美章网 精品范文 电动机论文范文

电动机论文范文

电动机论文

电动机论文范文第1篇

1.1由于电机本身密封不良,加之环境跑冒滴漏,使电机内部进水或进入其它带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。

相应对策:①尽量消除工艺和机械设备的跑冒滴漏现象;②检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应做保护罩;③对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。

1.2由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:①轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。②轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。④由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。⑥由于不同型号油脂混用造成轴承损坏。⑦轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未进行中修。

相应对策:①卸装轴承时,一般要对轴承加热至80℃~100℃,如采用轴承加热器,变压器油煮等,只有这样,才能保证轴承的装配质量。②安装轴承前必须对其进行认真仔细的清洗,轴承腔内不能留有任何杂质,填加油脂时必须保证洁净。③尽量避免不必要的转轴机加工及电机端盖嵌套工作。④组装电机时一定要保证定、转子铁心对中,不得错位。⑤电机外壳洁净见本色,通风必须有保证,冷却装置不能有积垢,风叶要保持完好。⑥禁止多种油脂混用。⑦安装轴承前先要对轴承进行全面仔细的完好性检查。⑧对于长期不用的电机,使用前必须进行必要的解体检查,更新轴承油脂。

1.3由于绕组端部较长或局部受到损伤与端盖或其它附件相磨擦,导致绕组局部烧坏。

相应对策:电机在更新绕组时,必须按原数据嵌线。检修电机时任何刚性物体不准碰及绕组,电机转子抽芯时必须将转子抬起,杜绝定、转子铁芯相互磨擦。动用明火时必须将绕组与明火隔离并保证有一定距离。电机回装前要对绕组的完好性进行认真仔细的检查确诊。

1.4由于长时间过载或过热运行,绕组绝缘老化加速,绝缘最薄弱点碳化引起匝间短路、相间短路或对地短路等现象使绕组局部烧毁。

相应对策:①尽量避免电动机过载运行。②保证电动机洁净并通风散热良好。③避免电动机频繁启动,必要时需对电机转子做动平衡试验。

1.5电机绕组绝缘受机械振动(如启动时大电流冲击,所拖动设备振动,电机转子不平衡等)作用,使绕组出现匝间松驰、绝缘裂纹等不良现象,破坏效应不断积累,热胀冷缩使绕组受到磨擦,从而加速了绝缘老化,最终导致最先碳化的绝缘破坏直至烧毁绕组。

相应对策:①尽可能避免频繁启动,特别是高压电机。②保证被拖动设备和电机的振动值在规定范围内。

2三相异步电动机一相或两相绕组烧毁(或过热)的原因及对策

如果出现电动机一相或两相绕组烧坏(或过热),一般都是因为缺相运行所致。当电机不论何种原因缺相后,电动机虽然尚能继续运行,但转速下降,滑差变大,其中B、C两相变为串联关系后与A相并联,在负荷不变的情况下,A相电流过大,长时间运行,该相绕组必然过热而烧毁。

为三相异步电动机绕组为Y接法的情况:电源缺相后,电动机尚可继续运行,但同样转速明显下降,转差变大,磁场切割导体的速率加大,这时B相绕组被开路,A、C两相绕组变为串联关系且通过电流过大,长时间运行,将导致两相绕组同时烧坏。

特殊情况下,如果停止的电动机缺一相电源合闸时,一般只会发生嗡嗡声而不能启动,这是因为电动机通入对称的三相交流电会在定子铁心中产生圆形旋转磁场,但当缺一相电源后,定子铁心中产生的是单相脉动磁场,它不能使电动机产生启动转矩。因此,电源缺相时电动机不能启动。但在运行中,电动机气隙中产生的是三相谐波成分较高的椭圆形旋转磁场,所以,正在运行中的电动机缺相后仍能运转,只是磁场发生畸变,有害电流成分急剧增大,最终导致绕组烧坏。

相应对策:无论电动机是在静态还是动态,缺相运行带来的直接危害就是电机一相或两相绕组过热甚至烧坏。与此同时,由于动力电缆的过流运行加速了绝缘老化。特别是在静态时,缺相会在电机绕组中产生几倍于额定电流的堵转电流。其绕组烧坏的速度比运行中突然缺相更快更严重。所以在我们对电机进行日常维护和检修的同时,必须对电机相应的MCC功能单元进行全面的检修和试验。尤其是要认真检查负荷开关、动力线路、静动触点的可靠性。杜绝缺相运行。

总之,无论是从事电气的工作人员或是管理人员,都要从实际出发,切实落实好设备的维护与维修,以保证生产的正常运行,促进我区的经济建设顺利发展。

电动机论文范文第2篇

论文摘要:电动机在我区的使用很广泛,它遍及各行各业的各个角落,在生产、生活过程中发挥着极其重要的作用。但由于大部分电机使用年限较长,电机烧毁的事故常有发生,而且呈上升趋势,严重影响着生产、生活的安全、可靠、长周期运行。现针对电机烧毁原因及相应对策做一分析和研究。

1电机绕组局部烧毁的原因及对策

1.1由于电机本身密封不良,加之环境跑冒滴漏,使电机内部进水或进入其它带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。

相应对策:①尽量消除工艺和机械设备的跑冒滴漏现象;②检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应做保护罩;③对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。

1.2由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:①轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。②轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。④由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。⑥由于不同型号油脂混用造成轴承损坏。⑦轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未进行中修。

相应对策:①卸装轴承时,一般要对轴承加热至80℃~100℃,如采用轴承加热器,变压器油煮等,只有这样,才能保证轴承的装配质量。②安装轴承前必须对其进行认真仔细的清洗,轴承腔内不能留有任何杂质,填加油脂时必须保证洁净。③尽量避免不必要的转轴机加工及电机端盖嵌套工作。④组装电机时一定要保证定、转子铁心对中,不得错位。⑤电机外壳洁净见本色,通风必须有保证,冷却装置不能有积垢,风叶要保持完好。⑥禁止多种油脂混用。⑦安装轴承前先要对轴承进行全面仔细的完好性检查。⑧对于长期不用的电机,使用前必须进行必要的解体检查,更新轴承油脂。

1.3由于绕组端部较长或局部受到损伤与端盖或其它附件相磨擦,导致绕组局部烧坏。

相应对策:电机在更新绕组时,必须按原数据嵌线。检修电机时任何刚性物体不准碰及绕组,电机转子抽芯时必须将转子抬起,杜绝定、转子铁芯相互磨擦。动用明火时必须将绕组与明火隔离并保证有一定距离。电机回装前要对绕组的完好性进行认真仔细的检查确诊。

1.4由于长时间过载或过热运行,绕组绝缘老化加速,绝缘最薄弱点碳化引起匝间短路、相间短路或对地短路等现象使绕组局部烧毁。

相应对策:①尽量避免电动机过载运行。②保证电动机洁净并通风散热良好。③避免电动机频繁启动,必要时需对电机转子做动平衡试验。

1.5电机绕组绝缘受机械振动(如启动时大电流冲击,所拖动设备振动,电机转子不平衡等)作用,使绕组出现匝间松驰、绝缘裂纹等不良现象,破坏效应不断积累,热胀冷缩使绕组受到磨擦,从而加速了绝缘老化,最终导致最先碳化的绝缘破坏直至烧毁绕组。

相应对策:①尽可能避免频繁启动,特别是高压电机。②保证被拖动设备和电机的振动值在规定范围内。

2三相异步电动机一相或两相绕组烧毁(或过热)的原因及对策

如果出现电动机一相或两相绕组烧坏(或过热),一般都是因为缺相运行所致。当电机不论何种原因缺相后,电动机虽然尚能继续运行,但转速下降,滑差变大,其中B、C两相变为串联关系后与A相并联,在负荷不变的情况下,A相电流过大,长时间运行,该相绕组必然过热而烧毁。为三相异步电动机绕组为Y接法的情况:电源缺相后,电动机尚可继续运行,但同样转速明显下降,转差变大,磁场切割导体的速率加大,这时B相绕组被开路,A、C两相绕组变为串联关系且通过电流过大,长时间运行,将导致两相绕组同时烧坏。

特殊情况下,如果停止的电动机缺一相电源合闸时,一般只会发生嗡嗡声而不能启动,这是因为电动机通入对称的三相交流电会在定子铁心中产生圆形旋转磁场,但当缺一相电源后,定子铁心中产生的是单相脉动磁场,它不能使电动机产生启动转矩。因此,电源缺相时电动机不能启动。但在运行中,电动机气隙中产生的是三相谐波成分较高的椭圆形旋转磁场,所以,正在运行中的电动机缺相后仍能运转,只是磁场发生畸变,有害电流成分急剧增大,最终导致绕组烧坏。

电动机论文范文第3篇

论文摘要:在现代化生产程度很高的今天,企业的生产,产品的加工制造以及人们的日常生活都离不开电动机的使用,在电动机的使用过程当中有很多注意事项以及要求,否则将会发生机器的损坏,这对企业的运转,人民生活等都会带来诸多不便。对电动机常见的故障,主要分为电气和机械两种,每一种故障都给电动机的安全运行带来极大威胁。因此,对电动机的故障分析维护与检修更显得至关重要。

电动机具有结构简单,运行可靠,使用方便,价格低廉等特点。为保证时机的正常工作对运行的电动机要按电动机完好质量标准的要求进行检查,运行中的电动机与被拖动设备的轴心要对正,运行中无明显的振动,一定要保持通风良好、风翅等要完整无缺。要时刻观察和测量电动机电网电压和正常工作电流,电压变化不应超过额定电压的±5%,电动机的额定负荷电流不能经常超过额定电流,以防时机过热,同时检查电机起动保护装置的动作是否灵活可靠。检查电动机各部分温升是否正常,还要经常检查轴承温度,滑动轴承不得超过度,滚动轴承不得超过70度,滚动轴承运转中的声音要清晰、无杂音。对于电动机的运转环境要做到防砸、防淋、防潮。对于环境不良,经常挪动、频繁起动、过载运行等要加强日常维护和保养,及时发现和消除隐患。

一、电动机电气常见故障的分析和处理

(一)时机接通后,电动机不能起动,但有嗡嗡声

可能原因:(1)电源没有全部接通成单相起动;(2)电动机过载;(3)被拖动机械卡住;(4)绕线式电动机转子回路开路成断线;(5)定子内部首端位置接错,或有断线、短路。

处理方法:(1)检查电源线,电动机引出线,熔断器,开关的各对触点,找出断路位置,予以排除;(2)卸载后空载或半载起动;(3)检查被拖动机械,排除故障;(4)检查电刷,滑环和起动电阻各个接触器的接合情况;(5)重新判定三相的首尾端,并检查三相绕组是否有灿线和短路。

(二)电动机起动困难,加额定负载后,转速较低。

可能原因:(1)电源电压较低;(2)原为角接误接成星接;(3)鼠笼型转子的笼条端脱焊,松动或断裂。

处理方法:(1)提高电压;(2)检查铭牌接线方法,改正定子绕组接线方式;(3)进行检查后并对症处理。

(三)电动机起动后发热超过温升标准或冒烟

可能原因:(1)电源电压过低,电动机在额定负载下造成温升过高;(2)电动机通风不良或环境湿度过高;(3)电动机过载或单相运行;(4)电动机起动频繁或正反转次数过多;(5)定子和转子相擦。

处理方法:(1)测量空载和负载电压;(2)检查电动机风扇及清理通风道,加强通风降低环温;(3)用钳型电流表检查各相电流后,对症处理;(4)减少电动机正反转次数,或更换适应于频繁起动及正反转的电动机;(5)检查后姨症处理。

(四)绝缘电阻低

可能原因:(1)绕组受潮或淋水滴入电动机内部;(2)绕组上有粉尘,油圬;(3)定子绕组绝缘老化。

处理方法:(1)将定子,转子绕组加热烘干处理;(2)用汽油擦洗绕组端部烘干;(3)检查并恢复引出线绝缘或更换接线盒绝缘线板;(4)一般情况下需要更换全部绕组。

(五)电动机外壳带电:

可能原因:(1)电动机引出线的绝缘或接线盒绝缘线板;(2)绕组端部碰机壳;(3)电动机外壳没有可靠接地

处理方法:(1)恢复电动机引出线的绝缘或更换接线盒绝缘板;(2)如卸下端盖后接地现象即消失,可在绕组端部加绝缘后再装端盖;(3)按接地要求将电动机外壳进行可靠接地。

(六)电动机运行时声音不正常

可能原因:(1)定子绕组连接错误,局部短路或接地,造成三相电流不平衡而引起噪音;(2)轴承内部有异物或严重缺油。

处理方法:(1)分别检查,对症下药;(2)清洗轴承后更换新油为轴承室的1/2-1/3。

(七)电动机振动

可能原因:(1)电动机安装基础不平;(2)电动机转子不平衡;(3)皮带轮或联轴器不平衡;(4)转轴轴头弯曲或皮带轮偏心;(5)电动机风扇不平衡。

处理方法:(1)将电动机底座垫平,时机找水平后固牢;(2)转子校静平衡或动平衡;(3)进行皮带轮或联轴器校平衡;(4)校直转轴,将皮带轮找正后镶套重车;(5)对风扇校静。

二、电动机机械常见故障的分析和处理

(一)定、转子铁芯故障检修

定、转子都是由相互绝缘的硅钢片叠成,是电动机的磁路部分。定、转子铁芯的损坏和变形主要由以下几个方面原因造成。

(1)轴承过度磨损或装配不良,造成定、转子相擦,使铁芯表面损伤,进而造成硅钢片间短路,电动机铁损增加,使电动机温升过高,这时应用细锉等工具去除毛刺,消除硅钢片短接,清除干净后涂上绝缘漆,并加热烘干。

(2)拆除旧绕组时用力过大,使倒槽歪斜向外张开。此时应用小嘴钳、木榔头等工具予以修整,使齿槽复位,并在不好复位的有缝隙的硅钢片间加入青壳纸、胶木板等硬质绝缘材料。

(3)因受潮等原因造成铁芯表面锈蚀,此时需用砂纸打磨干净,清理后涂上绝缘漆。

(4)因绕组接地产生高热烧毁铁芯或齿部。可用凿子或刮刀等工具将熔积物剔除干净,涂上绝缘溱烘干。

(5)铁芯与机座间结合松动,可拧紧原有定位螺钉。若定位螺钉失效,可在机座上重钻定位孔并攻丝,旋紧定位螺钉。

(二)轴承故障检修

转轴通过轴承支撑转动,是负载最重的部分,又是容易磨损的部件。

(1)故障检查

运行中检查:滚动轴承缺油时,会听到骨碌骨碌的声音,若听到不连续的梗梗声,可能是轴承钢圈破裂。轴承内混有沙土等杂物或轴承零件有轻度磨损时,会产生轻微的杂音。

拆卸后检查:先察看轴承滚动体、内外钢圈是否有破损、锈蚀、疤痕等,然后用手捏住轴承内圈,并使轴承摆平,另一只手用力推外钢圈,如果轴承良好,外钢圈应转动平稳,转动中无振动和明显的卡滞现象,停转后外钢圈没有倒退现象,否则说明轴承已不能再用了。左手卡住外圈,右手捏住内钢圈,用力向各个方向推动,如果推动时感到很松,就是磨损严重。

(2)故障修理

轴承外表面上的锈斑可用00号砂纸擦除,然后放入汽油中清洗;或轴承有裂纹、内外圈碎裂或轴承过度磨损时,应更换新轴承。更换新轴承时,要选用与原来型号相同的轴承。

(三)转轴故障检修

(1)轴弯曲

若弯曲不大,可通过磨光轴径、滑环的方法进行修复;若弯曲超过0.2mm,可将轴放于压力机下,在拍弯曲处加压矫正,矫正后的轴表面用车床切削磨光;如弯曲过大则需另换新轴。

(2)轴颈磨损

轴颈磨损不大时,可在轴颈上镀一层铬,再磨削至需要尺寸;磨损较多时,可在轴颈上进行堆焊,再到车床上切削磨光;如果轴颈磨损过大时,也在轴颈上车削2-3mm,再车一套筒趁热套在轴颈上,然后车削到所需尺寸。

(3)轴裂纹或断裂

轴的横向裂纹深度不超过轴直径的10%-15%,纵向裂纹不超过轴长的10%时,可用堆焊法补救,然后再精车至所需尺寸。若轴的裂纹较严重,就需要更换新轴。

(四)机壳和端盖的检修

电动机论文范文第4篇

1.由于电机本身密封不良,加之环境跑冒滴漏,使电机内部进水或进入其它带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。

相应对策:①尽量消除工艺和机械设备的跑冒滴漏现象;②检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应作保护罩;③对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。

2.由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:①轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。②轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。④由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。⑥由于不同型号油脂混用造成轴承损坏。⑦轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未进行中修。

相应对策:①卸装轴承时,一般要对轴承加热至80℃~100℃,如采用轴承加热器,变压器油煮等,只有这样,才能保证轴承的装配质量。②安装轴承前必须对其进行认真仔细的清洗,轴承腔内不能留有任何杂质,填加油脂时必须保证洁净。③尽量避免不必要的转轴机加工及电机端盖嵌套工作。④组装电机时一定要保证定、转子铁心对中,不得错位。⑤电机外壳洁净见本色,通风必须有保证,冷却装置不能有积垢,风叶要保持完好。⑥禁止多种油脂混用。⑦安装轴承前先要对轴承进行全面仔细的完好性检查。⑧对于长期不用的电机,使用前必须进行必要的解体检查,更新轴承油脂。

3.由于绕组端部较长或局部受到损伤与端盖或其它附件相磨擦,导致绕组局部烧坏。

相应对策:电机在更新绕组时,必须按原数据嵌线。检修电机时任何刚性物体不准碰及绕组,电机转子抽芯时必须将转子抬起,杜绝定、转子铁芯相互磨擦。动用明火时必须将绕组与明火隔离并保证有一定距离。电机回装前要对绕组的完好性进行认真仔细的检查确诊。

4.由于长时间过载或过热运行,绕组绝缘老化加速,绝缘最薄弱点碳化引起匝间短路、相间短路或对地短路等现象使绕组局部烧毁。

相应对策:①尽量避免电动机过载运行。②保证电动机洁净并通风散热良好。③避免电动机频繁启动,必要时需对电机转子做动平衡试验。

5.电机绕组绝缘受机械振动(如启动时大电流冲击,所拖动设备振动,电机转子不平衡等)作用,使绕组出现匝间松驰、绝缘裂纹等不良现象,破坏效应不断积累,热胀冷缩使绕组受到磨擦,从而加速了绝缘老化,最终导致最先碳化的绝缘破坏直至烧毁绕组。

相应对策:①尽可能避免频繁启动,特别是高压电机。②保证被拖动设备和电机的振动值在规定范围内。

二、三相异步电动机一相或两相绕组烧毁(或过热)的原因及对策

如果出现电动机一相或两相绕组烧坏(或过热),一般都是因为缺相运行所致。在这里不作深刻的理论分析,仅作简要说明。

当电机不论何种原因缺相后,电动机虽然尚能继续运行,但转速下降,滑差变大,其中B、C两相变为串联关系后与A相并联,在负荷不变的情况下,A相电流过大,长时间运行,该相绕组必然过热而烧毁。

三相异步电动机绕组为Y接法的情况:电源缺相后,电动机尚可继续运行,但同样转速明显下降,转差变大,磁场切割导体的速率加大,这时B相绕组被开路,A、C两相绕组变为串联关系且通过电流过大,长时间运行,将导致两相绕组同时烧坏。

这里需要特别指出,如果停止的电动机缺一相电源合闸时,一般只会发生嗡嗡声而不能启动,这是因为电动机通入对称的三相交流电会在定子铁心中产生圆形旋转磁场,但当缺一相电源后,定子铁心中产生的是单相脉动磁场,它不能使电动机产生启动转矩。因此,电源缺相时电动机不能启动。但在运行中,电动机气隙中产生的是三相谐波成分较高的椭圆形旋转磁场,所以,正在运行中的电动机缺相后仍能运转,只是磁场发生畸变,有害电流成分急剧增大,最终导致绕组烧坏。

相应对策:无论电动机是在静态还是动态,缺相运行带来的直接危害就是电机一相或两相绕组过热甚至烧坏。与此同时,由于动力电缆的过流运行加速了绝缘老化。特别是在静态时,缺相会在电机绕组中产生几倍于额定电流的堵转电流。其绕组烧坏的速度比运行中突然缺相更快更严重。所以在我们对电机进行日常维护和检修的同时,必须对电机相应的MCC功能单元进行全面的检修和试验。尤其是要认真检查负荷开关、动力线路、静动触点的可靠性。杜绝缺相运行。

电动机论文范文第5篇

关键词:变频电机设计交流调速系统变频器谐波

一、变频器运行时对变频电机工作的影响

在变频电机调速控制系统中,采用电力电子变压变频器作为供电电源,供电系统中电压除基波外不可避免含有高次谐波分量,对外表现为非正弦性,谐波对电机的影响主要体现在磁路中的谐波磁势和电路中的谐波电流上,不同振幅和频率的电流和磁通谐波将引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。这些损耗都会使电动机效率和功率因数降低。同时,这些损耗绝大部分转变成热能,引起电机附加发热,导致变频电机温升的增加。如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%~20%。同时这些谐波磁动势与转子谐波电流合成又产生恒定的谐波电磁转矩和振动的谐波电磁转矩,恒定谐波电磁转矩的影响可以忽略,振动谐波电磁转矩会使电动机发出的转矩产生脉动,从而造成电机转速(主要是低速时)的振荡,甚至引起系统的不稳定。谐波电流还增加了电机峰值电流,在一定的换流能力下,谐波电流降低了逆变器的负载能力。对于变频电机,如何在设计过程中采取合理措施避免或减小应用变频器所带来的影响,以求得系统最佳经济技术效果,是本文讨论的重点。

二、变频电机设计特点

对于变频电机,其设计必须与逆变器、机械传动装置相匹配共同满足传动系统的机械特性,如何从调速系统的总体性能指标出发,求得电机与逆变器的最佳配合,是变频电机设计的特点。设计理论依据交流电机设计理论,供电电源的非正弦以及全调速频域内达到满意的综合品质因数是变频电机设计中需要着重注意的两个问题,设计中参数的选取应做特别的考虑。与传统异步电机相比,一般变频电机设计有如下一些特点:

1.用于变频调速的异步电动机要求其工作频率在一定范围内可调,所以设计电机时不能仅仅考虑某单一频率下的运行特性,而要求电机在较宽的频率范围内工作时均有较好的运行性能。如目前大多调速异步电动机的工作频率在5Hz~100Hz内可调,设计时要全面考虑。

2.变频电机在低速时降低供电频率,可以把最大转矩调到起动点,获得很好的起动特性,因而在设计变频电机时不需要对起动性能作特别的考虑,转子槽不必设计为深槽,从而可以重点进行其它方面的优化设计。

3.变频电机通过调节电压和频率,在每一个运行点都可以有多种运行方式,对应多种不同的转差频率,因而总能找到最佳的转差频率,使电机的效率或功率因数在很宽的调速范围内都很高。因而,变频电机的功率因数和效率可以设计得更高,功率密度得以进一步提高。现有数据表明:在额定工作点,逆变器供电下的异步电机效率比普通电机高2%~3%,功率因数高10%~20%。

4.变频电机采用变频装置供电,输入电流中含有较多的高次谐波,产生电机局部放电和空间电荷,增大了介质损耗发热和电磁振动力,加速了绝缘材料的老化,所以应加强电机绝缘和提高整体机械强度,变频电机的绝缘强度一般要达到F级以上。

5.变频供电时产生的轴电压和轴电流会使电机轴承失效,缩短轴承使用寿命,必须在设计上要加以考虑。对较小的轴电流,可以适当增大电机气隙和选用专用脂;另外,增加轴承的电气绝缘或者将电机轴通过电刷接地,可以有效解决轴承损坏问题;对过高轴电压,应设法隔断轴电流的回路,如采用陶瓷滚子轴承或实现轴承室绝缘。同时,在逆变器输出端增加滤波环节,降低脉冲电压dU/dt也是一种有效的方法。

三、电磁设计

在普通异步电动机设计基础之上,为进一步提高变频调速电机的性能,对变频调速异步电动机的设计参数也要进行更加细致的考虑。满足高性能要求时的变频电机设计参数的变化与设计目标之间的关系。在设计参数和性能要求之间还必须折衷选择。电磁设计时不能仅限于计算某一个工作状态,电磁参数的选取应使每个频率点的转矩参数满足额定参数要求,最大发热因数满足温升限值,最高磁参数满足材料性能要求,最高频率点满足转矩倍数要求,额定点效率、功率因数满足额定要求。由于谐波磁势是由谐波电流产生的,为减小变频器输出谐波对异步电动机工作的影响,总之是限制谐波电流在一定范围内。

四、绝缘设计

电机运行于逆变电源供电环境,其绝缘系统比正弦电压和电流供电时承受更高的介电强度。与正弦电压相比,变频电机绕组线圈上的电应力有两个不同点:一是电压在线圈上分布不均匀,在电机定子绕组的首端几匝上承担了约80%过电压幅值,绕组首匝处承受的匝间电压超过平均匝间电压10倍以上。这是变频电机通常发生绕组局部绝缘击穿,特别是绕组首匝附近的匝间绝缘击穿的原因。二是电压(形状、极性、电压幅值)在匝间绝缘上的性质有很大的差异,因此产生了过早的老化或破坏。变频电机绝缘损坏是局部放电、介质损耗发热、空间电荷感应、电磁激振和机械振动等多种因素共同作用的结果。变频电机从绝缘方面看应具有以下几个特点:(1)良好的耐冲击电压性能;(2)良好的耐局部放电性能;(3)良好的耐热、耐老化性能。

五、结构设计

在结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的影响,一般应注意以下问题:

1.普通电机采用变频器供电时,会使由电磁、机械、通风等因素所引起的振动和噪声变得更加复杂。在设计时要充分考虑电动机构件及整体的刚度,尽力提高其固有频率,以避开与各次力波产生共振现象。

2.电机冷却方式:变频电机一般采用强迫通风冷却,即主电机散热风扇采用独立的电机驱动,使其在低速时保持足够的散热风量。

3.对恒功率变频电机,当转速超过3000r/min时,应采用耐高温的特殊脂,以补偿轴承的温度升高。

4.变频电机承受较大的冲击和脉振,电机在组装后轴承要留有一定轴向窜动量和径向间隙,即选用较大游隙的轴承。

5.对于最大转速较高的变频电机,可在端环外侧增加非磁性护环,以增加强度和刚度。

6.为配合变频调速系统进行转速闭环控制和提高控制精度,在电机内部应考虑装设非接触式转速检测器,一般选用增量型光电编码器。

7.调速系统对传动装置加速度有较高要求时,电机的转动惯量应较小,应设计成长径比较大的结构。

六、结论

与普通异步电动机不同,变频调速异步电动机采用变频器供电,其运行性能与电机本体和调速系统的设计都密切相关。这一方面使变频调速电机的设计要同时兼顾电机本体和调速系统;另一方面也使得变频调速异步电动机的设计变得灵活,但同时也增加了高性能变频调速系统设计的复杂程度。只有结合变频器和一定的控制策略,从整体上进行电机的设计和优化,才能获得最理想的运行性能。

参考文献:

[1]ANDRZEJM.TRZYNADLOWSKI著,李鹤轩,李扬译.异步电动机的控制.北京:机械工业出版社,2003.

[2]陈伯时,陈敏逊.交流调速系统(第2版).北京:机械工业出版社,2005.

电动机论文范文第6篇

热继电器利用负载电流流过经校准的电阻元件,使双金属热元件加热后产生弯曲,从而使继电器的触点在电动机绕组烧坏以前动作。其动作特性与电动机绕组的允许过载特性接近。热继电器虽则动作时间准确性一般,但对电动机可以实现有效的过载保护。随着结构设计的不断完善和改进,除有温度补偿外,它还具有断相保护及负载不平衡保护功能等。例如从ABB公司引进的T系列双金属片式热过载继电器;从西门子引进的3UA5、3UA6系列双金属片式热过载继电器;JR20型、JR36型热过载继电器,其中Jn36型为二次开发产品,可取代淘汰产品JRl6型。

带有热-磁脱扣的电动机保护用断路器热式作过载保护用,结构及动作原理同热继电器,其双金属热元件弯曲后有的直接顶脱扣装置,有的使触点接通,最后导致断路器断开。电磁铁的整定值较高,仅在短路时动作。其结构简单、体积小、价格低、动作特性符合现行标准、保护可靠,故日前仍被大量采用。特别是小容量断路器尤为显著。例如从ABB公司引进的M611型电动机保护用断路器,国产DWl5低压万能断路器(200-630A)、S系列塑壳断路器(100、200、400入)。

电子式过电流继电器通过内部各相电流互感器检测故障电流信号,经电子电路处理后执行相应的动作。电子电路变化灵活,动作功能多样,能广泛满足各种类型的电动机的保护。其特点是:

①多种保护功能。主要有三种:过载保护,过载保护十断相保护,过载保护十断相保护+反相保护。

②动作时间可选择(符合GBl4048.4-93标准)。

标准型(10级):7.2In(In为电动机额定电流),4-1Os动作,用于标准电动机过载保护,速动型(10A级):7.2In时,2-1Os动作,用于潜水电动机或压缩电动机过载保护。慢动型(30级):7.2In时,9-30s动作,用于如鼓风机电机等起动时间长的电动机过载保护。

③电流整定范围广。其最大值与最小值之比一般可达3-4倍,甚至更大倍数(热继电器为1.56倍),特别适用于电动机容量经常变动的场合(例如矿井等)。

④有故障显示。由发光二极管显示故障类别,便于检修。

固态继电器它是一种从完成继电器功能的简单电子式装置发展到具有各种功能的微处理器装置。其成本和价格随功能而异,最复杂的继电器实际上只能用于较大型、较昂贵的电动机或重要场合。它监视、测量和保护的主要功能有:最大的起动冲击电流和时间;热记忆;大惯性负载的长时间加速;断相或不平衡相电流;相序;欠电压或过电压;过电流(过载)运行;堵转;失载(机轴断裂,传送带断开或泵空吸造成工作电流下跌);电动机绕组温度和负载的轴承温度;超速或失速。

上述每一种信息均可编程输入微处理器,主要是加上需要的时限,以确保在电动机起动或运转过程中产生损坏之前,将电源切断。还可用发光二极管或数字显示故障类别和原因,也可以对外向计算机输出数据。

软起动器软起动器的主电路采用晶闸管,控制其分断或接通的保护装置一般做成故障检测模块,用来完成对电动机起动前后的异常故障检测,如断相、过热、短路、漏电和不平衡负载等故障,并发出相应的动作指令。其特点是系统结构简单,采用单片机即可完成,适用于工业控制。

2温度检测型保护装置

双金属片温度继电器它直接埋入电动机绕组中。当电动机过载使绕组温度升高至接近极限值时,带有一触头的双金属片受热产生弯曲,使触点断开而切断电路。产品如JW2温度继电器。

热保护器它是装在电动机本体上使用的热动式过载保护继电器。与温度继电器不同的是带2个触头的碗形双金属片作为触桥串在电动机回路,既有流过的过载电流使其发热,又有电动机温度使其升温,达到一定值时,双金属片瞬间反跳动作,触点断开,分断电动机电流。它可作小型三相电动机的温度、过载和断相保护。产品如sPB、DRB型热保护器。

检测线圈测温电动机定子每相绕组中埋入1-2个检测线圈,由自动平衡式温度计来监视绕组温度。

热敏电阻温度继电器它直接埋入电动机绕组中,一旦超过规定温度,其电阻值急剧增大10-1000倍。使用时,配以电子电路检测,然后使继电器动作。产品如JW9系列船用电子温度继电器。

保护装置与三相交流异步异步电动机的协调配合

为了确保异步电动机的正常运行及对其进行有效的保护,必须考虑异步电动机与保护装置之间的协调配合。特别是大容量电网中使用小容量异步电动机时,保护的协调配合更为突出。

a.过载保护装置与电动机的协调配合

过载保护装置的动作时间应比电动机起动时间略长一点。由附图可见,电动机过载保护装置的特性只有躲开电动机起动电流的特性,才能确保其正常运转;但其动作时间又不能太长,其特性只能在电动机热特性之下才能起到过载保护作用。

过载保护装置瞬时动作电流应比电动机起动冲击电流略大一点。如有的保护装置带过载瞬时动作功能,则其动作电流应比起动电流的峰值大一些,才能使电动机正常起动。

过载保护装置的动作时间应比导线热特性小一点,才能起到供电线路后备保护的功能。

b.过载保护装置与短路保护装置的协调配合一般过载保护装置不具有分断短路电流的能力。一旦在运行中发生短路,需要由串联在主电路中的短路保护装置(如断路器或熔断器等)来切断电路。若故障电流较小,属于过载范围,则仍应由过载保护装置切断电路。故两者的动作之间应有选择性。短路保护装置特性是以熔断器作代表说明的,与过载保护特性曲线的交点电流为Ij,若考虑熔断器特性的分散性,则交点电流有Is及IB两个,此时就要求Is及以下的过电流应由过载保护装置来切断电路,Ib及以上直到允许的极限短路电流则由短路保护装置来切断电路,以满足选择性要求。显然,在Is-IB范围内就很难确保有选择性.因此要求该范围应尽量小。

结语

电动机论文范文第7篇

我国煤炭机械电子设备软启动技术,近年来得到了广泛应用,根据软启动的工作原理可以将其技术形式分成几个常见种类:一是机械电子设备的软启动,主要是根据设备本身的工作规律来保证;二是机电结构的软启动,就是将机械和电机两种条件相结合的软启动;电机电子的软启动,这种软启动能够在一定程度上改变电机或电源特点,以此实现整体软启动。

(一)采取液力耦合器采用液力耦合器运用软启动技术,但是若输入或输出的转速值无法满足达到相关标准,那么该液力耦合器与软启动技术不能同步运行,这样就会造成功率损失,增加发热量,时间长了还会造成资源浪费。如果运用调速型液力耦合器,就会造成电机启动电流超过额定电流的5-8倍,所以要对电机的启动次数严格控制。由于电机自身结构的限制,只能在小范围内进行调速,另外系统自身较为复杂,体积较大,尤其是直径较大的转动部分,需要利用很大面积进行转动,所以一些空间狭小的位置,无法得到很好的运用。

(二)大功率变频调速现阶段,变频器得到了较好发展,功能不断优化,性能也有所改进,不断缩小占地空间,所以这种特性在煤矿企业中得到了普遍应用。数字化和信息化的不断发展与成熟,使大功率变频调速器也朝着这个方向发展。

(三)利用液体黏性制动器液体黏性制动气作为一种新兴的转动技术,出现于上世纪70年代,利用主动摩擦装置和从动摩擦装置,形成的里能够促进转动,然后能够同步主动轴和从动轴,并保护转动系统,避免过载现象发生。与液力耦合器相比,该装置体积更小、效率更高,但也存在一些缺点:一是,这种装置要有效控制自身体积,严格限制两个摩擦片之间的距离,使黏性转动次数受到限制。另外,启动转动系统也会被电动机转动影响;二是,开启液体黏性软启动设备,通过摩擦力,两个摩擦片能够持续转动,转动效率受阻,还会增加发热量。在工作运行中,可以持续供应摩擦片的能量,减少摩擦片之间的阻力,确定两个摩擦片的相对摩擦力始终存在,但是这种方法容易出现能源损耗,增加企业的生产成本;三是,需要采用多点驱动应用煤矿机械电子设备,并在电动机运行中,保证均衡的输出功率。

二、软启动转动技术的发展趋势

近几年,在分析功率大的软启动技术过程中,得出一种全新的机电自动化转动设备,从采用技术来看,这种设备与国内外现有软启动传动装置有明显区别,这种设备在一定时间内被称为双向电机差速软启动设备,这种装置能够对软启动技术中的很多问题进行处理,确保功率大的机械电子设备能够实现软启动和停止,速度能够大范围调整,并进行自我超载维护,平衡驱动功率。通过这种软启动技术,功率大的电动设备在理论上电流为零,是一种真正的空载启动,能够对节省电能消耗,周围电气和其他设备的使用时间得到相应延长,一些开关和变压器的选王晓东通化矿业(集团)有限责任公司134300择标准有所降低,还能将用户的初期投资节省一部分。软启动传动系统的重要构成有功率较大的主电机和功率较小的副电动机。从结构上分析,减速设备的输入轴和主要电动机的输出轴能够用联轴器产生联系,特定结构的太阳轮通过输入一段进行连接,行星轮和内齿轮圈是太阳轮的主要驱动设备,可以用来输出动力。软启动技术的特征是在内部圈轮差动基础上固定蜗轮,运用机械运转模式,连接蜗杆和副电动机,运行软启动技术设备后,通过小型变型设备和数字电机控制设备,这些没有极点的速度调控器能够辅助电动机运行,令电动机能够经过主电动机转动,并确保其空载转动,连接主电动机电源。所以电动机与预期转速一致,连上电源之后,电动机的启动电流不大。工作人员应首先明确输出轴的软启动技术速度,然后将辅助电动机的速度和内圈齿轮速度降低,保证主电动机的动力能够想输出轴相接的机械负载上逐渐转移,以此实现机械电子设备的软启动技术。与此同时,采用主电动机和辅助电动机的速度相结合,保证满足机械电子设备的软停车应用条件,运用多点驱动模式,比较设备中各主电动机输出的功率大小,对相应的副电动机的运行速度进行严格控制,确保多台电动设备能够匀速运转,并且安全可靠运行,然后有效解决电动机特性不相符的转动矛盾。这种软启动装置还有以下优势:传动效率高、发热量小、维护成本低等。

三、结束语

电动机论文范文第8篇

论文摘要:在现代化生产程度很高的今天,企业的生产,产品的加工制造以及人们的日常生活都离不开电动机的使用,在电动机的使用过程当中有很多注意事项以及要求,否则将会发生机器的损坏,这对企业的运转,人民生活等都会带来诸多不便。对电动机常见的故障,主要分为电气和机械两种,每一种故障都给电动机的安全运行带来极大威胁。因此,对电动机的故障分析维护与检修更显得至关重要。

电动机具有结构简单,运行可靠,使用方便,价格低廉等特点。为保证时机的正常工作对运行的电动机要按电动机完好质量标准的要求进行检查,运行中的电动机与被拖动设备的轴心要对正,运行中无明显的振动,一定要保持通风良好、风翅等要完整无缺。要时刻观察和测量电动机电网电压和正常工作电流,电压变化不应超过额定电压的±5%,电动机的额定负荷电流不能经常超过额定电流,以防时机过热,同时检查电机起动保护装置的动作是否灵活可靠。检查电动机各部分温升是否正常,还要经常检查轴承温度,滑动轴承不得超过度,滚动轴承不得超过70度,滚动轴承运转中的声音要清晰、无杂音。对于电动机的运转环境要做到防砸、防淋、防潮。对于环境不良,经常挪动、频繁起动、过载运行等要加强日常维护和保养,及时发现和消除隐患。

一、电动机电气常见故障的分析和处理

(一)时机接通后,电动机不能起动,但有嗡嗡声

可能原因:(1)电源没有全部接通成单相起动;(2)电动机过载;(3)被拖动机械卡住;(4)绕线式电动机转子回路开路成断线;(5)定子内部首端位置接错,或有断线、短路。

处理方法:(1)检查电源线,电动机引出线,熔断器,开关的各对触点,找出断路位置,予以排除;(2)卸载后空载或半载起动;(3)检查被拖动机械,排除故障;(4)检查电刷,滑环和起动电阻各个接触器的接合情况;(5)重新判定三相的首尾端,并检查三相绕组是否有灿线和短路。

(二)电动机起动困难,加额定负载后,转速较低。

可能原因:(1)电源电压较低;(2)原为角接误接成星接;(3)鼠笼型转子的笼条端脱焊,松动或断裂。

处理方法:(1)提高电压;(2)检查铭牌接线方法,改正定子绕组接线方式;(3)进行检查后并对症处理。

(三)电动机起动后发热超过温升标准或冒烟

可能原因:(1)电源电压过低,电动机在额定负载下造成温升过高;(2)电动机通风不良或环境湿度过高;(3)电动机过载或单相运行;(4)电动机起动频繁或正反转次数过多;(5)定子和转子相擦。

处理方法:(1)测量空载和负载电压;(2)检查电动机风扇及清理通风道,加强通风降低环温;(3)用钳型电流表检查各相电流后,对症处理;(4)减少电动机正反转次数,或更换适应于频繁起动及正反转的电动机;(5)检查后姨症处理。

(四)绝缘电阻低

可能原因:(1)绕组受潮或淋水滴入电动机内部;(2)绕组上有粉尘,油圬;(3)定子绕组绝缘老化。

处理方法:(1)将定子,转子绕组加热烘干处理;(2)用汽油擦洗绕组端部烘干;(3)检查并恢复引出线绝缘或更换接线盒绝缘线板;(4)一般情况下需要更换全部绕组。

(五)电动机外壳带电:

可能原因:(1)电动机引出线的绝缘或接线盒绝缘线板;(2)绕组端部碰机壳;(3)电动机外壳没有可靠接地

处理方法:(1)恢复电动机引出线的绝缘或更换接线盒绝缘板;(2)如卸下端盖后接地现象即消失,可在绕组端部加绝缘后再装端盖;(3)按接地要求将电动机外壳进行可靠接地。

(六)电动机运行时声音不正常

可能原因:(1)定子绕组连接错误,局部短路或接地,造成三相电流不平衡而引起噪音;(2)轴承内部有异物或严重缺油。

处理方法:(1)分别检查,对症下药;(2)清洗轴承后更换新油为轴承室的1/2-1/3。

(七)电动机振动

可能原因:(1)电动机安装基础不平;(2)电动机转子不平衡;(3)皮带轮或联轴器不平衡;(4)转轴轴头弯曲或皮带轮偏心;(5)电动机风扇不平衡。

处理方法:(1)将电动机底座垫平,时机找水平后固牢;(2)转子校静平衡或动平衡;(3)进行皮带轮或联轴器校平衡;(4)校直转轴,将皮带轮找正后镶套重车;(5)对风扇校静。

二、电动机机械常见故障的分析和处理

(一)定、转子铁芯故障检修

定、转子都是由相互绝缘的硅钢片叠成,是电动机的磁路部分。定、转子铁芯的损坏和变形主要由以下几个方面原因造成。

1)轴承过度磨损或装配不良,造成定、转子相擦,使铁芯表面损伤,进而造成硅钢片间短路,电动机铁损增加,使电动机温升过高,这时应用细锉等工具去除毛刺,消除硅钢片短接,清除干净后涂上绝缘漆,并加热烘干。

(2)拆除旧绕组时用力过大,使倒槽歪斜向外张开。此时应用小嘴钳、木榔头等工具予以修整,使齿槽复位,并在不好复位的有缝隙的硅钢片间加入青壳纸、胶木板等硬质绝缘材料。

(3)因受潮等原因造成铁芯表面锈蚀,此时需用砂纸打磨干净,清理后涂上绝缘漆。

(4)因绕组接地产生高热烧毁铁芯或齿部。可用凿子或刮刀等工具将熔积物剔除干净,涂上绝缘溱烘干。

(5)铁芯与机座间结合松动,可拧紧原有定位螺钉。若定位螺钉失效,可在机座上重钻定位孔并攻丝,旋紧定位螺钉。

(二)轴承故障检修

转轴通过轴承支撑转动,是负载最重的部分,又是容易磨损的部件。

(1)故障检查

运行中检查:滚动轴承缺油时,会听到骨碌骨碌的声音,若听到不连续的梗梗声,可能是轴承钢圈破裂。轴承内混有沙土等杂物或轴承零件有轻度磨损时,会产生轻微的杂音。

拆卸后检查:先察看轴承滚动体、内外钢圈是否有破损、锈蚀、疤痕等,然后用手捏住轴承内圈,并使轴承摆平,另一只手用力推外钢圈,如果轴承良好,外钢圈应转动平稳,转动中无振动和明显的卡滞现象,停转后外钢圈没有倒退现象,否则说明轴承已不能再用了。左手卡住外圈,右手捏住内钢圈,用力向各个方向推动,如果推动时感到很松,就是磨损严重。

(2)故障修理

轴承外表面上的锈斑可用00号砂纸擦除,然后放入汽油中清洗;或轴承有裂纹、内外圈碎裂或轴承过度磨损时,应更换新轴承。更换新轴承时,要选用与原来型号相同的轴承。

(三)转轴故障检修

(1)轴弯曲

若弯曲不大,可通过磨光轴径、滑环的方法进行修复;若弯曲超过0.2mm,可将轴放于压力机下,在拍弯曲处加压矫正,矫正后的轴表面用车床切削磨光;如弯曲过大则需另换新轴。

(2)轴颈磨损

轴颈磨损不大时,可在轴颈上镀一层铬,再磨削至需要尺寸;磨损较多时,可在轴颈上进行堆焊,再到车床上切削磨光;如果轴颈磨损过大时,也在轴颈上车削2-3mm,再车一套筒趁热套在轴颈上,然后车削到所需尺寸。

(3)轴裂纹或断裂

轴的横向裂纹深度不超过轴直径的10%-15%,纵向裂纹不超过轴长的10%时,可用堆焊法补救,然后再精车至所需尺寸。若轴的裂纹较严重,就需要更换新轴。

(四)机壳和端盖的检修

电动机论文范文第9篇

最近几年,很多国家使用的煤矿采掘机械在往电牵引的方向发展的同时,也取得了很好的成果。现在有部分采掘机械采用了多电机驱动系统,就电机而言,是电用横向的方式安置,这样就会使得装机的容量变得越来越大,目前有些国家的采掘机械总的装机功率已经达到了1000千瓦左右,甚至有的采煤机的总装机功率达到了1500千瓦。一些电机的牵引功率也有120千瓦,这时它的牵引速度在30米每分以内。除此之外,有一些电机是使用交流电牵引的,这些电机的效率很高,同时也是十分的可靠,并且还有非常强大的抗污能力,对于机械维护方面也是比较方便的,因此很多的煤矿企业都比较看好。对于自动化控制技术而言,计算机应用技术可以说是它的的核心技术,另外还要配合一些传感器技术以及故障诊断技术。主要有3个特点,首先就是效率高,其次就是精确度高,还有一个就是可靠性强。现在煤矿使用的工作面输送机非常注重重承载跟多样化,这样一来它们也是不断的再改进,目前部分国家有在使用双速电机,有的也开始利用计算机技术,更好的监控煤矿工程的具体情况。跟其他一些先进的国家对比我们可以知道,我们国家的采煤机自动化技术是比较落后的,在我们国家,非进口的电牵引采煤机相当的少,而且其中交流电牵引的电控部分很大一部分要依靠进口,现在在我国,一部分的煤矿生产机构正试图研制出国产的电牵引采煤机,也有一些研究成果已经投入到了煤矿的生产工作当中。由于工作面输送机的运作能力有限,造成了煤炭产量底下,液压支架的电液控制系统也还不成熟,提供故障诊断的微机控制技术也才刚刚起步,所以不管从哪方面来看,我国煤矿机械设备电气自动化技术的应用方面都表现出落后的局势。

2.煤矿运输提升机械电气自动化

自从20世纪80年代以来,我们国家煤矿企业的开采量一直都是保持比较好的势头。至于运输井下厚煤方面,那些大型的煤矿企业用的方法都是胶带运输。在胶带运输的过程中,对于工况监控系统的研制总的来说取得的成果是可喜可贺的,并且对于它的应用已经进入了一个快速的发展阶段。现今,不管是计算机技术还是PLC技术,在实际生活中得到越来越多的应用,以前那些比较单一的保护现在也变得系统化、综合化。这里要提到的就是DCS结构,它实现了地面监控的目标。电气自动化技术目前来看,它发展得很不错,变频器的技术变得越来越成熟,这样也就使得调速系统发展得越来越好。一部分比较先进的国家,在采煤方面有很大的突破,它们对于提升机电控方面的研究比较深入,现在他们开始把PLC作为中心控制器,这样一来就实现了提升工艺控制,同路行程控制跟安全回路监控的全微机监控,从而改善了提升机安全运行方面的问题。现今社会,高科技文化发展的越来越好,对于煤矿机械设备而言,信息化设计它占据着重要的地位,总的来说,它是一个非常必要的环节。现在,我们国家的煤矿事业并不发达,比那些先进国家的相差很多,所以,我们国家一定要制定切实可行的政策,并且还要给予足够的技术扶持,这样一来才可以发展壮大我们国家的信息化建设事业。目前,我们国家的煤矿工业发展非常迅速,国家对煤矿开采的安全性以及煤矿机械设备的信息化建设提出了更高的要求,除此之外,煤矿企业本身为了得到更好的发展,不得不进行信息技术改革,这样一来就使得信息化设计在煤矿设备中占据的地位越来越高。

3.煤矿安全,监控控制系统

我们国家的很多煤矿企业,已经开始使用安全监控系统,这些监测装置非常的多,涵盖遥测仪、断电仪、红外线自动喷雾等装置,这些对于我们国家的煤矿生产的安全要求来说是完全足够的,但是遗憾的是,我们国家的相配的传感器种类非常的少,同时使用的寿命不是很长,除此之外,它的工作稳定性相对而言也比较差,这样一来就使得维护的工作量变得很大,以上的问题使得监控系统的工作缺乏安全性以及可靠性,在实际操作中没有得到充分的利用。对煤矿机械设备进行信息化设计对于提高工作效率是非常有帮助的,主要就是信息化设计可以改变落后的生产方式,同时改变了煤矿的作业模式。因此,研究信息化设计在煤矿机械设备中的应用具有深远的意义。

4.结论

电动机论文范文第10篇

1引发故障问题的总体原因分析

电动机的正常运行需要良好的外部环境条件作为客观条件,而且在使用过程中,人员对于电动机的定期检测和养护以及恰当的操作方式是保持电动机运行的主观条件。一旦电动机出现故障问题,维修人员的首要工作就是要找出故障原因,进而针对原因制定科学合理的维修方案,以及时有效地排除和解决故障问题。

1.1启动故障原因分析。电动机正常启动是保证后续机体正常运转的前提条件,而在电动机的常见故障当中,启动故障是发生几率比较高的问题之一,启动故障的原因可以从通电电流大小,系统负荷量等方面着手分析。常见的启动故障现象主要有以下几类:一是电动机在接通电源后无法正常启动,造成该种问题的原因可能是电源相数配置错误,设备内部线路有断开或短路现象,设备的负载量过大,触电接触不良等,维修人员应对上述原因进行注意核查和排除,以找出正确的故障原因。二是电动机可以启动但通常需要经过较长时间才能够启动完成,引发这种故障问题的原因可能是由于电压过低,接线方式错误或转子接触不良。三是电动机在启动后出现机体过热现象,这可能是由于电动机通风系统不良或环境因素引起的,也可能是机体启动次数过于频繁或部件之间反复摩擦造成的。维修人员在处理电动机启动故障问题时,最好事先向使用人员了解电动机的使用和日常养护维修情况,并结合电动机运行的外部因素和内部因素进行综合分析和判断,以便更好的进行故障维修。

1.2运行故障原因分析。电动机在运行时也会经常发生故障问题。首先,机体在运行过程中有时会出现异常的噪音和声响,引起这种问题的原因可能是机体内部线路有短路现象,通电电流不平衡或者部件之间摩擦过于严重造成的,维修时要对可能的原因进行排除,根据不同故障原因采取不同处理方法。其次,电动机在运行中会出现运行不稳的情况,其产生于原因主要包括电动机机置不平衡;皮带,轴承或转子等部件运转位置发生偏离。另外,发电机运转时还会发生机体带电现象,出现该种问题的原因主要是电动机本身绝缘性能不良或接地方式错误造成的,对于这类问题,维修人员要采取更换绝缘部件或改进接地技术方法来排除故障问题。

2关键的电器维修操作方法

2.1电器维修时对主要参数进行记录和整理。第一,要对电动机出现故障的原因进行参数的改正。在电动机的所在环境不适合进行更换时,只能在不变电动机的前提下对线圈匝数和线径进行适当增加,使其符合负载的要求。第二,根据电动机的运行方式,在对电动机进行维修时可以根据实际情况对绕组或者线径进行变动。

2.2电动机维修操作的方法和技巧。对匝数和线径进行增加,在增加之前要对可增加的具体匝数进行测量和计算,从而尽可能的增加。单相电动机一般采用的是启动绕组,主要为电容运转型接线的方式,在进行维修时,可以将电容的运行方式改变为电容起动电容运行型式。

3具体部件的故障原因分析和故障排除方法

3.1定、转子铁芯故障检修。①轴承过度磨损或装配不良,造成定、转子相擦,使铁芯表面损伤,进而造成硅钢片间短路,电动机铁损增加,使电动机温升过高,这时应用细锉等工具去除毛刺,消除硅钢片短接,清除干净后涂上绝缘漆,并加热烘干。②拆除旧绕组时用力过大,使倒槽歪斜向外张开。此时应用小嘴钳、木榔头等工具予以修整,使齿槽复位。③因受潮等原因造成铁芯表面锈蚀,此时需用砂纸打磨干净,清理后涂上绝缘漆。④因绕组接地产生高热烧毁铁芯或齿部。可用凿子或刮刀等工具将熔积物剔除干净,涂上绝缘溱烘干。⑤铁芯与机座间结合松动,可拧紧原有定位螺钉。

3.2轴承故障检修:转轴通过轴承支撑转动,是负载最重的部分,又是容易磨损的部件。①故障检查。运行中检查:滚动轴承缺油时,会听到骨碌骨碌的声音,若听到不连续的梗梗声,可能是轴承钢圈破裂。轴承内混有沙土等杂物或轴承零件有轻度磨损时,会产生轻微的杂音。②故障修理。轴承外表面上的锈斑可用砂纸擦除,然后放人汽油中清洗;轴承有裂纹、内外圈碎裂或轴承过度磨损时,应更换与原来型号相同的新轴承。

3.3转轴故障检修。①轴弯曲:若弯曲不大,可通过磨光轴径、滑环的方法进行修复;若弯曲超过0.2mm,可将轴放于压力机下,在拍弯曲处加压矫正,矫正后的轴表面用车床切削磨光;如弯曲过大则需另换新轴。②轴颈磨损:轴颈磨损不大时,可在轴颈上镀一层铬,再磨削至需要尺寸;磨损较多时,可在轴颈上进行堆焊,再到车床上切削磨光;如果轴颈磨损过大时,也在轴颈上车削2~3mm,再车一套筒趁热套在轴颈上,然后车削到所需尺寸。③轴裂纹或断裂:轴的横向裂纹深度不超过轴直径的10-15,纵向裂纹不超过轴长的10时,可用堆焊法补救,然后再精车至所需尺寸。

4要重视维修后的性能检测和试运行工作电动机在维修完成后,需要进行多项试验,例如绝缘、电压、额定电流等等,这些试验也许会繁琐,耗费时间,但是确实必不可少的,试验是对电动机维修后的一个测试和检验,有利于发现一些细小的问题,以便及时处理,有益于日后的电动机正常使用。

结束语

电动机论文范文第11篇

一、引言

建滔集团共有生产用电机10000余台,遍及集团公司生产装置的各个角落,在生产过程中发挥着极其重要的作用。但由于大部分电机使用年限较长,且不少电机长年累月运行在较恶劣的环境中,电机烧毁的事故常有发生,而且呈上升趋势,严重影响着生产的安全、可靠、长周期运行。现针对电机烧毁原因及相应对策做一简要分析和介绍,希望能对从事电气工作和安全管理工作的人员有所帮助。

二、电机绕组局部烧毁的原因及对策

1.由于电机本身密封不良,加之环境跑冒滴漏,使电机内部进水或进入其它带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。

相应对策:①尽量消除工艺和机械设备的跑冒滴漏现象;②检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应做保护罩;③对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。

2.由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:①轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。②轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。④由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。⑥由于不同型号油脂混用造成轴承损坏。⑦轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未进行中修。

相应对策:①卸装轴承时,一般要对轴承加热至80℃~100℃,如采用轴承加热器,变压器油煮等,只有这样,才能保证轴承的装配质量。②安装轴承前必须对其进行认真仔细的清洗,轴承腔内不能留有任何杂质,填加油脂时必须保证洁净。③尽量避免不必要的转轴机加工及电机端盖嵌套工作。④组装电机时一定要保证定、转子铁心对中,不得错位。⑤电机外壳洁净见本色,通风必须有保证,冷却装置不能有积垢,风叶要保持完好。⑥禁止多种油脂混用。⑦安装轴承前先要对轴承进行全面仔细的完好性检查。⑧对于长期不用的电机,使用前必须进行必要的解体检查,更新轴承油脂。

3.由于绕组端部较长或局部受到损伤与端盖或其它附件相磨擦,导致绕组局部烧坏。

相应对策:电机在更新绕组时,必须按原数据嵌线。检修电机时任何刚性物体不准碰及绕组,电机转子抽芯时必须将转子抬起,杜绝定、转子铁芯相互磨擦。动用明火时必须将绕组与明火隔离并保证有一定距离。电机回装前要对绕组的完好性进行认真仔细的检查确诊。

4.由于长时间过载或过热运行,绕组绝缘老化加速,绝缘最薄弱点碳化引起匝间短路、相间短路或对地短路等现象使绕组局部烧毁。

相应对策:①尽量避免电动机过载运行。②保证电动机洁净并通风散热良好。③避免电动机频繁启动,必要时需对电机转子做动平衡试验。

5.电机绕组绝缘受机械振动(如启动时大电流冲击,所拖动设备振动,电机转子不平衡等)作用,使绕组出现匝间松驰、绝缘裂纹等不良现象,破坏效应不断积累,热胀冷缩使绕组受到磨擦,从而加速了绝缘老化,最终导致最先碳化的绝缘破坏直至烧毁绕组。

相应对策:①尽可能避免频繁启动,特别是高压电机。②保证被拖动设备和电机的振动值在规定范围内。

三、三相异步电动机一相或两相绕组烧毁(或过热)的原因及对策

如果出现电动机一相或两相绕组烧坏(或过热),一般都是因为缺相运行所致。在这里不作深刻的理论分析,仅作简要说明。

当电机不论何种原因缺相后,电动机虽然尚能继续运行,但转速下降,滑差变大,其中B、C两相变为串联关系后与A相并联,在负荷不变的情况下,A相电流过大,长时间运行,该相绕组必然过热而烧毁。

为三相异步电动机绕组为Y接法的情况:电源缺相后,电动机尚可继续运行,但同样转速明显下降,转差变大,磁场切割导体的速率加大,这时B相绕组被开路,A、C两相绕组变为串联关系且通过电流过大,长时间运行,将导致两相绕组同时烧坏。

这里需要特别指出,如果停止的电动机缺一相电源合闸时,一般只会发生嗡嗡声而不能启动,这是因为电动机通入对称的三相交流电会在定子铁心中产生圆形旋转磁场,但当缺一相电源后,定子铁心中产生的是单相脉动磁场,它不能使电动机产生启动转矩。因此,电源缺相时电动机不能启动。但在运行中,电动机气隙中产生的是三相谐波成分较高的椭圆形旋转磁场,所以,正在运行中的电动机缺相后仍能运转,只是磁场发生畸变,有害电流成分急剧增大,最终导致绕组烧坏。

相应对策:无论电动机是在静态还是动态,缺相运行带来的直接危害就是电机一相或两相绕组过热甚至烧坏。与此同时,由于动力电缆的过流运行加速了绝缘老化。特别是在静态时,缺相会在电机绕组中产生几倍于额定电流的堵转电流。其绕组烧坏的速度比运行中突然缺相更快更严重。所以在我们对电机进行日常维护和检修的同时,必须对电机相应的MCC功能单元进行全面的检修和试验。尤其是要认真检查负荷开关、动力线路、静动触点的可靠性。杜绝缺相运行。

四、常见问题汇总,详见附表。

五、为规范电机检修及保证检修质量,制定如下电机工艺卡

低压交流异步电动机检修工艺卡

四、结论

建滔集团公司从1987年试生产至2002年3月15年间,累计烧毁电机达1300余台次,平均每年达80余台次,仅修理费用支出达200余万元。其中77%属于维护不良(如电机进水、轴承缺油、通风不畅等)、检修不当(如轴承拆装不当、缺陷消除不彻底、附件不全等)、机加工精度不符合要求(如对转轴堆焊后加工精度不够、端盖嵌套过盈量大等)、运行环境恶劣(如现场跑冒滴漏严重、水冲电机等)等原因所致。希望以上分析能够对从事电工工作的人员有所帮助和借鉴。

附表:三相异步电动机常见故障及处理方法

序号故障现象故障原因[td=1,1,252]处理方法1通电后电动机不能转动,但无异响,也无异味和冒烟。

1.电源未通(至少两相未通);

2.熔丝熔断(至少两相熔断);

3.控制设备接线错误;

4.电机已经损坏。

1.检查电源回路开关,熔丝、接线盒处是否有断点,修复;

2.检查熔丝型号、熔断原因,更换熔丝;

3.检查电机,修复。

2通电后电动机不转,然后熔丝烧断。

1.缺一相电源,或定子线圈一相反接;

2.定子绕组相间短路;

3.定子绕组接地;

4.定子绕组接线错误;

5.熔丝截面过小;

6.电源线短路或接地。

1.检查刀闸是否有一相未合好,或电源回路有一相断线;消除反接故障;

2.查处短路点,予以修复;

3.消除接地;

4.查出误接,予以更正;

5.更换熔丝;

6.消除接地点。3通电后电动机不转,有嗡嗡声。

1.定子、转子绕组有断路(一相断线)或电源一相失电;

2.绕组引出线始末端接错或绕组内部接反;

3.电源回路接点松动,接触电阻大;

4.电动机负载过大或转子卡住;

5.电源电压过低;

6.小型电动机装配太紧或轴承内油脂过硬,轴承卡住。

1.查明断点,予以修复;

2.检查绕组极性;判断绕组首末端是否正确;

3.紧固松动的接线螺栓,用万用表判断各接头是否假接,予以修复;

4.减载或查出并消除机械故障;

5.检查是否把规定的接法误接为Y接法;是否由于电源导线过细使压降过大,予以纠正;

6.重新装配使之灵活;更换合格油脂,修复轴承。

4电动机起动困难,带额定负载时,电动机转速低于额定转速叫多。

1.电源电压过低;

2.接法误接为Y接法;

3.笼形转子开焊或断裂;

4.定子、转子局部线圈错接、接反;

5.电机过载。

1.测量电源电压,设法改善;

2.纠正接法;

3.检查开焊和断点并修复;

4.查出误接处,予以改正;

5.减载。

5电动机空载电流不平衡,三相相差大。

1.绕组首尾端接错;

2.电源电压不平衡;

3.绕组有匝间短路、线圈反接等故障。

1、检查并纠正;

2、测量电源电压,设法消除不平衡;

3、消除绕组故障。

6电动机空载电流平衡,但数值大。

1.电源电压过高;

2.Y接电动机误接为接;

3.气隙过大或不均匀。

1.检查电源,设法恢复额定电压;

2.改接为Y接;

3.更换新转子或调整气隙。

7电动机运行时响声不正常,有异响。

1.转子与定子绝缘低或槽楔相擦;

2.轴承磨损或油内有砂粒等异物;

3.定子、转子铁心松动;

4.轴承缺油;

5.风道填塞或风扇擦风罩;

6.定子、转子铁心相擦;

7.电源电压过高或不平衡;

8.定子绕组错接或短路。

1.修剪绝缘,削低槽楔;

2.更换轴承或清洗轴承;

3.检查定子、转子铁心;

4.加油;

5.清理风道,重新安装风罩;

6.消除擦痕,必要时车小转子;

7.检查并调整电源电压;

8.消除定子绕组故障。

8运行中电动机振动叫大。

1.由于磨损,轴承间隙过大;

2.气隙不均匀;

3.转子不平衡;

4.转轴弯曲;

5.铁心变形或松动;

6.联轴器(皮带轮)中心未校正;

7.风扇不平衡;

8.机壳或基础强度不够;

9.电动机地脚螺丝松动;

10.笼形转子开焊、断路、绕组转子断路;

11.定子绕组故障。

1.检查轴承,必要时更换;

2.调整气隙,使之均匀;

3.校正转子动平衡;

4.校直转轴;

5.校正重叠铁心;

6.重新校正,使之符合规定;

7.检修风扇,校正平衡,纠正其几何形状;

8.进行加固;

9.紧固地脚螺栓;

10.修复转子绕组;

11.修复定子绕组。

9轴承过热。

1.脂过多或过少;

2.油质不好含有杂质;

3.轴承与轴颈或端盖配合不当;

4.轴承盖内孔偏心,与轴相擦;

5.电动机与负载间联轴器未校正,或皮带过紧;

6.轴承间隙过大或过小;

7.电动机轴弯曲。

1.按规定加油脂(容积的三分之一至三分之二);

2.更换为清洁的油脂;

3.过松可用粘结剂修复;

4.修理轴承盖,消除擦点;

5.重新装配;

6.重新校正,调整皮带张力;

7.更换新轴承;

8.矫正电机轴或更换转子。

10电动机过热甚至冒烟。

1.电源电压过高,使铁心发热大大增加;

2.电源电压过低,电动机又带额定负载运行,电流过大使绕组发热;

3.定子、转子铁心相擦,电动机过载或频繁起动;

4.笼形转子断条;

5.电动机缺相,两相运行;

6.环境温度高,电动机表面污垢多,或通风道堵塞;

7.电动机风扇故障,通风不良;

8.定子绕组故障(相间、匝间短路;定子绕组内部连接错误)。

1.降低电源电压(如调整供电变压器分接头),若是电机Y、接法错误引起,则应改正接法。

2.提高电源电压或换相供电导线;

3.消除擦点(调整气隙或锉、车转子),减载,按规定次数控制起动;

4.检查并消除转子绕组故障;

5.恢复三相运行;

6.清洗电动机,改善环境温度,采用降温措施;

电动机论文范文第12篇

关键词:电动机电机启动故障

1电机绕组局部烧毁的原因及对策

1.1由于电机本身密封不良,加之环境跑冒滴漏,使电机内部进水或进入其它带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。

相应对策:①尽量消除工艺和机械设备的跑冒滴漏现象;②检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应做保护罩;③对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。

1.2由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:①轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。②轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。④由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。⑥由于不同型号油脂混用造成轴承损坏。⑦轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未进行中修。

相应对策:①卸装轴承时,一般要对轴承加热至80℃~100℃,如采用轴承加热器,变压器油煮等,只有这样,才能保证轴承的装配质量。②安装轴承前必须对其进行认真仔细的清洗,轴承腔内不能留有任何杂质,填加油脂时必须保证洁净。③尽量避免不必要的转轴机加工及电机端盖嵌套工作。④组装电机时一定要保证定、转子铁心对中,不得错位。⑤电机外壳洁净见本色,通风必须有保证,冷却装置不能有积垢,风叶要保持完好。⑥禁止多种油脂混用。⑦安装轴承前先要对轴承进行全面仔细的完好性检查。⑧对于长期不用的电机,使用前必须进行必要的解体检查,更新轴承油脂。

1.3由于绕组端部较长或局部受到损伤与端盖或其它附件相磨擦,导致绕组局部烧坏。

相应对策:电机在更新绕组时,必须按原数据嵌线。检修电机时任何刚性物体不准碰及绕组,电机转子抽芯时必须将转子抬起,杜绝定、转子铁芯相互磨擦。动用明火时必须将绕组与明火隔离并保证有一定距离。电机回装前要对绕组的完好性进行认真仔细的检查确诊。

1.4由于长时间过载或过热运行,绕组绝缘老化加速,绝缘最薄弱点碳化引起匝间短路、相间短路或对地短路等现象使绕组局部烧毁。

相应对策:①尽量避免电动机过载运行。②保证电动机洁净并通风散热良好。③避免电动机频繁启动,必要时需对电机转子做动平衡试验。

1.5电机绕组绝缘受机械振动(如启动时大电流冲击,所拖动设备振动,电机转子不平衡等)作用,使绕组出现匝间松驰、绝缘裂纹等不良现象,破坏效应不断积累,热胀冷缩使绕组受到磨擦,从而加速了绝缘老化,最终导致最先碳化的绝缘破坏直至烧毁绕组。

相应对策:①尽可能避免频繁启动,特别是高压电机。②保证被拖动设备和电机的振动值在规定范围内。

2三相异步电动机一相或两相绕组烧毁(或过热)的原因及对策

如果出现电动机一相或两相绕组烧坏(或过热),一般都是因为缺相运行所致。当电机不论何种原因缺相后,电动机虽然尚能继续运行,但转速下降,滑差变大,其中B、C两相变为串联关系后与A相并联,在负荷不变的情况下,A相为三相异步电动机绕组为Y接法的情况:电源缺相后,电动机尚可继续运行,但同样转速明显下降,转差变大,磁场切割导体的速率加大,这时B相绕组被开路,A、C两相绕组变为串联关系且通过电流过大,长时间运行,将导致两相绕组同时烧坏。

特殊情况下,如果停止的电动机缺一相电源合闸时,一般只会发生嗡嗡声而不能启动,这是因为电动机通入对称的三相交流电会在定子铁心中产生圆形旋转磁场,但当缺一相电源后,定子铁心中产生的是单相脉动磁场,它不能使电动机产生启动转矩。因此,电源缺相时电动机不能启动。但在运行中,电动机气隙中产生的是三相谐波成分较高的椭圆形旋转磁场,所以,正在运行中的电动机缺相后仍能运转,只是磁场发生畸变,有害电流成分急剧增大,最终导致绕组烧坏。

电动机论文范文第13篇

1.1能够提高工作质量与生产能力在煤矿企业中实现机电设备自动化管理能够对信息有效处理,并且管理精度与范围较高,可以保障产品按照相关设计要求完成。因为机电自动化管理是不受操作者影响的,所以能够保障工作完成质量以及完成产品的合格率,最终达到提高生产效率的目的。另一个方面,工作人员可以通过调整软件改变机电工作情况,使其能够适应实际发展状况。

1.2安全可靠性高机电自动化有一项明显特征,就是其具有多项预警功能。例如监视、预警、保护等等。众所周知,煤矿企业属于危险系数相当高企业,因此它对生产安全要求十分苛刻,想要保障煤矿企业安全生产,就必须要对煤矿企业中设备合理使用,并做好日常管理维护工作。将自动化设备引进煤矿生产之中,不仅能够提高机电设备生产安全系数,还能够有效降低生产成本,降低人工成本,并将危险系数控制在最小范围内,提高煤矿企业生产安全系数,促使企业安全高效的发展。

2煤矿机电自动化技术发展现状

2.1机电自动化技术概述机电自动化技术是在传统机械技术的基础上,参考、借鉴相关的电子技术以及计算机技术进行发展的一种成果。所以,机电自动化技术是对机械技术、信息技术、接口技术等等软件编程技术以及传感测试技术的一种综合应用,其可靠程度高、能源消耗量低等等方面的特点。将自动化技术引入生产环节中,能够使企业实现自动化管理。煤矿企业是一种劳动密集型企业,将自动化技术应用其中,不仅能够使工作人员从繁重劳动环节中获得解脱,还能够有效保障员工的安全,使煤矿企业实现现代化生产经营模式。

2.2我国煤矿企业中自动化技术应用情况现阶段,我国大部分煤矿企业都实行了自动化管理,并呈现出较好的发展态势,有效地推动了煤矿企业实现现代化管理。国外发达国家中的煤矿企业实现自动化管理领先我国半个世纪,因此,不管是整体生产技术,还是安全管理方面都要领先我国一大步,煤矿企业的生产经营对技术以及安全方面要求特别高,发达国家拥有较先进生产技术,随着科学技术的不断发展,国外煤矿企业逐步将各种高端技术融入进去,使自动化技术逐渐成为综合自动的控制技术,并有效促使煤矿企业的劳动生产率大幅度提高。我国煤矿企业在经营生产方面存在不同的结构层次,一些乡镇煤矿大多使用人工开采的方法经营,中小型煤矿使用一些较为普通的机械生产工具进行,大型煤矿则是用综合开采的方法。相比较前两种煤矿生产经营方式,大型煤矿在开采时候机械设备较为先进。与国外发达国家相比较,我国煤矿在机械设备上虽然采用了自动化技术,但不管在自动化专业技术研发水平还是其他方面,仍旧存在很多不足。

3我国煤矿机电自动化技术的应用

3.1应用于矿井安全监测以及矿井安全生产方面现阶段,我国煤矿企业机电自动化技术是评价自动化技术水平最主要的系统,主要应用于监控矿井的安全。我国自动化检测技术的起步相对较晚,并缺乏相应的科学研究,其设备主要依靠从国外进口,致使我国与其他发达国家之间缺乏相应竞争实力。随着我国经济不断发展,科学技术水平不断上升,我国在引进国外陷阱设备的时候,也要不断加强设备研究,必须要结合我国煤矿企业的发展实际,形成能够达到世界先进水平的煤矿继电自动化监控系统。在我国煤矿安全生产章程引导下,我国大多数煤矿企业都实现了自动化集约管理,使用这种管理模式既能够提高安全性能,又能够取得较好成效。例如,目前较为刘翔的远程操控技术,能做到在无人监管的情况下对矿井尽享监管,使其能够合理的完成相应共,并做好记录管理工作,然后将收集数据总结分析。

3.2煤矿提升机的自动化技术应用在煤矿企业之中,煤矿提升机承担着材料、人员以及设备的升降工作,将地下所开采的煤矿使用提升容器,并通过提升机送至地面。煤矿提升机的主要作用就是保障提升容器在开采过程中能够有效实行往复工作,即便运转速度很快的时候,仍旧能够保持其安全性能,使提升机能够准确运行。因此,自动化设备的作用显得十分明显,在这里自动化设备主要承担提升机的运行控制。现阶段我国煤矿生产中使用的自动化技术,不仅能够对提升机进行有效监控,并且将信息技术应用其中,有效实现了远程监控、信息传输的功能,并且能够对信号变频有效调节。目前相对先进的煤矿提升机已经逐步实现全数字化管理,其控制与调节均采用控制性能较好的控制仪器,然后通过程序变成对系统进行一些调节,以满足生产经营的需要,包括一些实时监控等。对于每一项主控功能来说,应该尽量采用适合的控制器进行控制,比如调节功能、监控功能以及制动功能等等,都需要自己的控制器,并使用相应的线路通信方式实现各个控制器连接。

3.3煤矿采掘自动化技术应用煤矿在生产过程中,其采掘工作是非常艰苦的。采掘工作的危险系数较高,并且工作人员要进入煤矿井下才能够进行采掘,但井下作业环境通常十分恶劣,并且地址条件很难准确掌握,使得煤矿在开采过程中宗师出现瓦斯爆炸、地下水渗漏的事故发生。另一个方面,矿井下面空气含量较低,煤尘之类浓度偏高,这些因素都会严重影响到井下作业人员的安全。在这种艰苦的环境中,煤矿企业的生产如果仅依靠工作人员施工,或者是使用较为传统机械设备进行辅助,就会大大降低采掘的工作效率。煤矿企业是一种高成本运行的企业,这样的工作效率,只会影响企业的经营发展,使企业经济效益下降。煤矿采掘过程中,自动化技术主要应用于电牵引采煤机上面,这种牵引机与一般牵引机相比,其性能更加优秀,在某些特定环境中好能够发电制动。应用自动化控制采掘,不仅能够对垂直升降采掘机进行牵引制动,还能够在没有防滑装置情况下,在倾斜角50°左右煤层环境中作业,在恶劣煤矿井下使用自动化技术,不仅能够有效降低人力物力使用率,还能够有效提升工作效率。

4结语

电动机论文范文第14篇

关键词:电动机软启动器

1前言

滑雪的人都明白这样一个道理:突然、急剧的拉动容易使人摔倒。而在工业应用方面,许多企业每年都要为他们所使用的电动机(用于驱动风扇、压碎机、搅拌器、水泵、传送带等等)的这种突然、急剧启动浪费数百万美元,每天都有数不尽的交流电动机在不必要的处于重荷之下。

交流电动机的这种突然而剧烈的启动主要会造成以下几个方面的损失:

(1)直接在线启动或星-三角启动产生的电压和电流瞬变容易导致电气故障。电压和电流的瞬变现象可能导致当地的电网过荷,从而引起不良的电压变化,并最终影响到同电网中的其它电气设备。

(2)导致从电动机到启动设备及到强应力等这一整个驱动链的机械故障。

(3)运行故障:例如使管路系统产生压力振动,对传送带上的产品造成损坏,以及使电梯乘坐不舒适。

此外,经济效益问题也是很明显的:每一个技术问题,每一次的故障,都会因维修甚至暂停生产而导致经济损失。在工业企业的生产中,这就会导致预算外生产成本的增加。

2软启动器的开发历程

交流电动机的启动问题由来已久,人们一直在试图找出一种能够彻底解决问题的办法,在此过程中,先后主要研究开发了下面几种启动方式。

2.1星-三角启动器

星-三角启动器是一个较早的解决办法。在启动过程中,电网的相位接头和中性接头之间,电动机定子绕组与启动器进行星型连接,从而可以降低电动机电压,及至降低电流大约(图1);一旦克服主惯量之后,电动机定子绕组在电网相位接头之间的连接就呈三角形,以获得满电压和功率。然而,这种启动器不能从根本上消除机械和电气瞬变现象,只能使其稍微减弱,使他们穿过时间轴上的两个点——从随后的星-三角切换至原点。

星-三角启动法只适用于正常工况,在其它工况下,从星形到三角形之间的切换有时候比直接在线启动情况还要糟糕。

因此,星-三角启动器对于该问题来说只能算是一个粗浅而有限的解决办法。

2.2滑环电动机

另一个早期的解决办法就是滑环电动机,该电动机由一个经滑环与转子电路连接的启动变阻器启动。采用这种方法,虽然电动机的扭矩仍能维持在足以启动负荷的必要水平,但启动电流已经降低了。

在启动过程中,电动机获得速度,转子电阻逐渐降低,一旦启动变阻器完全脱离电路,电动机就可达到其最大转速,转子绕组也在该点短路,因此,电动机由此点开始作为普通的鼠笼式电动机运行。

滑环电动机的优点是扭矩较高而启动电流受到限制,主要适用于启动负荷较高的电动机,如压碎机和磨坊用电动机;而其不利之处就在于它的机械和电气结构过于复杂,且电刷、滑环、电阻器和接头的使用又使成本(包括维护成本)增加,可靠性降低。

2.3频率转换器

频率转换器从技术来说要优于上述两种解决方法:因为它可以在电动机从启动到正常运行再到停机的每一次运行循环中,对转速、扭矩和功率等所有相对变量进行精确控制;另一个重要的优点就是其控制设备为静态,即没有移动部件。其可靠性因而也提高了,维护工作量很小。

然而,频率转换器的缺点是前期投资成本相对过大,这一点限制了其在很多领域的应用,尤其在那些正常运行中实际上并不要求定时控制的设备中的应用。

不过,随着技术的不断更新以及价格的下降,频率转换器已经赢得了很大的市场。今天,它已在实际应用中取代了滑环电动机。

2.4软启动器

软启动器于20世纪70年代末到80年代初投入市场,它与频率转换器相似,同样以电子和可控硅为基础。可以这样说,它填补了星-三角启动器和频率转换器在功能实用性和价格之间的鸿沟。采用软启动器,可以控制电动机的电压,使其在启动过程中逐渐地升高,很自然地限制启动电流(图1)。这就意味着电动机可以平稳地启动,机械和电应力也降至最小;该装置还有一种附带的功能,即可用来“软”停机。

由于该启动器采用电子式电路,可以相对比较容易地通过安全和事故指示灯增强其基本功能,改善电动机的保护,简化故障查找,如失相、过电流和超高温保护,以及正常运行、电动机满电压和某些故障指示。象斜坡电压和初始电压等所有设定值都可以很容易地在启动器面板上设定。

另外,软启动器除了完全能够满足电动机平稳启动这一基本要求外,还具有很多优点,比如可靠性高、维护量小、电动机保护良好以及参数设置简单。

然而软启动器仍有一个缺陷,那就是不能长时间用于启动扭矩要求很高的电动机驱动装置上。这种局限性主要因为,软启动器实际上是靠将自身电压斜坡式抬升至最大值(而在停机过程中又逐渐下降至设定的关机水平)来完成工作。由于扭矩与电压平方成正比,连接电动机不能从一开始就达到最大扭矩,因此,软启动器更适合于水泵、风扇、传送带、电梯等轻型易启动的设备。

3ABB新型软启动器系列

ABB自从20世纪80年代初就开始研制生产软启动器,其间所获得的宝贵经验已经成功地应用到今天的新系列产品设计之中。最新的PSS系列在许多方面进行了改进(图2),适用于电流3~515A,电源电压208~690V的电动机。

这种新产品系列具有以下几个重要的特点:

(1)集成化:在一定的安装平面上可以安装更多的软启动器。

(2)易于安装:该装置可以用螺丝钉固定到安装板(只需4个孔)上,或者,固定在安装轨上。这两种安装方式的电缆连接都很方便,且面板上有清晰的操作提示。

(3)设置方便:由于只有3种设置(启动电压斜坡、停机电压斜坡和初始电压),软启动器的适用范围很广,面板上刻度标识非常清晰的旋转开关有助于你很方便地设定这些值。

(4)固态电路:这有利于确保最高的可靠性,并将维护工作降至最低限度,即使对于启动和停机非常频繁的设备依然如此。

3.1“内三角”连接

PSS系列中绝大部分启动器都可以与电动机的三角形电路连接,其结果就象一个星-三角启动器(图3),称之为“内三角”连接。这种连接可使软启动器的电流负荷降低,从而使电流控制范围扩大至515A,可以满足任何较小的应用设备,并能够为用户节约更多的空间和金钱。

3.2设计安全耐用

该装置外包装坚固,并且对所有有生命的东西均有良好的绝缘,因此,不怕野蛮装卸,不会对人产生危险。其电路也基本上是无故障设计,即使遇到很难出现的内部故障,该装置也会自动关机以保护所连接的其它设备。

3.3SS03……253~25A集成软启动器

该系列软启动器设计用于额定电流在3~25A,主电压分别为230V、400V、500V以及600V的小型电动机,可以并排安装在DIN轨道上。这些启动器在主电路上都配备有旁路接头,可在正常运行时替代可控硅以减少发热。

每个启动器都可以与控制电压范围在24~110V的AC/DC或者110~480V的AC电路连接,从而减化与现有控制系统的接入程序,减少该装置的换代更新次数。

3.4PSS18/30……30/515适用于18~515A的通用启动器

这种系列的启动器适用于大型电动机,且安装和适应性更强。该系列启动器适用于额定电流为18~300A的电动机,由于它们可以象星-三角启动器一样接入三角电路(图3),适用电流最高可达515A。这一特性使其能够比任何同类产品都更容易替代现有的星-三角启动器以实现更为平稳的启动(和停机)。

固态电路设计(主电路上无机电接头)使这种启动器特别适用于那些需要频繁启动和停机的电动机驱动装置。

所有该系列的启动器均可与一个单独的限制电路连接,从而可设定一个能与任何斜坡时间接近的最大启动电流。该功能简化了设置,尤其对于那些启动时间很长、惯量很高的设备更是如此。

这种启动器还配备了4个LED指示灯,分别表示“开机”、“满电压”、“外部故障”和“一般故障”以及1个内置式重大故障指示继电器。这些诊断功能简化了监测及故障识别。

该系列启动器的设计适用系数为110%~115%,换句话说它们可以处理连接电动机的过电流问题。

内置式旁路信号继电器可用于控制在连续运行或当利用同一启动器先后启动几台电动机时所需的旁路可控硅接头。

电动机论文范文第15篇

机电自动化产品的功能十分强大,可以进行自动化控制、自动补偿、自动校验、自动调节、自动保护等多种功能,实现了智能化,因此可以满足人们的多种应用需求,可以在多种场合、多种领域得到使用。强大的功能使得机电自动化产品具有很大的灵活性,因此应变能力较强。机电自动化产品的生产以及不断革新,大大改变了人们的生产与生活方式,将人们从繁重的工作压力中解放出来,有助于改善劳动条件,推动自动化生产的进行,提高生产效率与生产能力等。自动化的生产可以更好实现资源优化配置,并能够在不断实践中不断改革工艺与生产技术等,不断减少耗材。

2机电自动化技术的发展趋势

2.1智能化21世纪是一个信息化的时代,计算机技术以及网络技术的发展极大地改变了人们的思维方式,促使了人工智能概念的提出以及技术的发展。目前,人工智能是人们重点研究的方向之一,越来越受到人们的重视,将人工智能运用到机电领域,实现人机智能化是一个重大突破。智能化就是在机器行为等一切理论基础上,运用人工智能,计算机、动力学等学科,使其逐渐成为自动化产品的智能,但是要想使它完全达到人类智能几乎是不可能的,但是通过一些高性能,速度的微处理器,运用多学科的知识,赋予其较低等级的智能却是完全可以实现的,因此在未来,机电自动化技术会逐步实现智能化,由低等级的智能逐步向较高等级的智能水平发展。

2.2网络化网络技术的发展以及普及,将全球各地的人们联系在一起,基于网络技术产生了多种控制技术,其远程控制终端更是为自动化本身产品量身定做的。随着网络和总线技术的推广与应用,网络化的趋势已经无可阻挡,采用采用家庭网络技术连接电器就可以有效实现计算机家庭化,因此在未来,网络化必将会成为机电自动化技术的发展趋势。

2.3模块化机电自动化技术涵盖很多方面,从机电自动化技术可以衍生出多种多样的产品,因此生产机电自动化产品是一个相当艰巨的过程。工作人员研制和开发一定程度上的标准机械接口、电气接口等的机电自动化技术产品单元是很困难的,如果拥有标准的单元,就可以在标准单元的基础上迅速进行产品研发要创新,也可以迅速扩大机电自动化产品的生产规模,这就需要进行模块化,并要在这基础上制定出每个模块的生产原则以及标准等,从而确保生产出的产品合乎要求。

2.4人性化机电自动化产品制造出来的目的是为人类服务,在未来,机电自动化产品会更加注重设计与功能实现的人性化。要使机电自动化产品更加具有人性化就要重点思考两个问题:一是如何给自动化的实现更加人性化的一些功能?这个问题实际上是要求机电自动化产品的设计与制造更加凸显人机一体化技术,如制造家用机器人等。二:如何模仿生物机理,研制出各种机电自动化技术产品?

2.5微型化20世纪80年代末掀起了一股微型化风潮,MEMS就代表微电子机械系统,也就是使机电系统逐步朝着微米、纳米级方向发展,这样生产出的机电自动化产品体积小,便于懈怠,灵活性比较好,消耗的能量比较少,因此可以广泛应用到军事、医疗等多个领域,并有着举足轻重的作用。

2.6绿色化绿色产品要求产品从设计到生产制造的全过程都贯彻绿色环保的理念,在今天具有相当高的利用率。机电自动化产品的绿色化主要表现在无污染、能够进行回收利用,因此,设计与生产有效的绿色机电化产品会具有广阔的前景。

3结语