,韦乃琨,等.船舶虚拟装配系统研究及应用[A].第十二届全国内河船舶与航运学术会议论文集[C].北京:《中国学术期刊(光盘版)》电子杂志社,2012.

[3] 谢子明,徐东,朱苏.虚拟造船技术应用探讨[A].2011年中国造船工程学会优秀论文集[C].北京:《中国学术期刊(光盘版)》电子杂志社,2011.

[4] 杨润党,范秀敏,王文荣.虚拟仿真技术在船舶建造过程中的研究与应用[J].舰船科学技术,2008,(1).

三维仿真论文范文第13篇

关键词: 二维电子地图; 三维虚拟场景; 动态响应; 实时显示; 虚拟海洋战场

中图分类号: TN911?34; TP391.9 文献标识码: A 文章编号: 1004?373X(2013)12?0038?04

0 概 述

现代战争是复杂条件下的一体化联合作战,是高技术装备体系之间的对抗,战场态势瞬息万变,各种信息数据极其丰富。作战模拟是现代条件下研究战争、进行军事训练、论证武器装备效能、作战方案评估等问题的有效手段[1]。随着战争研究不断地发展,各种新战争形态的出现,以往那种关注局部问题的作战模拟已经不能适应现代战争在体系对体系方面的新需求[2]。在虚拟战场模拟显示技术中,传统的二维桌面显示模式可以在一定程度上观察整个战场态势,但面对综合环境中巨大的信息量也暴露出了多方面的局限性,不能直观显示空间立体信息,不利于指挥人员进行空间范围的部署和战术决断。传统的三维场景显示能够将复杂抽象的事物以直观、用户熟悉的方式显示出来,同时实现用户与三维场景的交互操作,提供身临其境的临场感,但通常只能对观察人员视野范围内较小的局部战场进行描绘。观察人员对视野外的战场信息则一般无法直观获取,显然在全局态势显示方面存在局限性[3]。目前,二维地图显示与三维虚拟场景显示之间相互响应的思想,在城市规划、交通系统中已有不少应用,因此,在实时战场仿真领域,从人员处理信息、解决问题的角度,将二维地图与三维虚拟场景有机结合,能够更好地增强战场感知能力,提升作战仿真研究的效果。

1 虚拟战场的信息表现

虚拟战场中的态势表现形式包括面向观察操作人员把握战场总体情况的二维态势,如各种地图、航线、轨迹、状态信息;面向观察操作人员的三维态势,如地形、风浪、天气、光照、各种平台毁伤效果、各传感器的电磁作用范围等。这些态势的相互融合,涉及电子地图、三维建模显示、立体音效等,开发工作量大,技术复杂[4]。

1.1 二维态势显示

作为虚拟战场显示的一个重要组成部分,二维态势模块主要实现了操作人员与仿真应用之间的接口,它提供给操作人员动态变化的态势信息,帮助用户实时建立战场的全局印象,把握实体的位置、属性和状态等信息。二维态势显示主要提供地图服务,战场实体要素服务,基于此实现地图浏览、平面空间分析、实体查询标注、轨迹绘制、分层管理等功能。目前的工具型GIS系统都提供了功能强大的接口,可以根据应用目的,选择使用通用软件开发工具实现所需的功能,如图层控制、改变视口、地图信息查询、缩放、平移、测量等,同时可以通过态势标绘,将战场演练过程中发生的情况用约定的符号标记在二维地图上,全面、准确、及时的反映虚拟战场攻防对抗的态势,包括双方的、运动实体的军标和轨迹、仿真过程中的关键事件等。二维态势表现在实体信息查询、空间分析等方面已经非常成熟,但在战场具体环境的表现上缺乏空间直观性。

1.2 三维态势表现

1.2.1 三维实体的建模与渲染

1.2.2 三维战场视觉环境仿真

1.2.3 实时战场听觉信息仿真

在战场环境中,声音是不可或缺的重要组成部分。听觉信息仿真主要是通过对战场中各实体的音效、方位、音量及多普勒效应的模拟来保证虚拟战场信息的完整性,增强态势仿真的真实感,降低对视觉信息的依赖,引导操作人员进行更细微的分析判断[7]。

三维声音建模的重点在于虚拟环境中的声音变换。三维虚拟声音不仅要在三维虚拟空间中把实际声音信号定位到虚拟声源所处的特定位置,还要实时跟踪虚拟声源相对于听者的位置变化而变化。为正确描绘出声音效果,需要对声音传播路径的延迟及强度的增强与衰减进行模拟。比如说,随着飞机距离观察者的远、近,或者速度的快慢,感觉到引擎声音的增强与衰弱;又如随着机载导弹的发射听到尾迹声逐渐变弱等。声音控制采用触发机制,虚拟战场中包括水声、爆炸声、机器引擎的声音等,可以通过特殊效果触发、固定时间触发、碰撞触发或随机触发等,具有很好的灵活性。同时,声音效果要与实时变化的视觉相一致,才能产生视觉和听觉的叠加与同步效应,增强真实感。

除了实体在交互过程中产生的声音事件外,由于虚拟战场环境中观察范围很大,在系统中还需要充分考虑全局因素,适当加入一些声音背景和提示音,如在比较小的音量范围内产生一定数量的背景声,根据想定中的控制标志实时播放指挥人员下达的命令声等,可以更好的烘托战场环境,使用户能够清晰地理解仿真所表达的内容,增强对虚拟战场的体验感。

2 二维三维态势信息的融合交互

2.1 集成交互

在本系统中,二维态势与三维场景一体化主要体现在以下几个方面:

(1)二维态势与三维态势在位置、状态等各方面的显示一致。二维态势与三维场景一体化集成交互的基本要求就是在任一给定时刻,它们显示的场景内容是相同的,不同的只是提供给用户的显示形式,一个以二维图标线条为主,一个以三维模型效果为主。

(2)二维、三维态势驱动数据同步。态势显示系统中的公用驱动数据包括仿真时间、目标位置、状态、作战指令等,如表1所示。二维战场态势显示节点负责实时显示更新军标位置与方向,并对作战区域、威胁范围等进行标注;三维态势节点负责根据驱动数据实时更新三维实体模型位置、姿态,渲染战场环境,接收控制指令,改变观察视角。二维、三维态势集成交互时,驱动数据都从战场仿真导演节点获得,确保二维、三维态势信息驱动数据的一致性。

表1 二、三维态势仿真驱动数据

(3)二维、三维态势的操作控制同步。二维、三维态势操控同步也就是要求无论用户在哪一种态势显示方式下进行实体查询、标绘等操作时,另一种态势显示方式会实时响应,动态显示该区域的场景或目标,保证态势显示的统一。

2.2 场景视点规划

视点是图形坐标系统中的一个瞬间空间位置,仿真中的视点方式就是从空间某一个具体的位置,按照一定的规律运动、以合适的角度观看某个局域场景,它控制着视锥体内的视觉表现[9]。空间战场中实体数量多、事件形式复杂,存在大量的需要显示的信息,将这些信息同时显示,不仅会超出指挥人员对信息的分析和利用能力,而且即使是同一仿真系统、同一想定,用户每次进行仿真时所关注的对象和内容也可能不同,单一的窗口和视点规划难以将战场细节很好地表达出来。

在实际应用中必须根据需求显示相应的信息,通过预先规划路径自动漫游、重要事件触发、人机输入设备切换控制等方式组合规划视点。操作人员对虚拟战场实体进行跟随观察时,可以利用三维场景实时接收二维态势中用户点击查询的目标编号,综合利用键盘灵活控制视点与被观测实体间的距离和角度等状态,实时观察该目标,同时通过对二维态势的观察对整个战场形势进行全面分析,克服单独在三维空间环境中漫游产生的迷失感,使操作控制人员能够实时、全面掌握战场态势,缩短决策、评估时间。

3 数据平滑及回放

由于虚拟战场各仿真平台推进的步长不同,态势显示中各数据接收的周期也不同。当数据接收周期大于40 ms时,数据间隔较大,若不加处理,三维态势显示画面会产生跳跃,严重影响仿真效果。实际应用中,可以采用对仿真数据进行插值或预估递推的方法来解决三维图像的平滑显示问题,即保存仿真实体最新的两周期数据,当接收到某仿真实体当前仿真数据时,开始更新上一帧数据。在接收到的两个数据点间,根据仿真数据推进周期T和帧刷新周期?t确定插值数[TΔt,]保证每次图像刷新时,实体的位置均匀变化。但这样会造成三维显示总是滞后仿真系统一个仿真周期T。当T较大造成三维显示滞后较多时,也可采用预估递推的方法,通过接收到的少量数据,根据图像的刷新率需要,计算推测未知点的数据,当预估实体数据与收到的即时数据存在较大偏差时,就直接使用收到的即时数据同步推进显示,保证图像渲染平滑。

同时,记录仿真对象的状态和它们之间的交互信息,仿真推演结束后回放评估,在战场仿真试验过程中也是不可缺少的功能。采用C++文件输入输出流的方法将实体的运动数据保存为数据文件,比用VCR方式记录的视频数据要高效,并且可节省大量的系统资源和磁盘空间,回放过程也可进行人工操控,并按照不同需求进行数据插值或跳点读取,实现不同的回放速度,实现仿真过程的重演。

4 结 语

为综合表现虚拟战场态势,将二维地图与三维虚拟场景有机结合,使二维数字地图操作与三维场景展示在数据、显示、操控等方面实现同步一致,消除了三维态势对整个战场态势认识的不足和漫游时产生的方向迷失感,又弥补了二维电子地图认知战场环境所带来的缺陷。应用于某虚拟海洋战场系统[10],实现了战略层面上战场态势的宏观展示和战术层面上参战实体细节的微观表达,取得了较好的效果。

参考文献

[1] 张野鹏.作战模拟基础[M].北京:高等教育出版社,2004.

[2] 顾浩,王祥祖,程健庆.海上区域作战模拟分析系统技术[J].计算机仿真,2005,22(10):13?18.

[3] 吴家铸.视景仿真技术及应用[M].西安:西安电子科技大学出版社,2001.

[4] 廖学军.数字战场可视化技术与应用[M].北京:国防工业出版社,2010.

[5] 庞国峰.虚拟战场导论[M].北京:国防工业出版社,2007.

[6] 黄安祥.空战虚拟战场设计[M].北京:国防工业出版社,2007.

[7] 庄庆鸿,李宁.虚拟环境中的低成本实时立体声显示[J].计算机仿真,2009,26(8):72?76.

[8] 刘明皓,康凤举.空间战场一体化视景仿真系统设计与实现[J].火力与指挥控制,2011,36(7):149?155.

三维仿真论文范文第14篇

关键词:集装箱码头; 三维仿真; 组件平台; 组件划分粒度

中图分类号:U656.1; TP391.9

文献标志码:A

Component platform of container terminal

3D simulation system

LU Houjun, CHANG Daofang, MI Weijian

(Container Supply Chain Eng. Research Center, Ministry of Edu., Shanghai Maritime Univ., Shanghai 200135, China)

Abstract: To study the production optimization of container terminal intuitively and vividly, 3D simulation approach is applied to implement the visualization of logistics information and operation of container terminal. Based on the simulation requirements of different business flow, the granularity of the components such as static layout, stevedoring machine, stevedoring object, terminal operation, kinematics calculation, data access, communication interface, graphic renderingand so on is partitioned reasonably; A hierarchy component platform is built to indicate the logic relationship among the objective targets; The main 3D components of container terminal such as shore container crane, gantry crane, container truck and so on are implemented according to COM+ rules. The automatic container terminal of Shanghai Zhenhua Heavy Industry Co., Ltd. is taken as an example to validate the maneuverability of the component platform and the result shows that the approach can provide practical references for the improvement of container terminal stevedoring process and management level.

Key words: container terminal; 3D simulation; component platform; component partition granularityな崭迦掌:2009-10-14 修回日期:2009-12-04

基金项目:上海市科委重点项目(08210510500, 071705207);上海市科委工程研究中心建设项目(08DZ2210104);

上海海事大学科研基金项目(032238)

作者简介: 陆后军(1985―),男,安徽全椒人,助教,硕士,研究方向为虚拟现实,(E-mail);

苌道方(1978―),男,河南新乡人,博士,讲师,研究方向为虚拟现实,(E-mail)0 引 言

集装箱码头作业效率的高低直接影响集装箱供应链物流系统的整体服务水平.随着集装箱码头作业机械逐渐大型化、作业类型逐渐复杂化,使得通过定量分析的方法去研究和分析码头营运过程中产生的大量随机性数据变得异常复杂.因此,国内外学者针对如何分析和优化集装箱码头动态物流系统作了大量研究.真虹[1]提出采用离散事件仿真技术构建集装箱码头装卸工艺优化仿真平台,重点讨论集装箱码头装卸工艺设计方案的评价及指标获取;SHABAYEK等[2]采用Witness仿真软件实现香港Kwai Chung集装箱码头二维仿真系统,通过统计码头营运数据,对其物流预测准确度进行仿真验证.相对于集装箱码头二维平面仿真结果数据的抽象性和非直观性,KLAASSENS等[3]提出基于三维仿真技术的码头作业仿真系统;另外,HORSTHEMKE等[4]论述三维图形技术在港口仿真中的应用与意义.国内很多学者也对特定领域内组件式仿真方法展开研究.段作义等[5]提出基于构件的航空工业分布式虚拟现实系统,研究各组件之间的通信语义和语法;李春雁[6]阐述应用已有可视化组件进行仿真的方法,采用Arena软件实现大窑湾集装箱码头二维仿真系统.显然,上述研究或实现大多是针对某一集装箱码头的仿真系统,没有说明不同装卸工艺下集装箱码头三维仿真系统的组件体系结构,不仅开发周期长、总体成本高,且不能满足不同码头三维仿真系统的快速构建需求.

通过对不同集装箱码头功能节点的分析,本文提出1种可快速构建集装箱码头三维仿真系统的软件体系结构,允许通过多个具有不同功能的仿真组件协同实现特定业务的仿真需求,从而大大提高集装箱码头三维仿真系统的开发效率.

2 集装箱码头三维仿真组件模型

2.1 集装箱码头业务描述

集装箱码头物流系统由集装箱、船舶、装卸设备、泊位、堆场和通信设施等客观对象组成.按照集装箱流通的方向,集装箱码头作业过程主要包括进口卸船、进口提箱、出口集港和出口装船等4种作业类型.[7]不同集装箱装卸工艺下集装箱物流的表达形式与仿真过程存在较大差别.图1为自动化集装箱码头,与常规集装箱码头相比,其装卸工艺由岸桥、低架桥和地面平板小车等自动化装卸设备构成,不同装卸工艺决定集装箱码头三维仿真对象及其相ね 1 自动化集装箱码头

示意图

互之间协作机制的不同.因此,有必要设计1种可灵活组装且适合不同装卸工艺要求下的柔性三维仿真系统构建方法,从而满足自动化装卸工艺和混合装卸工艺等不同类型集装箱码头的三维实时仿真要求.

2.2 仿真组件粒度划分

组件是应用系统可分离的部分.[8]仿真组件是指能够通过互换和搭配完成仿真系统特定功能模块的封装部分.集装箱码头三维仿真组件在满足仿真功能性要求的前提下,必须同时满足高内聚、低耦合的组件设计原则.仿真组件的合理划分是仿真软件实现过程中可操作性的决定性因素.划分粒度过小容易导致仿真组件装配过程复杂,不利于开发效率的提高;划分粒度过大则会使仿真组件的柔性变小,失去可复用的设计目标.每类组件可以派生或者泛化其子类组件,最终给出集装箱码头三维仿真组件体系结构,见图2.

图 2 集装箱码头三维仿真组件体系

(1)静态布局组件.该组件可派生出静态非资源组件和静态资源组件2类.前者指构成集装箱码头三维静态虚拟场景的对象,但不参与仿真过程计算,如码头内部路灯、路障及候工楼等,并且用户可通过拖拽实现快速虚拟场景搭建;后者用于描述构成集装箱码头三维静态虚拟场景但参与仿真过程计算的对象,如箱区、泊位及集卡车道等资源设施.

(2)码头装卸设备组件.该组件包含与集装箱码头各种装卸工艺相关的装卸搬运设备,其直接派生出子类岸边装卸设备组件、堆场装卸设备组件和水平运输设备组件,而其中的堆场装卸设备组件又可派生出轮胎吊和轨道吊等组件,其关系见图2.

(3)码头装卸对象组件.用于描述码头内部流通的集装箱,如20英尺箱和40英尺箱等.

(4)码头操作组件.对集装箱码头管理与决策的功能性封装,通过对集装箱码头业务的分析,将业务逻辑大致划分为调度与计划2类.该组件描述的是非可见对象,因此必须允许设计时设置可视化属性.

(5)运动学解算组件.集装箱码头虚拟现实系统涉及大量动态元素的实时运动仿真,如桥吊吊箱过程中的大小车运动状态描述与控制、着箱碰撞分析等.

(6)数据访问组件.将对Access,SQL Server和Oracle等数据库的访问进行封装,隐藏其实现细节,只提供功能接口;同时该组件提供其他组件读取不同数据格式三维模型文件功能.

(7)通信接口组件.提供不同应用程序之间的数据互访功能,其他组件可利用该组件获取外部数据,从而驱动仿真系统.

(8)图形渲染组件.对三维仿真中必须的三维空间进行渲染输出,允许平移、旋转和缩放等基本三维空间操作,为更好适应二维平面仿真需求,图形渲染组件重载部分图形输出函数,达到平面二维仿真的目的.可以通过基于Vega的漫游引擎[9]实现该组件.

2.3 仿真组件实现

遵循将数据和功能封装的原则,仿真组件的核心是提供三维仿真系统所需功能的接口,且各仿真组件之间可以通过接口相互操作.仿真组件实现的关键在于接口与实现分离,其本质是提供集装箱码头物流系统各节点的功能和服务,满足用户的可视化仿真需求.仿真组件对其他仿真组件或者外部程序提供统一的功能接口,但无法访问组件的内部结构.被封装的仿真对象以组件标准提供特定的仿真功能,并通过自身接口与外部程序实现数据交互协作,具体形式如函数、属性和方法等.图3为集装箱码头装卸设备三维仿真组件体系.设备组件成员变量包括Id,位置(x,y,z)和运载集装箱(ContainerArray);方法包括大车移动(WMove)和小车移动等(HMove)等.岸桥、场桥和集卡作为集装箱码头作业的3种主要设备,既继承其父类部分变量、方法,又根据物理特性增加相应成员,如岸桥成员变量同时说明岸桥所处泊位号和场桥所在的场箱贝.

ね 3 集装箱码头装卸设备三维仿真组件体系

3 集装箱码头三维仿真组件平台

3.1 组件协作机制

为实现复杂的集装箱码头三维仿真系统,必须设计正确的组件调用机制,合理部署上述仿真组件.各组件作为客户端调用其他组件定义好的接口进行数据交互操作.根据不同装卸工艺下仿真系统功能上的实际需求,选择相关仿真组件进行相互协作实现集装箱码头整体仿真流程,组件协作机制见图4.图 4 仿真组件协作机制

さ图芷桨逍〕怠⒌图芷鹬匦〕岛偷孛嫫桨逍〕档人有装卸设备都需要引用装卸对象组件,通过与装卸对象组件的协作实现各自状态参数的改变,最终以动态元素运动仿真的形式反映到仿真中.

3.2 三维仿真组件部署结构

合理部署组件对成功开发集装箱码头三维仿真系统至关重要.通过抽象分析系统功能,将组件体系划分为3个层次,见图5.数据获取层包含数据访问组件和通信接口组件,用于获得仿真所需的驱动数据支持业务逻辑层相应的调度计算;业务逻辑层包含码头操作组件、静态布局组件、码头装卸设备组件和码头装卸对象组件,通过业务逻辑组件中的计划和调度等组件实现驱动装卸设备、资源计算等三维仿真驱动功能;用户表示层用于向用户呈现可视化的虚拟场景,如三维图形、仿真统计等,同时允许用户进行必要的人机交互,形成人在回路的实时仿真系统.

图 5 三维仿真组件部署结构

4 三维仿真实例

4.1 基本数据准备

在自主研发的集装箱码头三维仿真组件基础上,结合本文所述仿真系统体系结构,以某公司自动化集装箱码头三维仿真系统构件过程为例说明本文所述方法的具体实现.该码头岸线长度372 m,其设备配置见表1.

表 1 自动化码头设备表编号类型数量/台1岸桥42地面平板小车143低架桥起重小车104低架桥平板小车105轮胎吊146低架桥64.2 组件应用部署

依据该码头实际装卸工艺要求选择合理的组件,按照正确调用机制进行组件部署,以可视化方式设置不同组件对象的仿真参数(见图6),最后按照营运数据驱动和调用各虚拟场景对象的方法函数及事件响应,完成各仿真对象之间的协作运行,当然仿真对象的各参数在运行过程会实时变化.

三维仿真论文范文第15篇

【论文摘要】从装甲装备维修模拟化训练的主要手段、模拟化训练的时空和模拟化训练的主要方式三个方面,认真研究了未来装甲装备模拟化训练的发展趋势,探索了训练手段和方式的转变;详细分析了实物模拟向计算机模拟仿真、同地向异地、实物模拟技术向虚拟现实技术转变的过程与特点。

随着计算机信息技术迅速发展,仿真技术、网络技术以及虚拟现实技术在部队装甲装备维修和作业训练中得到广泛应用在此基础上产生的模拟训练方式,以其特有的科学性、经济陛对抗性、真实性、严密性、交互性、实时性、可控性和再现性等诸多优点,从而受到院校和部队的高度重视。认真研究未来装甲装备模拟训练的发展趋势,探索训练手段和训练方式的转变,对于指导院校教学改革和部队训练改革具有非常重要的意义。

1 模拟训练的主要手段由实物模拟向计算机模拟仿真系统转变

1.1 当前实物模拟训练存在的局限

培养装甲装备维修技术人才 ,加强动手能力的训练是一个重要方面,但采用什么样的训练手段 ,对提高训练质量至关重要。目前的模拟训练,主要是通过模拟真实的装甲装备各组成系统如底盘、火控系统、通信系统等来培养学员的作业和维修操作技能,技术上师徒相传,受场地、师资、实车、实物等条件的制约,训练周期长,教学难度大。装甲装备作业和维修训练是一种师生双向沟通的教学过程,无论教与学哪方面存在问题,其教学效果都要受一定影响。因此,以实物模拟为主要手段的模拟训练,有很大的局限性。

1.2 计算机模拟仿真系统的优势

随着多媒体技术的发展,计算机模拟仿真技术日益成熟,计算机模拟仿真系统中的装甲车辆和零配件,采用三维动画制作,图像的仿真程度和实物实景相差无几,它可以通过视觉、听觉、触觉等多种方式对学员的感官进行综合刺激,其效果是单靠实车、实物训练所无法比拟的。学员可以通过键盘、鼠标或操作杆,在计算机操作平台上进行拆装练习、维护保养 、排除故障,利用模拟操作台,在模拟战争环境中进行作业、抢修。模拟仿真系统还可以实现信息共享、人机交互和及时反馈,根据学员的具体情况,自行安排难度适中的训练内容 ,实现因材施教。计算机模拟仿真系统与真实装甲装备相比具有体积小、造价低、功能全等特点,硬件一次性投资以后,软件更新换代快,便于很快普及。因此,装甲装备维修训练由实物模拟向计算机模拟仿真系统转变是一种必然趋势。

2 模拟训练的时空由同地向异地网络化发展

过去的实物模拟训练局限在二间教室、一个车间或一个车场,参加学习的人数受到场地、师资、设备等条件的限制,教学效果很难保证。随着计算机及通信技术的发展,计算机网络技术的普及,模拟仿真训练将会开辟出一片新天地 ,可实现校内联网、院校和部队联网。

2.1 校内联网

学员在不同的教室,可以同时运用模拟仿真系统进行操作训练,打破 了场地设备等因素的限制,同时展开相同科 目的多个专业的教学。校内不同地点的模拟器(如多种车型的武器系统、火控系统、底盘、通信系统)互联 ,学员还可以按照战术想定进行编组作业。

2.2 院校和部队联网

院校的模拟仿真系统还可以同全军各训练机构的训练模拟仿真系统异地互联,实现远程技术教育、数据共享,为装甲装备维修专业的函授教育提供了强有力的技术支持。

3 模拟训练的主要形式由实物模拟向虚拟现实技术转变

近几年来 ,虚拟现实技术成为一项十分热门的技术,越来越多的人员投身到这个研究领域,致力于虚拟现实技术研究、开发及应用推广。虚假现实技术、理论分析和科学实验已成为人类探索客观世界规律的三大手段。虚拟现实技术带来的变化从以前的“以计算机为中心”变为“人是信息技术的主体”:由过去人机之间枯燥、被动的方式变成了人通过手和声音等自然的交互方式与机器交流,人机融为一体。据权威人士断言,虚拟现实技术将是 21世纪信息技术的代表 ,由此可见其重要性。目前,一些发达国家已开始将其应用于军事训练模拟。利用虚拟现实技术进行装甲装备维修技术训练,受训者不是被动地观察计算机中的模拟图像,而是居于一个虚拟的十分逼真的三维世界,在视觉、声觉、触觉等感觉的作用下,尤如身临其境的全身心地投入到“真实”的训练中。又因虚拟现实技术与真实的技术训练相比,没有多大差别,同时还具有交互性、可重复性和训练超前陛等特点,从而使教学效果更好。在未来的十几年内,类似的模拟训练系统,必将大批量生产和广泛普及。

信息技术和计算机的突飞猛进,必将带来训练观念、训练方式、训练手段的变革。运用计算机模拟仿真系统进行装甲装备的作业和维修训练,虽不能完全取代真车实件,但这种方式,有利于提高训练质量和效率,具有无限广阔的发展前景。

参考文献