时间:2023-03-27 22:54:34
设计论文范文第1篇
1)燃气炉、电阻炉上位机控制系统升级。对铸铁、铸钢、锻压三个分厂的60台燃气炉、64台电阻炉共计124台炉窑进行改造,添加实时数据接口。此项内容时间紧、炉窑设备多、调试难度大(软件新、工控机老、调试过程设备问题复杂)。在软件调试过程中,对DCOM配置问题比较突出,因为现场工控机操作系统版本有WIN2000SP1~4、WINXPSP1~3等多个版本,在同版本中,有些系统的默认设置也不尽相同,所以在设置时有些工控机通过简单设置就可以,但是有些工控机却不能通讯。经过上网查阅大量的文档、说明,并结合现场测试结果才找到了几个重点的系统设置服务参数项:①配置服务器和客户机相同的用户名和密码。②关闭网络防火墙,设置相同的IP段,设置ICMP允许传入回显请求。③在本地安全策略中,本地帐户的共享和安全模式设置为经典;让每个人权限限于匿名用户启用。④在组件服务中,设置默认权限、OPCEnum、服务器程序相应的权限。2)对锻压分厂的压机设备、碾环机设备、电力能源设备和铸钢的钢水测温系统、轧辊冷却测温系统、喷淬机、淬火油池等设备以及铸铁的电阻炉群电力平衡系统进行了软件开发或软件升级改造,使其具备相关控制功能并具有OPC实时数据接口功能。
2OPC数据接口
(1)主要采用OPCServer嵌入控制软件或单独调用OPCServer程序。程序代码(略)。(2)燃气炉加载OPC接口数据见表1,电阻炉、离心机等设备的数据接口类似。
3应用效果
在电阻炉群控软件中,对每台炉窑添加多功能电量表,对每台炉的用电情况(三相电压、三相电流、瞬时功率、累计电量)进行实时监控,并对每炉次的用电量进行统计。为此,电阻炉的实时上传数据为:炉次,炉内各控制偶温度,炉内各监测偶温度,工件上各铠装偶温度,各区设定温度,各区输出功率,设定工艺参数,工艺运行参数,设备报警信息,电量信息等。在燃气炉群控软件中,对没有煤气流量计的炉窑添加了流量计,对每台炉的煤气用量情况(瞬时流量、累计流量)进行实时监控,并对每炉次的煤气用量进行统计。为此,燃气炉的实时上传数据为:炉次,炉内各控制偶温度,炉内各监测偶温度,工件上各铠装偶温度,各区设定温度,各区输出功率、设定工艺参数,工艺运行参数,煤气压力,助燃风压力,炉膛压力,设备报警信息,每支烧嘴控制大小火情况,每支烧嘴大小火信息,煤气消耗量信息等。通过以上实时数据的统计、分析和传递,在生产管理和设备管理等方面可达到以下效果:(1)生产调度方面。生产管理者可以快速了解各热处理设备的使用及运行情况,可以优化设备的使用率和生产工艺流程的顺畅。(2)能源调度调配方面。能源管理者可以快速了解设备的能源消耗情况,并可对能源消耗费用进行控制(对于电阻炉,可以实现错峰用电,实现能源成本的节约),对整个厂内耗能的热处理设备实现监控与调配,防止供电负荷变化过大和煤气消耗量不稳。(3)设备管理方面。设备管理人员可对炉窑设备进行实时监控,对存在的设备隐患和问题及时发现并处理,设备维修保养更快捷,设备运行更顺畅。(4)成品管理及质量跟踪方面。对出现问题的工件可以查看其在锻造加热和热处理工艺过程中各种工艺参数和温度参数,追溯到存在问题的环节。(5)安全管理方面。对于容易出现安全问题的设备进行实时监控,及时发现安全隐患并消除,防止安全事故的发生。对于发生安全事故的设备,通过查看其报警记录及其它相关参数,方便查找事故原因,并进一步针对事故原因进行分析解决。(6)成本管理方面。通过对炉窑设备的实时数据记录,可计算单支产品在加热锻造和热处理工艺流程中的能源消耗,实现单支产品的成本统计分析。(7)通过个人办公室全过程信息化联网计算机可以查看任何一个产品当前所在的生产流程位置、状态、已消耗费用等,另外设备总体使用率,各产品生产周期和生产成本等也一目了然。从而可根据生产数据信息化分析处理系统了解是否满足市场及客户需求,企业内部的运行效率如何,优化内部管理,企业系统如何有效的适应外部的变化。为企业发展管理决策提供第一手参考资料和依据。
4结语
设计论文范文第2篇
1.1接口描述当传感器网络的Zigbee网关节点不断地将网络节点中监测到的温度、烟雾等信息发送给上位机时,上位机的通信模块必须及时响应接收数据。数据监测上位机通信接口采用VB6.0中MSComm控件,利用串行端口传输和接收数据,为应用程序提供串行通信功能,具体包括2种处理通讯方式,一种是事件驱动通讯,利用OnComm捕获并处理通讯时间;另一种是通过检查CommEvent的值,来查询事件和错误[5]。设计中采用第1种方式,在用户界面设置好相应的控制参数,如波特率为38400bps、无校验位、8数据位、1位停止位等。当传感器网络节点监测的的温度、烟雾等信息发送给上位机时,将触发监测程序中MSComm控件的OnComm事件,进而改变ComEvent的值,程序根据ComEvent的值执行相应的操作,如解析数据、发送数据、错误分析等,然后更新内存节点树中当前节点的实时数据、采集信息(如温度、烟雾等)存入数据库。
1.2实现方法MSComm控件可以设置以二进制或者以文本方式接收,若设置为二进制接受,控件会自动将其转变成十进制。在该系统中,数据帧的数据是十六进制的,设置以二进制方式进行接收,从接收缓存中获取到的是十进制的数据。
2数据结构与数据解析
2.1内存中节点多叉树的建立图2节点数据结构图通信监测模块接收数据后,为了便于以图形方式实时显示网络拓扑和节点监测信息,以及提高查询数据的运行速度,需要在内存中构建一个动态多叉树,用于存储节点最新的数据信息。节点数据结构图如图2所示。在内存中建立一个关于节点的动态多叉树,节点的唯一标识是它的自身ID,根据数据帧中包含的父子关系可构建出一棵多叉树。首先定义一个名为treeNode的类,它的每一个实例都代表着一个节点,里面包含节点的属性(例如ID、温度、烟雾等)和方法(例如获取类中节点数据的getData方法)。为了将节点间的父子关系表现出来,可在类treeNode中定义一个类型为treeNode的动态数组NodeChild(),用于存放子节点。如某节点ID为0000,子节点ID为0001,将子节点0001存放在节点0000的NodeChild()数组中,即可完成节点间的连接。当需要找某个节点时,从根节点开始查找,若根节点的孩子没有要找的节点,则查找根节点的孩子的孩子,直到遍历完所有节点。当某数据帧发送到上位机时,解析出来的原始数据分别放在相应的变量,假设原始的温度数据是3F4A,数据结构中温度变量名为Temperature,类型为String,则直接将3F4A转换为String类型存在Temperature中。按上述方法构建的动态多叉树能够适应网络拓扑动态变化的应用场景,相比于定长的数组,其更为节省内存,不足之处是查询算法较复杂。
2.2数据解析通信监测模块接收到Zigbee网关节点发送来的一组数据(数据帧)后,需要对收到的数据进行协议解析,然后根据解析数据建立当前动态多叉树。由于通信中难以避免数据帧出错、截断、丢失等情况,故数据解析部分根据数据帧的格式制定了一套协议,丢弃异常数据帧。数据帧的部分格式如下:FFXXXXXXXXFF01XXXX02XXXX2FF之间,开头2个字节为节点ID,紧跟的2个字节节点的父ID01代表温度类型,后面2个字节是温度数值02代表烟雾类型,后面2个字节是烟雾值,依次类推…。2个FF后的字节都是数据,其格式如下:数据类型(01,温度类型)+2个字节的数据(XXXX)。具体操作流程如图3所示。首先检验从串口进来的数据帧开头一个字节是否FF,若是,则开始解析。直到下一个FF,则节点ID部分解析结束,后面都是数据。继续读取下一个字节,若为01,则将后面紧跟的两个字节存进相应的温度变量,读取下一个字符;若该字节所表示的数据类型未定义则跳过该字节及后面紧跟的两个字节,继续读取下一个字符。该过程一直执行直到解析完整个数据帧。由于数据帧是不定长的,而且没有结束字符,所以每收到一个数据帧程序便立即从缓存中读取并解析,以避免多个帧合并为一个数据帧导致解析错误。当出现多个数据帧并合情况时,则丢弃后继的帧。在帧解析完毕后,可以对解析出来的监测数据信息进行处理,将数据信息一份存进内存中节点多叉树,一份存进数据库,实现实时更新数据和记录当前信息。以下是有关串口通信事件响应及数据解析的部分代码:
3数据库的构建与连接
3.1数据库关系数据库关系图如图4所示。由于每个节点都有大量历史数据,所以每一个节点都创建一个表;USERS表用于保存监测系统的用户信息;NodeTran用于保存数据帧转发路径;Nodelist用于保存节点列表;Limit用于保存监测系统的阈值管理设置值;Node_XXXX为节点XXXX的历史数据表。除了用户表,所有数据都采用varchar类型。
3.2存储过程的创建为了提高通信监测模块与数据库之间通信的效率,将一些常用且较为复杂的SQL语句存放在数据库中,使用时只需要调用存储过程,输入必要的参数即可完成相应的SQL语句操作,这样可以大大减少程序与数据库之间的通信量。
3.3使用ADO将VB6.0与SQL2005连接ADO是为Microsoft最新和最强大的数据访问范例OLEDB而设计的,拥有一个易于使用的应用程序层接口。通过使用ADO2.0对象模型中的Recordset和Connection对象实现两者连接和数据的存取。Connection对象包含关于某个数据提供程序的信息,如数据库用户、密码、数据库名等;Recordset对象包含某个查询返回的记录,可以创建一个Connection对象,在同一个连接上打开多个Recordset对象[8]。操作流程图如图5所示。
4结语
设计论文范文第3篇
实验目的:在类似船舶摇晃、液货装卸等外来扰动引起的液舱液货晃荡条件下,结合油品在整个液货舱中的传质过程,研究油品蒸发及透气孔处油气的排出规律。在影响油品蒸发传质速率的其他因素(温度、黏度和密度等相关液货特征参数)相同的情况下,将重点考虑液货舱液相厚度(即液货装载率相同)与晃荡强度对油品蒸发、油气传递的影响,以探寻油气的蒸发排放规律。实验内容:构建实物模型实验,研究货舱液相厚度与晃荡强度对于油气排放的作用规律。根据研究目标,基于研究对象的特征,设计两组3种实验方案。第1组为晃荡实验:一是考察在相同液相厚度、不同晃荡强度下透气浓度的变化;二是考察在相同晃荡强度、不同液相厚度下透气浓度的变化。第2组为装货实验:考察在装货过程中(即液相厚度与装货形成的晃荡强度同时改变),透气浓度的变化。
2模型实验设计与流程
2.1模型设计制作及仪器设备
2.1.1模型舱的设计制作综合参考现有大型油船结构尺寸资料,选取单个边舱模型原型尺寸:长25.7m、宽16.1m、舱深18.9m,舱容约为7820m3。根据几何相似原理建立一个约为单个边舱1/40的模型(模型尺寸为:640mm×400mm×470mm,容积约120L)。模型舱使用有机玻璃制成,侧壁留有一个注油孔A(半径r=8mm)顶部留有一个透气孔B(半径R=12mm)和一个仪器固定孔C。同时,为了便于数据的分析与处理,整个模型舱被分为3个区:液相区、气相区和气液边界层(气液边界层是扰动的,这里取平均值)。液相区主要是液态油品,高度用L表示;气相区主要是油气与空气的混合气体,高度用V表示;气相区与液相区的交界处称为气液边界层;整个模型舱的深度为H。
2.1.2液舱晃动模拟平台的设计制作液舱晃动模拟平台是用来模拟油船的油舱受风、浪影响而晃动的实验设备,包括了传动和控制两部分。该装置利用一个液压缸提供推动力,使工作台左右摆动以模拟船体在海上的晃荡。在单片机输入指令后,信号经过数模转化器传给电源,以改变电源的输出电压,进而改变伺服阀两端的输入电流,然后在阀内改变阀芯的开口大小,控制回路的输出流量和压力,从而控制液压缸的运动,最终保证液压缸的运动速度在设计值附近,使工作台产生预期的晃荡效果。
2.1.3仪器设备主要实验仪器:一台计量泵,用于模拟加油;一套液舱晃动模拟装置,用于模拟油船在海上航行时的晃荡情形;一台DR70C系列智能线式红外VOCs检测仪,用于实时记录透气孔处排出油气的浓度;一台计算机,用于存储浓度检测仪记录的数据;两台高清摄像机,分别从正面和侧面记录整个实验过程中模型舱及液相表面的变化。
2.2晃荡实验设计
对于第一组实验,由于液相的晃荡强度与液相厚度及外来晃荡强度有关,因此,为了研究不同液相晃荡强度对透气孔处排出油气浓度的影响,设置7种气液比、5种晃荡强度的交叉晃荡实验。7种气液比分别为1%、3%、5%、25%、50%、75%及95%,5种晃荡强度分别为a(a=0)、b、c和d、e,共计进行35组晃荡实验。其中,外来晃荡强度通过调节液舱晃动模拟平台负载大小来施加。a=0,即晃荡发生装置关闭,液相处于静置状态;b为整个量程的20%;c为整个量程的40%;d为整个量程的60%;e为整个量程的80%。
2.3装货实验设计
对于第2组实验,由于不同的装货速率代表着不同的液面上升速率及液相扰动强度,因此,为了研究不同装货速率对油气产生及排出的影响,共设计7种装货速率:0.38L/min、0.88L/min、1.38L/min、1.88L/min、2.46L/min、2.96L/min及3.46L/min,其装载率都是0~95%。其中装货速率1.38L/min是根据实际油船装货速率按欧拉相似准则(压力差为注油孔内外油品的压力差)得到;装货速率0.38L/min、0.88L/min和1.88L/min、2.46L/min、2.96L/min和3.46L/min是结合计量泵的量程及最小刻度的实际情况,从而设计出0.5L/min装货速率间隔的速度。
2.4模型实验流程
晃荡实验:将浓度传感器安装在透气孔处,将模型舱固定在晃荡发生装置的工作台上,分别调节油品的装载率和模拟平台的晃荡强度,依次进行实验,通过计算机分别记录透气孔处排出油气的实时浓度。每次实验前,模型舱内都充满干净空气,舱内压力为标准大气压。实验时通过空调系统控制环境温度为26℃。装货实验:将油品通过计量泵再经过加油管注入模型舱内,浓度传感器安装在透气孔处,依次进行实验,用计算机分别记录透气孔处排出油气实时浓度。每次加油实验前,模型舱内都充满干净空气,舱内压力为标准大气压。实验时用空调系统控制环境温度为26℃。
3部分实验结果展示
3.1晃荡实验
油品装载率25%(图6),静置时间6h。在静置条件下,当装载率为25%时,透气孔处排出气体浓度规律:前600s左右,透气孔处排出气体中油气体积分数为0;600s后,排出气体中油气体积分数在短时间内迅速上升至60%,随后曲线斜率变小,排出气体中油气体积分数增加速度变慢,直至达到饱和,即油气体积分数Csat=81.6%。形成这种现象的原因:前600s左右,排出的气体主要为原来模型舱中的空气,因此排出的油气体积分数为0;600~2500s后,在模型舱气相区中,由于油气浓度差很大,油气的蒸发扩散非常快,致使透气孔处排出油气的体积分数迅速增加;2500~5000s,随着气相区内油气浓度差的减小,油气的蒸发扩散变慢,造成透气孔处排出油气的体积分数增加变慢;5000s后,气体的蒸发扩散慢慢接近充分,使得舱内油气浓度达到饱和,排出油气的体积分数不再增加。
3.2装货实验
加油速度1.38L/min(图8),加油时间4957s。在装载率达到70%之前,透气口排出气体中油气体积分数处于较低水平,约35%,且上升速率较慢。当装载率为70%~95%时,排出气体中油气体积分数快速上升,最后达到90%,接近饱和(图9)。该实验结果与文献[4]实船所测装货过程中透气孔排气规律相同。形成这种现象的原因:在整个加油过程中,从液面蒸发出油气分子的自然扩散是从高浓度处向低浓度处进行,这使得舱内的油气浓度呈现分层现象,越靠近液面,油气浓度越大。在装载率到达70%之前,主要是进行油气分子的自然扩散,聚集形成油气浓度层。同时,舱内空间较大,油气的对流效应较弱,油气从产生至传递到透气口有延迟效应,因而使该过程中透气口排出的油气体积分数较小。随后,装载率从70%上升至95%,随着液面上升,气相区体积缩小,对流效应越来越明显,延迟效应越来越弱,并且此时油气分子自然扩散也更加充分,因而使透气口排出气体的体积分数上升得越来越快,体积分数值越来越大。
4结束语
设计论文范文第4篇
1.童装设计的“内生态”设计
童装的“内生态”设计主要体现在从儿童的生理、心理特点入手,强化童装的科学性、舒适性、健康性,使童装设计能有效满足儿童的生理发育需求,营造出儿童与服装间舒适的“内部气候”。童装的穿着主体是儿童,其与普通成人装相比有明显的年龄特征。根据儿童成长阶段的不同,童装可划分为婴儿服装(穿对象为0~1岁婴儿)、幼儿服装(穿着对象为1~3岁幼儿)、小童服装(穿着对象为4~6岁学龄期儿童)、中童服装(穿着对象为7~12岁少年儿童)、大童服装(穿着对象以13~16、17岁大童为主)。受到儿童生理和心理发育因素的制约,不同年龄段的儿童服装具有不同的特点和侧重点。因此,设计师在进行童装结构设计、色彩设计和造型设计时不能一概而论,要充分考虑不同阶段儿童的体型特点与发育、行为特点,体现童装的“内生态”,从而更好地促进儿童的健康成长。以婴儿服装为例,0~1岁婴儿皮肤娇嫩敏感,排泄次数多,婴儿服在设计上要方便穿脱,在面料上选择棉、羊毛等具有良好柔软性与吸湿性、透气性的材质,在色彩上以白色、米色等柔和的浅色调为主,避免使用艳度或纯度太高的颜色,以免刺激婴儿尚未发育完全的视觉神经系统。对于幼儿服来说,由于1~3岁幼儿已经有一定的户外活动能力,好奇心强,幼儿服不但要穿脱方便,还要耐洗耐磨,要考虑服装安全性与卫生性,在设计时尽量减少绒球、纽扣、别针、流苏、装饰珠球等容易脱落的小附件,以免这些附件被幼儿误食或对幼儿造成不必要的伤害。对于小童服来说,由于儿童在4~6岁已经达到学龄,求知欲强,处于智力快速增长期,这一时期的服装在设计上应该突出儿童可爱、阳光的特点,尽可能采用鲜艳活泼的颜色,并配以具有趣味性或益智性的图案装饰,寓教于穿,尽量避免使用灰暗阴冷的颜色或恐怖暴力的图案,以免对儿童的心理造成不良影响。对于7~12岁中童的服装来说,由于这一时期儿童运动量大,并且开始出现明显的男女体型差异,因此,男、女童服装要有良好吸湿性、透气性与耐脏耐磨性,并且设计师应有意识地突出男、女童的性别特征,以培养儿童正确的性别意识与个性气质。
2.童装的“外生态”设计
由于童装穿着主体的特殊性,儿童服装使用周期短、损耗率高、资源浪费率高。童装的“外生态”设计主要指从童装的设计工艺与材料特点出发,通过减法设计、二次设计、延伸型设计等设计方法,有效提高童装的使用效率与使用周期,强化童装的功能性与环境兼容性,从而保护生态环境,减少污染与资源浪费。据笔者调查,市面上的许多童装为了追求款式的新颖美观,大量使用印花、珠片、烫钻、植绒、布贴刺绣、玻璃纱等设计元素,在设计时过量堆砌,对材料与资源过度支用,使童装出现“设计过度”的问题。另外,传统童装印花过程中使用的油墨、胶浆、厚板浆等化学染料中携带的有毒有害物质不但给消费者的健康安全带来危害,还给生态环境造成负面影响。因此,设计师在童装设计的过程中,要强化责任意识,充分考虑童装的成本与环境属性,简化设计,节约材料,不滥用面料以及印花、绣花等服装工艺,尽量少用绒球、金属拉链、绳带等容易给儿童带来安全隐患的装饰部件。此外,设计师可以通过解构、重组、拼接等设计手法,积极采用可调试型设计、多用型设计和可拆卸设计,改善童装的原有造型结构,提高童装的利用率与使用周期,减少童装废弃物对环境的影响。如图1为笔者以生态理念为灵感设计的童装系列。在设计时,笔者以6~8岁儿童为穿着对象,在遵循儿童体格发育规律的基础上,采用双领口、双袖子、双腰头的可调节设计。随着身体的成长,儿童在穿着时可以根据自己的体型选择需要的领口与袖子,并根据身体围度调节服装的长短、松紧,选择适合自己的着装方式。这样既提高了穿着舒适性,又延长了童装产品的使用寿命,减少了对环境资源的浪费。
3.童装“内外生态”的共生发展
“内外生态”意味着更科学、更健康、更环保、更可持续。童装的生态设计基于“儿童—童装—环境”的整体关系,主张内外共生的可持续发展。因此,童装的生态设计不但要考虑儿童的生理特性与内在需求,还要注重童装产品的环境属性,实现儿童服装与内外环境的协调发展。儿童皮肤娇嫩,设计师在选择材料时,应尽可能使用温和、无毒、环保的天然纤维材料和新型生态无害面料,如天然有机棉面料、中草药提取抗菌面料、营养纤维面料等;在面料加工过程中,充分利用天然可再生资源,采用植物印染、草木染色等手法,减少化学染料的毒性和污染物处理的负担;在童装产品的设计过程中,设计师要主动引入可持续设计思维,有效结合减法设计、延伸型设计、可调节型设计、可拆卸设计、益智性设计等多种设计方法,积极开发童装设计的新工艺、新材料、新思路,使童装的文化性与生态多样性得以融合,从而更好地促进儿童的成长与环境的永续发展。
4.结语
设计论文范文第5篇
从结构上,检测接口可以分为DAC单元、滤波放大单元、二线接口单元、混合单元、信号调理单元、ADC单元和FPGA系统单元。
1.1DAC与滤波放大单元DAC与滤波放大单元用于将数字信号转换为模拟信号,并完成对信号的调理、幅度调节与功率放大功能。其硬件电路如图2所示。该单元由3部分电路组成,分别是DAC芯片电路、无源滤波电路和差分放大电路。DAC芯片为ADI公司生产的高性能、低功耗CMOS数模转换芯片AD9762,AD9762为12位分辨率,支持最高125MS/s的更新速率。该芯片使用5V、3.3V可选单电源供电,最高功耗175mW,2mA~20mA差分电流输出,负载RLOAD为100Ω时输出电压范围为0.2V~2V[2]。FSADJ引脚连接外接电阻RSET,用于满量程电流输出调节。REFIO引脚用于基准电压VRFE输入/输出,选择内部1.2V基准电源时通过一个0.1μF电容与模拟地连接。其差分输出电压VDOUT与输入的12位数字代码(DCODE)的关系式为。无源滤波电路由电感与电容组成截止频率为20MHz的7阶巴特沃斯低通滤波器,用于信号整形和消除毛刺干扰。差分放大电路以全差分放大器AD8476为核心组成,用于将通过无源滤波电路的模拟差分信号进行增益调节和功率放大。AD8476是一款功耗极低的全差分精密放大器,其带宽为6MHz,使用±5V电源供电时的输出电压范围为-4.845V~4.82V[3]。检测激励信号的峰峰值为4.3V和6.2V,而DAC的输出峰峰值电压为2V,因而差分放大电路的增益应当大于3.1,这样才能使得激励生成通道的输出信号幅值符合检测需求。考虑到DAC的转换效率和可能存在的误差,可设计差分放大电路具有两个略大于满幅度输出的增益值。图2中使用外部扩展电阻R1~R6组成反馈电阻网络,其中R1=R2=10kΩ为输入电阻,R3=R6=24kΩ、R4=R5=33kΩ为两组反馈电阻。该电路的增益值分别为A1=R3/R1=2.4,A2=R4/R1=3.3。为了提高检测接口的自动化程度,使用1个2路2:1电子开关ADG736用于两组反馈电阻的切换,通过改变其控制端IN1和IN2的电平逻辑,完成开关动作。ADG736使用5V供电时,导通电阻RON为2.5Ω,带宽大于200MHz,通过峰值电压为5V。
1.2二线接口与混合电路单元二线接口与混合电路单元用于为信号激励与数据采集提供对外二线接口和实现收发信号的双工传输。其硬件电路如图3所示。二线接口电路由电压比为1的变压器以及电阻RS1、RS2和电容C9、C10组成,用于提供检测电路对外的二线接口,实现接收与发送信号的传输,同时可以隔离外部直流信号。RS1、RS2用于与线路负载阻抗匹配并隔离远端反射和提供线路的能量交换,电容C9、C10用于配合组成激励发送端扩展滤波电路。混合单元的功能是一阶模拟回波抵消,用于抵消本地发送信号。图2中R7~R10为输入电阻,同时与C3~C8组成一阶低通滤波器。两个仪表放大器AD8429用于将二线平衡信号转换为单端信号。AD8429为低噪声、高精度仪表放大器,其增益为1时增益精度为0.02%、CMRR为80dB、带宽为15MHz,使用±12V电源供电时其输出电压范围为-10.1V~10.7V,使用单个增益控制电阻RG能够控制其增益范围为1~1000,其增益控制关系为G=1+6kΩ/RG[4]。LT6600-10将一个全差分放大器与一个近似切比雪夫(Chebyshev)频率响应的四阶10MHz低通滤波器集成在一起。芯片为低噪声全差分输入/输出放大器,内部集成两个运算放大器、电阻电容网络,组成1倍增益放大电路和一个10MHz低通滤波器,使用±5V电源供电时其输出电压范围可达到±5V。若线路电阻RS与负载电阻RL完全匹配,则第二个AD8429的增益值为2时,混合电路的输出U′3=U3。考虑到阻抗失配现象的普遍存在,因此选择电位器作为第二个AD8429的增益控制电阻,在线路阻抗失配的条件下,通过调节增益控制电阻来实现混合单元消除近端信号的目的。根据前文所述,可以得到混合电路输出信号U′3与二线输入信号U3比值跟增益控制电阻RG之间的关系。因此只要知道RG的值,就能够通过式(5)准确地对通过混合单元造成的输入信号幅值的线性误差进行修正。为了提高检测接口的自动化程度和实现对RG值的实时感知,选择数字电位计AD5272作为第二个AD8429的增益控制电阻。AD5272为1024位分辨率、1%电阻容差误差、I2C接口和50-TP存储器数字变阻器,最大阻值为20kΩ,可使用5V电源供电[6],其阻值调节步长为1.95Ω。
1.3信号调理与ADC单元信号调理与ADC单元用于将混合电路输出的模拟差分信号转换为输入信号并输入到FPGA,该部分为数据采集的核心单元,其硬件电路如图4所示。由于被测信号的最高频率不超过2.048MHz,根据奈奎斯特采样定理,使用4.096MHz采样速率进行采样就能得到信号完整的信息,但是在工程中,通常使用5~10倍速率进行采样。因此ADC选择12位、10MS/s采样速率模/数转换器AD9220,其为+5V单电源供电,70dB信噪比,86dB无杂散动态范围,内置片内高性能、低噪声采样保持放大器和可编程基准电压源,并具有满量程输出指示功能[7]。使用1V基准电压时其输入范围为2V(峰-峰值)。信号调理电路应当具有抗混叠滤波和信号幅度调节的功能。该电路选择全差分放大器AD8476组成,考虑到检测时输入信号的幅值大于ADC的输入范围,因而选择其输入电阻为10kΩ,选择数字电位器AD5272为反馈电阻RF,则其增益值G4=RF/10kΩ,电路的增益值为0.0002~2可调。放大器输出经过2个100Ω电阻和2个电容组成的低通滤波器后送至ADC。同时,AD8476以ADC的基准电压VREF为共模参考电压。
1.4FPGA单元FPGA单元以Xilinx公司的FPGA芯片XC3S400为核心电路组成,其程序存储芯片为XCF02S,使用40MHz有源晶振,5V电源供电,使用稳压芯片提供电路所需的3.3V、2.5V和1.2V电源。USB接口作为微处理器常用的外部总线接口,目前已经得到了广泛的应用[8],因此考虑选用USB2.0接口作为FPGA与上位机之间的数据接口。同时采用JTAG接口用于FPGA和其配置芯片的程序烧写。关于FPGA电路的设计、开发技术已经较为成熟,本设计相比与其他通用FPGA电路的设计并无独特之处,因此不再对FPGA单元进行详细描述。
2FPGA程序设计
在检测接口电路的设计中,FPGA是检测接口电路的信息传输与控制单元的核心,其可编程配置能力和能够高速、并行处理数字信号的能力是检测接口的灵活性和升级性的关键。其内部程序使用Xilinx公司的FPGA开发环境ISE进行设计并完成烧写。程序设计使用模块化设计思想,其结构示意图如图5所示,可以分USB传输、管理控制、DAC传输、输出增益控制、混合单元控制、信号调理控制、ADC传输控制和增益补偿8个模块。下面就各个模块的功能分别进行介绍。(1)USB传输模块,用于通过FPGA单元上的USB接口电路实现FPGA芯片与上位机的信息传输,具有USB电路的配置功能,并实现标准USB信号封装、解封装功能,将接收到的上位机信号解封装为透明数据传送到管理控制模块和DAC传输模块,将管理控制模块、增益补偿模块输出信号封装为标准USB信号通过USB接口电路传输到上位机。(2)管理控制模块,是整个程序的主控单元。该模块用于接收USB传输模块输出的控制信号,对其余的通信模块进行控制,并输出检测电路的工作状态到USB传输模块,最终传输到上位机。同时用于控制其余模块的工作状态,接收混合单元控制模块、信号调理控制模块、ADC传输模块输出的反馈信息进行工作状判断,根据混合单元控制模块、信号调理控制模块反馈信息控制增益补偿模块的补偿量。(3)DAC传输模块,在管理控制模块的控制下工作,接收USB传输模块输出的激励信号,并将信号转换为DAC芯片的数据输入信号,同时为DAC芯片提供转换时钟。(4)输出增益控制模块,用于在管理控制模块输出的控制信号下工作,根据需求通过两路输出信号IN1和IN2分别控制差分放大电路的2个电子开关ADG736。(5)混合单元控制模块,用于在管理控制模块输出的控制信号下工作,根据需求通过输出I2C信号控制混合单元的数字电位计AD5272的阻值,完成信号混合功能,并将AD5272的阻值信息反馈给管理控制单元。(6)信号调理控制模块,用于在管理控制模块输出的控制信号下工作,根据需求通过输出2路I2C信号控制信号调理电路的2个数字电位计AD5272的阻值,完成信号调理功能,并将2个AD5272的阻值信息反馈给管理控制单元。(7)ADC传输模块,在管理控制模块的控制下工作,接收DAC芯片输出的采样数据,并将数据传输到增益补偿模块,同时为ADC芯片提供采样时钟。该模块同时接收ADC输出的满量程指示信号和数据输入指示信号,并传送给管理控制模块。(8)增益补偿模块,用于接收来自ADC传输模块的采样数据和管理控制模块输出的增益补偿信息,对ADC芯片采样获得的信号进行增益补偿,实现检测信号的完整性。
3结论
设计论文范文第6篇
一般情况下选取两个同质水平训练队进行实验分组,实验组和对照组,设定在特定的周期内进行周期性的身体素质训练,然后在训练周期结束后对排球队员身体运动能力水平和体育学习水平进行对比分析。在实验教学过程中,对实验组进行单盲行的实验教学训练。
(二)实验指标的设计
依据相关的实验研究方法要求,保证实验前后检测的真实性,进行相关指标的测定。指标包括:1.前测指标:实验组排球队员和对照组的柔韧、力量素质和弹跳能力;2.后测指标:实验组排球队员和对照组身体素质水平:传球技术动作的完成情况,传球的效果;队员的体育学习心理水平:体育学习的动机水平和认知水平。
(三)实验控制的设计
在任何实验性的科学研究中,由于与实验相关的条件或因素如果是可测量的、数量化的或等级化的参与因素很多,势必就会影响实验的效果,不可避免,但是保持严谨的科学态度,合理的控制实验过程中的各因素、各环节的变量影响效果,就会最大限度的降低实验产生的误差,从提高实验的科学性和准确性,就本实验研究的过程来看主要是控制以下几种变量:1.对实验教师的控制:论文开展前通过走访和调查,选定的实验组和对照组的教师或者教练,无论从排球的教学水平、教学经验都要处于同水平,这样可以减少教师的影响误差。2.对队员的控制:参与对比实验分析的两组队员,都是普通学生,都没有运动员的经历,而且在本次实验前对两组学生分别进行指标的前测分析,保证实验前的两组学生身体素质和体育学习水平测试的差异不具显著性,从而降低学生水平差异带来的误差。3.对训练和教学过程的控制:为了实验的误差降低到最小,实验训练的场馆一般要求在同一场地,尽可能的减少场馆误差的影响。4.对测试方式和数据的控制:实验组和对照组的学生统一编排,并打乱测试顺序,统一对具有排球教学经验的教师进行测试,并进行数据的统一记录,保证测试方式和数据统,从而降低数据的误差。通过对以上几个影响因素的控制,最大限度的降低外部环境的影响效果,实验控制在一定程度上直接影响了实验效果,因此实验的控制必须在实验前后控制在最小范围内,才能保证实验的科学性和可靠性。
(四)实验步骤的设计
根据实验要求,在不同时期安排不同实验内容,具体步骤如下图所示实验步骤的设计是为了使训练阶段性更强,更能保证实验的科学性。实验步骤设计完成,对于今后的实验教学有一定的指导性作用。
(五)实验数据分析的设计
将文档保存至本地,方便随时查阅