美章网 资料文库 纯电动客车的CAN网络系统论文范文

纯电动客车的CAN网络系统论文范文

时间:2022-11-27 03:06:39

纯电动客车的CAN网络系统论文

1影响CAN网络系统设计的主要因素

1.1标准帧与扩展帧的选择

CAN2.0包括A部分和B部分,即CAN2.0A与CAN2.0B。其中,CAN2.0A是按CAN1.2规范定义的CAN报文格式的说明,规定CAN控制器必须有一个11位的标识符。CAN2.0B是对CAN报文的标准格式和扩展格式的说明,CAN控制器的标识长度可以是11位或29位。遵循CAN2.0B协议的CAN控制器,可以发送和接收11位标识符的标准帧或29位标识符的扩展帧。如果禁止CAN2.0B,则CAN控制器只能发送和接收11位标识符的标准帧,而忽略扩展格式的报文结构,但不会出现错误。标准帧与扩展帧如图2所示。标准帧理论上最多可以标识211(2048)个数据类型。由于协议规定标识符最高7位不能同时全是隐性位,所以最多可以标识211-24(2032)个数据类型。扩展帧使用29位标识符,最多可标识5亿多个数据类型。当采用CAN2.0B传输报文时,需对标准帧和扩展帧进行选择。从延迟的角度分析,它用于表示网络响应速度,延迟越少,响应越快,性能越好。CAN最高位速率可达1Mbps,此时每位的传输时间是1μs。总线竞争获胜的标准格式报文在传输不被中断的情况下,长度为最大值的报文总线访问时间只有111μs,加填充位为134μs;扩展帧格式最大长度报文的总线访问时间为131μs,加填充位为159μs。从总线吞吐量分析,它在数值上等于网络或信道在单位时间内成功传输的总信息量。标准格式信息帧的长度为47+8×DLC,数据域在一帧报文中所占比率为(8×DLC)(/47+8×DLC),在1Mbps位速率时的总线吞吐量为(8×DLC)(/47+8×DLC)×1Mbps。扩展格式信息帧的长度为67+8×DLC,数据域在一帧报文中所占比率为(8×DLC)(/67+8×DLC),在1Mbps位速率时的总线吞吐量为(8×DLC)/(67+8×DLC)×1Mbps。当数据域长度为8字节时,若不考虑填充位,则标准帧的总线吞吐量为577kbps,而扩展帧的总线吞吐量为488kbps。从以上分析可见,虽然扩展帧格式可以表示的数据类型比标准帧格式多得多,但在总线访问时间和总线吞吐量方面,标准帧格式明显优于扩展帧格式,所以在满足节点数量要求的条件下,应优先考虑采用标准帧格式。

1.2标识符分配和网络实时性分析

1)标识符分配。CAN只提供与物理层和数据链路层相关的协议,并没有制定与特定应用相关的应用层的内容。因此,根据具体应用的特点,在总线协议的基础上,定义详细的标识符分配及网络配置管理的具体方式是开发基于CAN的客车网络控制系统的前提。标识符分配可以通过两种方式来实现:一是用户自定义;二是采用CAN的高层协议标准,如SAEJ1939、CANOpen等。无论采用哪种方式,都必须保证与安全性相关的高实时性的信息能够获得高优先级。如SAEJ1939中,信息优先级顺序为控制参数、驱动状态参数、驱动系控制、驱动系配置参数、信息参数、信息状态参数等。2)网络实时性分析。客车网络控制系统是分布式实时系统,许多任务具有严格实时性和硬实时性,信息传输与控制必须满足任务截止期要求。客车网络控制系统的实时性可以通过信息的响应时间来衡量,典型的理论方法有Worst-case、Actual-case、Average和Maximum等。Actual-case同时考虑到周期性信息和非周期性信息,Worst-case考虑到信息传输过程中的最坏情况,一般将两者结合进行实时性分析。位速率是网络实时性分析的一个重要参数,它的确定必须考虑到通信距离,尤其在高速通信的情况下,距离的增加带来的传输延迟是不可忽略的。表3为通讯位速率与总线两个节点间最大距离的关系。

2典型的电动客车整车网络结构设计及控制策略优化

随着客车电子控制单元的增多和信息通讯性能要求的不同,单总线网络结构引发网络通讯负载大、通信效率低、实时性能差和通信距离与网络性能矛盾突出等问题。因此,一般采用多网段结构来构建基于CAN的客车整车网络控制系统。一个典型纯电动客车的整车网络的拓扑图见图3。多网段结构适合于连接功能相对独立的网段,信息交换通过网关来实现。其特点是:同一网段的节点通过总线方式连接;不同网段之间通过网关连接,并实现相互通信;网络管理和集中控制的功能由网关实现。如采用低速总线连接低实时性要求的车身控制单元,增加通信传输距离,提高抗干扰能力;采用高速总线连接动力传动系统,以满足与行驶安全相关信息的高实时性要求;采用带双通道CAN控制器的微处理器,实现两条CAN总线信息的通信和控制功能。对于网络层可以采用静态地址分配机制,可以参照SAEJ1939通讯协议为公路设备定义地址分配表。

2.1整车控制器的拓扑结构

根据电动汽车整车网络的特性,整车运行、安全性、经济性等整车控制策略主要是由整车控制器(VMU)完成。整车控制器VMU的结构图见图4。整车控制器一般采用两路CAN总线(参照商用车SAEJ1939协议):CAN1为VehicleCAN与电池管理系统、ABS防抱死系统、仪表等设备相连,接收车身系统相关信息;CAN2为MCUCAN,只与驱动电机控制器相连,专用的MCU内部CAN2的设置会使整车驱动系统响应速度更快、实时性更高、性能更稳定可靠。

2.2整车控制器控制策略与优化方向

2.2.1整车控制器VMU整车控制器VMU是纯电动车辆的主要管理单元,与车辆的牵引系统及车上的其他主要部件的相互通讯。整车控制器读取并识别驾驶员的输入信号(踏板、换档器、按钮等),并确保驾驶的舒适性。扭矩控制(TorqueManagement)是整车控制器驱动控制的最关键的策略,成熟的转矩管理算法编程时,应设计为可进行系统参数配置软体,以满足整车集成时不同参数的需求,如踏板传感器参数、扭矩转化斜率、最大速度(正向和反向)等。扭矩控制需要满足以下几个方面功能:1)扭矩过渡处理平滑,以确保乘客的舒适性。2)科学有效地管理挂档器(DriveSelector),以防止因挂档器误操作带来的安全隐患。3)超速保护(OverSpeed)功能。4)驻坡功能(HillHolder)、跟车功能(Creep)等增值功能。5)能量回馈与电制动策略管理,基于不同回馈能量需求及电制动限值条件,如防抱死(ABS)及客户指令需求时,可以自动切断电制动。

2.2.2优化管理整车控制器除了常规的行车控制及保护功能外,在以下这些方面也可以做针对性的优化管理:上下高压电安全控制;行车动态数据监测及安全行车管理;节电模式及动力电池管理等。整车控制器控制策略的智能控制方法有递阶控制、专家控制、模糊控制、神经控制和学习控制等[10]。

3结束语

本文从概念、系统、节点、网络架构等不同角度对纯电动客车网络控制系统设计过程中的一些关键问题进行了研究,分析了设计过程中影响系统工作性能的主要因素,提出了相关设计方法与设计原则。本文工作有助于提高网络控制性能,为纯电动客车的整车网络系统设计者提供参考。

作者:卢兆正黄爱军单位:北京佩特来电机驱动技术有限公司扬州亚星客车股份有限公司

被举报文档标题:纯电动客车的CAN网络系统论文

被举报文档地址:

https://www.meizhang.comhttps://www.meizhang.com/txcb/wlxtlw/659503.html
我确定以上信息无误

举报类型:

非法(文档涉及政治、宗教、色情或其他违反国家法律法规的内容)

侵权

其他

验证码:

点击换图

举报理由:
   (必填)