美章网 资料文库 概率神经网络技术论文范文

概率神经网络技术论文范文

时间:2022-02-12 05:21:26

概率神经网络技术论文

1基本原理

1.1概率性神经网络(PNN)

地震属性和测井数据的关系,并不一定是线性的,利用概率性神经网络的方法弥补井和地震间的非线性关系。概率性神经网络(PNN)类似于多维属性空间上的克里金,采用了局部化的作用函数,具有最佳逼近特性,且没有局部极小值。每个输出点把新点处的新属性组与已知的培训例子中的属性进行比较来确定的,得到的预测值是培训目标值的加权组合。概率神经网络方法具有高度的容错性,即使某个井旁道地震参数或某个网络连接有缺陷,也可以通过联想得到全部或大部分信息。因此,用概率神经网络建立地震属性和测井特征属性之间的映射关系可靠性高。概率神经网络方法还具有动态适应性,当地质岩性类别变化或地震参数修改时,网络可自动适应新的变量,调整权系数,直到收敛。对于受岩性控制的储层,概率神经网络是描述其地震属性参数与岩性参数关系的有效方法。概率神经网络是由多测井和多地震属性参数组成的网络。首先,将由测井曲线和井旁地震道提取的特征参数按照地质岩性参数分成若干类;然后,通过非线性数学模型的神经网络学习系统,由输入矢量产生输出矢量,并把这个输出矢量与目标矢量进行平方意义下的误差对比;再以共轭迭代梯度下降法作权的调整,以减少输出矢量与目标矢量的差异,直到两者没有差异训练才结束。对于给定的培训数据,PNN程序假设测井值和每一输出端的新测井值为线性组合,新数据样点值用属性值X表示可写。这里σ是PNN使用的高斯权重函数的关键参数,来控制高斯函数的宽度。式(2)和式(3)是概率神经网络预测的基本原理,训练神经网络的过程实际上就是求解最优平滑因子的过程。

1.2交互验证增加属性类似于多项式拟合增加高阶项,增加多项式高阶将会使预测误差总是变小,但属性的个数绝不是越多越好。随着属性个数的增多,对预测的结果的影响越来越小,会明显削弱未参与神经网络训练的那些点的预测能力,甚至造成预测误差反而增大,这种现象称为过度匹配。而且参与运算的属性过多,也会影响到运算速度,因此通过计算验证误差来确定最佳的属性个数,防止过度匹配,该过程就称为交叉验证。通过蕴藏井误差分析的方法,验证出现拟合过度的情况。求取递归系数时,选取一口井作为验证井,不参与运算。利用拟合出的关系,得到验证井的误差值。以此类推,得到每一口井的误差值,以参与运算井的平均误差作为参考标准,来检验属性组合个数是否出现拟合过度的情况。

2应用实例分析

研究区内油气富集区主要为岩性控制,目的层段厚度70m左右,地震剖面上大约50ms,含油砂体主要发育在wellA,wellC附近,向周围变化较快。针对目标层T41-T43之间进行井曲线交汇和岩性统计。wellA,wellC主要是含油砂岩,wellB、D、F主要是泥质砂岩、煤层,岩性差别很大。但从速度、密度曲线交汇图版(图1)来看,曲线交汇统计重叠较大,很难区分含油砂岩和泥质砂岩。wellA、wellB对应层位岩性明显不同,在地震剖面也体现同样的反射特征。因此基于测井和地震模型为基础的常规叠后波阻抗反演很难准确识别这套含油砂岩。而更能反映岩性特征的GR曲线,则对这套砂体较为敏感,明显地区分出了这套含油砂岩(如图3所示)。因此我们采用本文介绍的神经网络技术,在常规波阻抗反演的基础上,预测GR曲线特征体。经过分析,把GR值65~75区间岩性赋值为含油砂岩,从而把这套储层有效的区分出来,在此基础上进一步计算砂岩厚度(图4)。

3结论

从应用结果来看,在研究区概率神经网络方法有效地利用自然伽马等地震属性进行岩性反演预测,见到了好的效果。该方法不再限制于地下孔隙流体的弹性参数和地震数据本身,而是直接利用井的测井曲线和地震数据中提取的地震属性。测井和地震数据间的关系它们之间的关系是通过统计的方法在井位置处得以确定,这种关系可以是线性(多变递归)或非线性的(神经网络技术PNN),不受预先假定的地质模型和地震子波的影响,在一些岩性变化较快、薄互层发育的地区往往会得到意想不到的好的效果。

作者:周鹏林单位:大庆油田勘探开发研究院

被举报文档标题:概率神经网络技术论文

被举报文档地址:

https://www.meizhang.comhttps://www.meizhang.com/txcb/wljslw/666374.html
我确定以上信息无误

举报类型:

非法(文档涉及政治、宗教、色情或其他违反国家法律法规的内容)

侵权

其他

验证码:

点击换图

举报理由:
   (必填)