美章网 资料文库 热处理工艺论文范文

热处理工艺论文范文

前言:写作是一种表达,也是一种探索。我们为你提供了8篇不同风格的热处理工艺论文参考范文,希望这些范文能给你带来宝贵的参考价值,敬请阅读。

热处理工艺论文

合金热处理工艺论文

1固溶热处理

Al-Cu-Mg-Ag合金的固溶热处理就是在较高温度下使合金元素充分溶解到α-Al基体中,然后快速冷却以得到过饱和固溶体,使其在后续的时效热处理中析出尽可能多的强化相(Ω、θ''''相),以提高合金的力学性能,是时效热处理的前期准备过程[7]。影响固溶热处理的主要工艺参数有:固溶温度、固溶时间和冷却速度。固溶温度越高,Cu、Mg、Ag等合金元素在合金中的固溶度越高,合金元素的扩散速度越快,固溶时间也就越短。但是当固溶温度过高时会使合金中的低溶点相发生溶化,即出现过热现象;同时弥散分布的金属间化合物也会发生长大粗化,导致合金性能降低。因此,固溶温度对Al-Cu-Mg-Ag合金性能的影响比较敏感[15],而固溶时间对Al-Cu-Mg-Ag合金的影响较小,为了阻止强化相的析出趋势,固溶后冷却速率需要足够大,一般选择室温水淬。表2是当前典型的几种Al-Cu-Mg-Ag合金的固溶热处理工艺。从表2发现,含Ag的Al-Cu-Mg系铝合金,由于其合金化元素种类多,含量高(尤其是Cu的含量较高),且Cu原子的扩散速率又比较低,应选择较高的固溶温度;但该合金的过烧敏感性又很高,因此一般选择的固溶温度在510~530℃范围内,稍微低于过热温度;保温时间通常在2h左右,对于大块材料(厚的板材,粗的棒)可以适当延长保温时间。

2时效热处理

Al-Cu-Mg-Ag合金经固溶热处理后形成过饱和固溶体,在人工时效过程中,微量Ag元素降低合金基体{111}A1面的层错能,促使Ag-Mg团簇和{111}A1面上聚集的Cu原子聚集(Cu原子在{111}A1面上发生偏聚,形成{111}A1面GP区),成为Ω相的形核质点;同时过饱和固溶体中Cu原子易直接从{100}Al面上脱溶析出(形成Cu原子团的偏聚区,即{100}A1面GP区);随时效时间的延长,它们分别脱溶析出强化相Ω相和θ''''相;θ''''相和Ω相是亚稳相,在较高温度下最终转化为平衡相θ相。即Al-Cu-Mg-Ag合金的脱溶序列为:SSS(过饱和固溶体)→Ag-Mg团簇→Ω相→θ相、SSS→Cu-Cu团簇→GP区→θ''''相→θ相。时效过程中Ω相和θ''''相的密度和形态决定时效的效果,进而影响合金的性能。因此,可以通过改变时效工艺来改善Al-Cu-Mg-Ag合金的性能,常用的时效工艺有单级时效、多级断续时效、形变时效、应力时效等。

2.1单级时效单级时效是2000系铝合金常用的热处理制度,同时也是其它时效工艺的基础。Al-Cu-Mg-Ag合金的单级时效分为自然时效和人工时效。自然时效由于抑制了强化相Ω相的析出,合金的强度较低。单级人工时效促进了强化相Ω和θ''''相的析出,合金的强度较高。由于Al-Cu-Mg-Ag合金在较高的温度(165℃以上)时效时才会析出Ω相,且Ω相的尺寸随时效温度的升高而增加,过高的时效温度(250℃以上)更容易使Ω相和θ''''相粗化或者转化为θ相,对晶界也有所削弱,从而降低合金性能[21-22]。因此,Al-Cu-Mg-Ag合金单级人工时效,一般选择时效温度为160~200℃。但是高温短时间人工时效能够极大地提高合金的高温持久性能,对Al-5.06Cu-0.44Mg-0.3Mn-0.55Ag-0.17Zr合金[23]在高温(250℃)时效后在200℃/300MPa下进行持久试验,其峰值时效状态的持久寿命长达31h;而对应的165℃时效后的持久寿命小于16h。Al-Cu-Mg-Ag合金有很高的时效响应速度,且在相同条件下时效温度越高达到峰时效的时间也越短[23-25],文献[23]中的合金在250℃下时效5min后就达到了峰值强度(σb=458MPa)。Al-Cu-Mg-Ag合金时效过程为单峰时效过程,即经过欠时效、峰时效和过时效阶段。欠时效态合金虽然析出相的密度没有达到最大值,但是析出相更加细小,使其有较高的强度,同时在高温使用时会发生二次强化相的析出,使其有很好的抗蠕变性和耐高温性[26]。峰时效态合金(达到峰时效的时间一般为4~10h)组织由大量Ω相和少量的θ''''相组成,析出相密度达到最大值,常温力学性能最好[4,27],对于Al-4.83Cu-0.45Mg-0.50Ag-0.29Mn-0.12Zr合金[4]在165℃下时效6h后达到峰值强度σb=472MPa,σ0.2=455MPa,对应的伸长率为12.68%。过时效态合金,随着时效时间的延长合金的强化相逐渐粗化,强度有所下降。

2.2多级断续时效多级断续时效是Lumley等在研究Al-Cu-Mg-Ag合金的抗蠕变性时发现的,根据这一现象CSIRO公司发明了T6I6和T6I4等多级时效热处理技术;与单级人工时效(T6态)相比,除保留与T6态相同的性能外,由于θ''''相的析出密度得到提高,使Al-Cu-Mg-Ag合金的塑性得到提高[28-31]。Al-Cu-Mg-Ag合金的多级断续时效一般是三级时效。在第一级的高温欠时效(一般时效温度为160℃或185℃,时效时间≤2h)过程中,析出大量的Ω相和少量θ''''相,并随着时效时间的延长,析出相不断长大(同单级欠时效)。在第二级的低温时效(时效温度为室温或65℃)过程中,Ω相的析出受到抑制,而θ''''相继续析出。在第三级的较高温再时效(时效温度为150℃或165℃)过程中,Ω相和θ''''相同时析出长大,Ω相为主要强化相,θ''''相相对较少[28,31-33]。最后合金组织中析出大量的Ω相和θ''''相,使合金具有很好的强度和塑性。有时为了简化试验流程省去第二级的低温时效,合金也能获得较好的性能[28]。张坤等[29]对高纯Al-4.61Cu-0.47Mg-0.44Ag合金采用二级时效工艺,第一级采用185℃×30min预时效后水淬,然后进行150℃×25h较高温时效,该工艺明显缩短热处理周期,同时合金强度与T6态相当(σ0.2=420MPa左右),伸长率却由8%升高到14%,使塑性得到显著改善。对于Al-5.3Cu-0.8Mg-0.5Ag-0.3Mn-0.15Zr合金[28,30]在185℃下欠时效2h后,当在较低的温度(65℃)下进行二次时效时,合金的硬度为151HV比T6态(185℃×4h)低10HV,伸长率为14%比T6态高1.4%;当在较高的温度(150℃)下进行二次时效时,合金的硬度为165HV、伸长率为13.8%,都高于T6态。对于Al-(4.8~4.9)Cu-(0.43~0.47)Mg-(0.30~0.39)Ag-0.15Zr合金[31-32],先在160℃时效2h,然后在65℃下时效67~240h,二级低温时效对合金的硬度几乎没有影响,然后三级时效在160℃时效24h左右达到峰值硬度160HV左右,合金的性能和T6态(160℃×12h)相差不多。

2.3形变时效形变时效热处理将加工硬化和时效析出强化相结合以改善合金的性能。在固溶后时效前对合金进行预变形,增加合金组织中的位错密度,利用沉淀相在位错线上优先形核,增加沉淀相的形核率和析出相的密度,降低时效析出相的尺寸,改变合金在后续时效过程中的脱溶序列,进而改变合金的微观组织结构[34-35]。在传统的Al-Cu-Mg系铝合金的预变形时效过程中,由于预变形引入大量位错亚结构促进了非均匀形核的强化相θ''''的析出,使合金的强度得到显著提高[36]。但是形变时效(一般选择的预变形量为2%~6%)对Al-Cu-Mg-Ag合金性能的影响则较为复杂,这可能是由于合金成分、时效温度和时间以及预变形量的不同,导致析出的强化相θ和Ω相的密度和尺寸不同,进而影响合金的性能。陈瑞强等[37]发现Al-5.12Cu-0.40Mg-0.89Ag-0.32Mn-0.17Zr合金的最佳形变热处理工艺为4%预拉伸、165℃×10h人工时效,该合金可获得室温σb≥473MPa,σ0.2≥428MPa,δ≥11.3%的满意综合性能;文献[38-39]也认为,时效前的预拉伸能提高合金的性能。但肖代红等[40]对Al-5.3Cu-0.8Mg-0.3Ag合金的预拉伸量为0、2.5%、5%的3种状态的合金在185℃经峰时效处理后,其室温σb分别为530、510、475MPa,σ0.2分别为477、456、410MPa,δ分别为10.5%,11.0%、12.3%,这显示时效前预拉伸降低了合金的强度提高了合金的塑性。而李周兵等[41]对Al-5.20Cu-0.40Mg-1.02Ag-0.2Mn-0.17Zr合金进行0、4%预拉伸后,再在165℃下进行时效,此时σb分别为492MPa、508MPa,σ0.2分别为455MPa、468MPa,δ分别为15.2%、12.9%,此结论与文献[40]的相反,即时效前预拉伸提高了合金的强度降低了合金的塑性。一般认为时效前预拉伸(或冷加工)不改变析出相的种类,由于增加了位错密度,抑制了{111}Al面Ω相的析出,但是却细化了Ω相的尺寸;位错和晶界缺陷为θ''''相的异相形核提供了形核质点,从而促进了{100}Al面θ''''相的析出[37,41-45]。由于高温强化相Ω相体积分数的减少,峰时效状态的合金的耐热性能降低;同时总体上造成时效态合金的时效过程延缓,硬化水平降低,峰时效时间延长[40,42]。

2.4应力时效应力时效是指在时效过程中引入一个小于屈服极限的应力,在温度和应力的耦合作用下,使析出的强化相发生显著变化。时效过程中施加外应力不会改变合金再结晶晶粒的形貌,但对Al-Cu-Mg-Ag合金组织中强化相的析出序列、数量、大小和分布等都有显著影响[46-47]。应力时效延缓了Al-Cu-Mg-Ag合金中强化相θ''''和Ω的析出[48]。这可能是由于在应力时效初期(约2min)产生大量位错阻碍了溶质原子的扩散,延缓了Cu-Cu团簇或Ag-Mg共聚团簇的形成,从而延缓了强化相θ''''和Ω的析出,最终使峰时效时间延长。应力时效能够促进θ''''相的析出,而抑制Ω相的析出,使合金的峰值硬度降低[49]。这可能是因为外加应力的存在,产生了大量的位错,为θ''''相的异相形核提供了有利的位置,但位错的存在不利于溶质原子的扩散,阻碍了Mg-Ag共聚原子团簇的形成,从而延缓了合金中强化相Ω的析出,最终使合金的硬度下降。在应力时效作用下,Al-Cu-Mg-Ag合金的强化相θ''''相和Ω相均沿某一方向(外加拉应力的方向[50])呈择优取向析出,即产生应力位向效应。研究发现,外加应力对Al-Cu-Mg-Ag合金时效动力学过程的影响主要是在相的成核阶段,且存在一个调整微观结构演化的临界应力值,当超过临界值时易在惯析面成核,即在惯析面析出沉淀相;在160℃下,对θ''''相临界应力为16~19MPa,对于Ω相临界应力为120~140MPa[50]。根据扩散理论结合弹性理论[49],外应力会使得合金中溶质原子沿不同的方向扩散速度不同,使时效初期共格片状相出现择优取向效应,从而产生位向效应。Eshelby弹性夹杂物理论[46,51]认为,外加应力与不同变体相互作用引起的系统弹性性能变化的不同将导致析出相择优取向析出,而且析出相在长大过程中错配应变的大小及符号的变化将会产生完全相异的结果。通过塑性和弹性夹杂模型[47],可以定性预测分布在{100}面和{111}面的相的各向异性。外加应力时效(一般选择200MPa)会降低Al-Cu-Mg-Ag合金的时效硬化速率,延长欠时效的时间,减小峰值硬度,同时也提供了一种控制高强铝合金(屈服强度)各向异性的方式[47]。对于Al-5.3Cu-0.8Mg-0.5Ag-0.3Mn-0.15Zr合金[48-49]在170℃下进行无外加应力时效和200MPa外加应力时效时发现,在没有外加应力时效时,合金硬度在12h后就达到峰值(161.5HV)然后逐渐下降;应力时效的硬度在16h后才达到峰值(157.9HV),且随时效时间的延长仍保持较高的硬度。

继续阅读

30MnSiPC钢热处理工艺论文

1力学性能分析

图1为不同热处理工艺条件下30MnSi钢的拉强度。可以看出,当回火工艺相同时,淬火温度为910~990℃时,30MnSi钢的强度较高。在热处理后要保持材料的抗拉强度高于1420MPa,其回火温度应控制在390~430℃。表1和表2为不同热处理处理工艺条件下30MnSi钢的力学性能。可以看出,当回火温度为390℃时,性能满足要求。当回火温度为430℃时,只有淬火温度在910~990℃时,性能才满足要求。

2耐延迟断裂性能分析

图2为不同热处理工艺条件下30MnSi钢的延迟断裂性能。可以看出,回火温度为390℃时,试样的延迟断裂时间随淬火温度的升高而先上升后下降。虽然试样的力学性能都能满足要求,但耐延迟断裂性能差异较大,也就是说淬火温度对PC钢的耐延迟断裂性能影响较大[2]。当淬火温度为870℃时,由于低温下淬火材料的回火温度较低,使材料的韧性变低,耐延迟断裂性也较低,所以导致延迟断裂的时间变短为30h。当淬火温度为950℃时,试样的耐延迟断裂性能达到了FIP实验的要求。当回火温度为430℃时,淬火温度为910℃和990℃时断裂的时间都增加且与在950℃淬火时相同。当回火温度为390℃时,淬火温度为910℃和990℃时其耐延迟断裂性能远不如950℃淬火时的性能。这说明,耐延迟断裂性能随着回火温度的升高而提高,且获得较好的延迟断裂性能的淬火温度的范围变大[4]。当在较低的温度下回火时,试样的耐延迟断裂性能不能满足FIP实验的要求。而在高温下回火时,则可以满足FIP实验的要求。所以,当PC钢的强度满足要求时,适当的提高回火温度可增加材料的耐延迟性能。

图3为不同淬火温度下试样的微观组织。可以看出,当淬火温度为950℃时,所得组织是细小且均匀的回火屈氏体。淬火温度为990℃时,组织是较粗大的回火屈氏体。淬火温度升高到1030℃时,组织较粗化且板条之间的距离变大,但其延迟断裂性能的差别并不是晶粒尺寸所影响的。实际上,当奥氏体的温度升高时,钢中合金元素的分布位置会发生变化。因为材料中Mn的含量比较高,Mn对延迟断裂较敏感[3]。这些都导致了当奥氏体化温度大于950℃时,温度越高材料的耐延迟断裂性能越差。

图4为不同回火温度下30MnSiPC钢的TEM形貌。可以看出,回火温度为390℃时,可以清晰的看到马氏体板条界,并在界面上可观察到析出的薄片状碳化物。该碳化物为收集氢的陷阱,如果这种碳化物连续的分布在马氏体的边界,则进入到钢中的氢会富集在晶界处,导致晶界脆化,从而使延迟断裂变得敏感。当回火温度从390℃升高到430℃后,析出的渗碳体会聚集粗化,并变为清晰地条状的渗碳体。细小的碳化物会弥散的分布,从而较小应力集中,使界面能降低,断裂时间变长,从而使其耐延迟断裂性能增加[5]。当回火温度升高到470℃时,渗碳体会球化。当回火温度继续升高时,较小的碳化物颗粒会逐渐溶解,大的颗粒会长大,当温度升高到一定程度后,细粒的碳化物会逐渐聚集并粗化,会出现更加粗大的渗碳体和铁素体颗粒,其强度和硬度都较低。

3结论

(1)回火温度相同时,30MnSiPC钢的耐延迟断裂性能随淬火温度的升高先升高后降低,390℃回火950℃淬火后,材料有较好的耐延迟断裂性能。(2)当30MnSiPC钢的强度满足要求时,适当的提高回火温度可增加材料的抗延迟性能。(3)回火温度为430℃,淬火温度为910~990℃时,都可以获得较好的耐延迟断裂性能。

继续阅读

圆板牙热处理工艺论文

1圆板牙的热处理

1.1球化退火锻造后球化退火的主要作用是为接下来的热处理做准备,经过球化退火的材料能够效降低材料的硬度,提高其韧度,其塑韧性有了明显的提高,同时减小了对淬火温度的敏感性。不过在进行球化退火前要保证组织为细片状珠光体,如果不能够达到该要求,要在进行球化退火前对其进行处理。按照有关规定,在未进行球化退火的组织应在2-5级5范围内才为合格。

1.2淬火工艺采用等温淬火工艺能够很好地满足圆板牙的工艺要求。在利用等温淬火进行工艺加工前,要在600℃~650℃的高温下进行预热,预热的目的是降低圆板牙发生脱碳的几率。根据未落碳化物数量及原材料的球化级别、加工尺寸等诸多因素确定淬火加热的温度。尺寸较大的圆板牙一般情况下,选择低温淬火加热处理。由于W18Gr4V中含有Si元素,而该元素在进行加热的过程中极易发生脱碳,所以在加热的过程中要使用较特殊的加热炉,如盐浴炉、可控气氛炉或真空炉,其中盐浴炉的脱氧作用可以有效降低圆板牙的脱碳倾向。保证适当的等温停留时间有助于提高钢的强韧性。等温停留时间一般维持30~45min,如果超出该范围其性能将明显降低。这主要是因为下贝氏体和残余奥氏体量过多。分析上表可发现,在进行淬火冷却时,要在硝盐槽中放入冷却水套或循环水管,以保证工件和工装带的温度平衡。

1.3回火工艺回火的主要作用是根据不同的工作性能要求,使其硬度、强度、塑性和韧性适当。前文中已经介绍Si、Cr元素可以有效提高钢的回火稳定性。

2圆板牙的热处理质量检验

2.1回火缺陷在经回火处理时,如果不能严格控制回火温度,将会出现钢的硬度过高或过低。不过当回火温度控制适当,这些问题就可以解决了。如果一次装炉量过多,或选用加热炉不当,将会出现硬度不均匀。当回火前工件内应力不平衡时,回火工件很可能发生变形。

2.2板牙热处理后变形分析板牙经过热处理后将会变形,目前,针对这一问题有两种解决方法:一种是在淬火前应对板牙进行弼质,使其内应力减到最小,保证其之直径大小同螺纹的中径尺寸相同。要保证棒料尺寸适当,尺寸过小,则会造成金属材料的浪费;尺寸过大,将会导致棒料扭曲、折断。被切削捧料的材料性能、切削速度,对于螺纹外径均有一定的影响。

2.3热处理过程金相组织分析W18Gr4V材料只有经过正火或球化退火才能进行粗加工,图2即为球化退火后的显微组织。浸蚀方法:4%硝酸酒精溶液浸蚀组织组成物:白色是珠光体,黑色是渗碳体。W18Gr4V在经淬火后的显微组织图如图3,其浸蚀方法如下:4%硝酸酒精溶液浸蚀组织组成物:M+A

继续阅读

弹簧阀片热处理工艺论文

1实验方法

实验用阀片材料为65Mn钢,其成分为:0.69C,0.22Si,1Mn,0.024P,0.013S,0.06Cr,0.02Ni,0.09Cu。阀片的结构如图1所示,该阀片经过一次冲压成型,阀片的厚度为0.4mm。生产中要求热处理后阀片的全部表面光滑平整,且图1中箭头A所指的平面平行于箭头B所指的平面,图中C位置是个凹槽,设计模具时要躲开此凹槽。根据风扇离合器散热系统的使用要求,阀片还要保证具有足够的弹性和硬度,尤其是图1中D箭头所指的接口处要有很好的弹性。这就要求阀片必须经淬火加回火处理,且热处理后的组织为回火屈氏体和回火索氏体,硬度要求HRC48-53。图1弹簧阀片示意图首先根据阀片的形状设计并制作防止阀片变形的热处理模具。根据阀片形状和使用性能要求,设计图2所示的模具,模具由上模和下模构成。模具材料选择45钢,模具厚度为10mm,表面光滑度为6.4。根据阀片的尺寸,该模具的设计躲开了图1中箭头C所指的凹槽。模具的中心通过Φ8mm的螺栓把上模和下模夹紧。模具对称角的部位用两个Φ5mm的螺栓固定,保证阀片与夹具之间贴合紧密。然后对超薄阀片进行不同预紧力、模具厚度、回火温度的热处理矫正变形实验。淬火工艺是在880℃保温1min后迅速淬入机油中。回火工艺曲线如图3所示,分别在380℃、400℃和430℃保温1.5h后空冷。回火时把阀片放入模具中,将阀片和模具一起放入炉子中保温。

保温1h后,取出模具和阀片放到工作台上,快速拧紧螺栓,再放到炉子中保温0.5h。根据阀片的变形程度、金相组织和硬度值,最后确定最优热处理参数。为了检测阀片的变形量和变形角度,将淬火和回火后的变形件垂直于桌面放置,如图4所示。刻度尺水平放置于桌面并与弹簧片成90°角,用相机拍摄,利用Photoshop软件在A面上做一条水平的直线,再通过B点和变形量最大的C点做两条平行于A面的直线,测量B点和C点的水平距离以及A面与B面的角度。测量热处理后阀片的硬度,制备金相试样,采用硝酸酒精侵蚀并观察组织。

2实验结果

根据拧入螺丝的扣数调整预紧力的大小,拧入越多,施加的预紧力越大。通过调整第一阶段回火后拧入螺丝的扣数来研究预紧力对阀片变形校正程度的影响,结果如图5所示。图5不同预紧力下回火件效果图1号:一扣螺丝2号:二扣螺丝3号:三扣螺丝阀片装夹模具时,拧紧程度对淬火变形有一定的影响。拧紧一扣螺丝,阀片变形量为0.35mm。拧紧二扣螺丝,变形量为0.3mm。拧紧三扣螺丝时,变形量为0.25mm。可见在第二阶段回火前拧入螺丝时,随着螺丝拧紧程度的增加,阀片的变形量变小。

调整模具厚度为5mm和10mm,研究模具厚度对回火校正效果的影响,结果如图6所示。测量A面和B面的角度发现,380℃回火时,模具厚度对变形角度影响不大。当回火温度为400℃时,模具越厚,变形角度越小,但不管模具厚度是5mm还是10mm,A面和B面的角度均小于0.5°,说明两平面基本平行。测量阀片整个表面的变形量,结果发现,模具越厚,A面的变形量越小,但两个厚度的模具校正后,阀片变形量均小于0.5mm,基本保持平整。为了防止模具因高温变形,选择模具的厚度为10mm。回火温度为380℃、400℃、430℃时阀片的金相组织如图7所示。可以看出,三种回火温度下,组织均为回火屈氏体和回火索氏体。随着回火温度的升高,回火索氏体的量增加,回火屈氏体的量降低。测量不同回火温度下阀片的变形角度和显微硬度,结果如表1所示,可以看出,回火温度升高,阀片的变形角度降低。回火温度为400℃时阀片的变形角度也符合要求。随着回火温度的升高,阀片的显微硬度逐渐降低。离合器要求弹簧阀片的HRC在48-53之间。从提高模具寿命和节约能源的角度考虑,选择回火温度为400℃,该温度下回火能满足阀片的弹性和硬度要求。

3结论

(1)设计了防止弹簧阀片热处理变形的矫正模具,模具由上模和下模构成。通过调整螺栓来调整预紧力大小,随着预紧力的增加,阀片的变形量减小。(2)相同的淬火温度处理后,分别在380℃、400℃、430℃回火,阀片的金相组织均为回火屈氏体和回火索氏体。随着回火温度的升高,回火索氏体的量增加,回火屈氏体的量减少,显微硬度逐渐降低,阀片的变形角度降低。(3)确定防止超薄弹簧阀片变形的热处理工艺为:阀片在880℃保温1min后油淬,将淬火后的阀片放入模具中,和模具一起放入400℃的炉子中保温1h,取出模具拧紧螺栓,再放到400℃的炉子中保温30min后出炉空冷。

继续阅读

ADI组织热处理工艺论文

1实验

1.1样品制备

本实验采用熔融热处理工艺制备玻璃陶瓷。在钡硼硅酸盐玻璃体系中加CaO、TiO2和ZrO2(摩尔比为2∶3∶1)作为晶核剂,含量保持45wt%不变。所用原料为分析纯的SiO2、H3BO3、BaCO3、Na2CO3、Na2SO4、CaCO3、TiO2,考虑到ZrO2在硼硅酸盐玻璃中很难溶解,因此用质量分数为95.2%的ZrSiO4来引入ZrO2,由于ZrSiO4同时引入了Si,所以,Si的含量由调节SiO2的含量来保持平衡。按照配料比称取所需原料(≈90g),用玛瑙研钵充分研磨混匀后放入刚玉坩埚中。将坩埚放于马弗炉中加热到850℃焙烧2h,以5℃/min的升温速率升温到1250℃下熔融3h。将熔体水淬后得到玻璃样品,做DTA分析玻璃样品的核化温度和晶化温度。之后采用熔融热处理工艺分别在核化温度Tn和晶化温度Tc(由DTA分析得到)各保温2h后自然冷却得到玻璃陶瓷样品。

1.2测试与表征

将所制得的玻璃样品研磨过筛(100~200目,75~150um)后,利用SDTQ600型同步热分析仪,以20℃/min的升温速率升温到1200℃对样品进行差热分析(DTA),确定玻璃的热处理温度;用X’PertPRO型X射线衍射分析仪X衍射(X-raydiffraction,XRD)分析,铜靶(35kV,60mA),扫描速度5°/min,步长0.02°,扫描范围为10~80°;用质量分数为20wt%的HF水溶液腐蚀样品30s,超声20min,烘干后,利用德国蔡司公司EVO18型扫描电镜对样品微观形貌分析(SEM)。

2结果与分析

2.1样品的热分析

为水淬后所得玻璃样品的DTA曲线。基础玻璃的Tg在738℃左右,一般而言,成核温度Tn比Tg高50℃左右。因此,本实验研究的核化温度选取750℃、780℃和810℃。除Tg处的吸热峰外,在815℃和970℃附近还出现了宽化的放热峰,表明晶化温度Tc在该温度附近,两个放热峰可能对应不同种类的晶体长大温度或者同一种类的晶相不同长大速率的温度。本研究选取的晶化温度分别为850℃、875℃、900℃、925℃、950℃、1000℃和1050℃。

继续阅读

高铬铸铁热处理工艺论文

1实验材料与方法

Cr26型高铬铸铁的名义成分(质量分数,%)为,Cr:26,Mo:0.3,Ni:0.2,V:0.8,Mn:0.5,Si:1.0,P:0.05,S:0.05,Fe余量。原材料为废钢、高碳铬铁、低碳铬铁、钼铁、钒铁、电解镍,采用中频感应电炉熔炼,出炉温度1480~1500℃,浇注温度为1380~1430℃,采用消失模铸造工艺浇注成22mm×22mm×120mm的试块,后续便于加工无缺口冲击试样。为探索淬火工艺对Cr26型高铬铸铁硬度、冲击韧性和微观组织的影响,采用了950、1000、1050、1100和1150℃保温2h后空冷和1150℃保温2h后炉冷至950℃空冷共计6种方案,试样全部随炉升温。宏观硬度在HD-187.5型洛氏硬度计上进行测试,显微硬度在VICKERS402MVD型显微硬度计上进行测试。采用JB30A型冲击试验机测试高铬铸铁的冲击韧性值,采用NovaNanoSEM230型高分辨扫描电镜观察高铬铸铁的显微组织,采用D/max-2550VB型X-射线衍射仪测试高铬铸铁的物相成分。

2实验结果

2.1高铬铸铁力学性能高铬铸铁铸态及不同热处理方式后试样力学性能曲线如图1和图2所示。由图1可知,从950℃到1150℃的脱稳处理试样显著提高铸态高铬铸铁的宏观硬度和基体显微硬度。同时高铬铸铁宏观硬度和基体显微硬度均随淬火温度先增加后减小,在1050℃达到峰值。而1150℃保温2h后炉冷至950℃再空冷的试样宏观硬度和基体显微硬度与950℃时脱稳处理试样相当,但比1150℃时脱稳处理试样要高。由图2可知,冲击韧性数值差别不大,范围4.0~4.5J/cm2。高铬铸铁的宏观硬度变化规律与基体的显微硬度变化规律基本保持一致,说明热处理工艺通过改变高铬铸铁基体组织,从而影响材料的宏观硬度。

2.2微观组织图3为高铬铸铁铸态显微组织,由图3可知,初生碳化物尺寸较小(15~30μm),分布均匀,共晶碳化物呈块状、短棒状、细杆状弥散分布,碳化物分布形式对基体割裂作用大大减小,磨损时可以有效保护基体,有利于提高材料耐磨性[3,11-12],基体中无二次碳化物析出。能谱分析表明,基体中碳和铬元素含量均处在较高水平,如图4所示。图5为高铬铸铁经过不同热处理方式后的显微组织,高铬铸铁初生、共晶碳化物变化较小,重点分析了基体中二次碳化物的变化。由图5可知,经过950℃脱稳处理后试样中弥散析出大量二次碳化物(如图5a所示),温度增至1050℃时二次碳化物数量减少、尺寸有所增大(如图5b所示),当温度继续增至1150℃时,基体中几乎没有二次碳化物的析出(如图5c所示)。对于1150℃保温2h后炉冷至950℃再空冷的试样,基体中有少量颗粒尺寸较大的二次碳化物析出(如图5d所示)。

2.3XRD物相分析图6为高铬铸铁铸态和热处理后试样XRD图谱,由图6可知,高铬铸铁铸态和热处理态试样均由M7C3型碳化物、奥氏体、马氏体组成,其它物相峰不明显。950℃时脱稳处理试样奥氏体的物相峰几乎完全消失,而马氏体峰显著增强(如图6b所示);脱稳处理温度增加至1050℃时,奥氏体峰开始增强,马氏体峰减弱(如图6c所示);脱稳处理温度增加至1150℃时,奥氏体峰进一步增强,马氏体峰进一步减弱(如图6d所示)。而采用1150℃保温2h后炉冷至950℃再空冷试样,马氏体峰强度又较高(如图6e所示)。

3分析与讨论

由图1可知,高铬铸铁宏观硬度与基体的显微硬度变化呈线性关系。分析认为高铬铸铁材料硬度是由初生碳化物、共晶碳化物和基体成分的变化共同影响。在热处理过程中初生碳化物和共晶碳化物基本保持不变的情况下,基体成分变化势必主要影响高铬铸铁宏观硬度的变化。高铬铸铁基体强化因素主要包括马氏体数量、马氏体含碳量、二次碳化物数量等。由图5和图6可知,中等温度1050℃脱稳处理时,基体二次碳化物数量和尺寸以及马氏体数量均处于中等水平,但该状态硬度最高;高温1150℃充分保温,在低温950℃短暂停留样品的二次碳化物最少,有部分马氏体生成,而低温950℃脱稳处理的二次碳化物析出数量多、尺寸细小,其马氏体数量很多,但这两种状态的硬度基本相同。这表明除马氏体数量和二次碳化物数量外,马氏体含碳量在不同热处理过程中发生了明显变化,从而对高铬铸铁的硬度有显著影响。文献研究也指出,钢铁材料淬火过程中,微量碳含量的变化可影响马氏体硬度发生急剧变化。经典理论认为,高铬铸铁基体中主要是过饱和碳及合金元素的奥氏体,在热力学上处于不稳定状态,随脱稳热处理进行,奥氏体中碳和合金元素扩散能力逐渐提高,奥氏体发生分解析出二次碳化物,并且在后续冷却过程中发生奥氏体向马氏体转变[4-6]。二次碳化物和马氏体这两个分离的组织转变过程,均对奥氏体在不同温度下的平衡溶质元素特别是碳元素依赖程度大,因而对脱稳处理温度依赖程度也高。温度越高,奥氏体平衡碳元素浓度越高,对于二次碳化物,由于可供析出的碳元素减少,因而其析出数量不断减少,而颗粒尺寸不断增大,如图5(a)~5(c)所示;对于奥氏体向马氏体转变过程,由于淬火温度升高,奥氏体稳定性增强,因而马氏体生成数量不断减少,到1150℃时几乎没有马氏体生成;对于马氏体含碳量,它直接依赖于高温奥氏体含碳量,因而马氏体含碳量不断增加。因此,受马氏体含碳量影响,材料硬度峰值不出现在二次碳化物和马氏体数量最多的低温处理状态,而是在二次碳化物和马氏体数量中等,但马氏体含碳量高的中等温度脱稳处理。文献研究也指出,热处理的高铬铸铁中二次碳化物的析出和溶入及其数量的多少,是影响高铬铸铁硬度的重要因素。高铬铸铁适宜的淬火温度选择应保证基体析出的二次碳化物量合适,即平衡奥氏体还能够溶解一定的碳和合金元素,获得足够的淬透性以使较多数量的奥氏体转变成马氏体,而马氏体碳含量又较高,残留奥氏体量尽可能减少。若二次碳化物析出量超过最合适的量,会使马氏体碳含量降低,导致硬度降低。至于采用高温1150℃充分保温,在低温950℃短暂停留后淬火工艺的试样,由于其二次碳化物析出由高温保温的温度决定,奥氏体碳和合金元素平衡浓度较高,因而二次碳化物的数量和尺寸与1150℃保温2h后脱稳处理相近;在由高温向低温随炉冷却过程中,高温奥氏体中可能有尚未形成的二次碳化物形核核心生成,造成局部碳含量有起伏,因而马氏体生成。而且在淬火过程中二次碳化物形核核心可能向马氏体中输送碳元素,使得马氏体含碳量相比于低温950℃脱稳处理形成的马氏体含碳量高。因此尽管二次碳化物数量和马氏体含碳量不一样,但这两种热处理状态的硬度基本相同。此外,由图2可知,热处理对于Cr26高铬铸铁的冲击韧性影响不大。分析认为由于高铬铸铁材料的冲击韧性整体偏低,属脆性材料范畴,对于Cr26型高铬铸铁其碳化物含量达30%以上,碳化物对基体的割裂作用是影响材料韧性的主要因素。由图3和图5可知,热处理过程中碳化物的形貌与分布无明显变化,因而冲击韧性无明显变化。

继续阅读

温度热处理工艺论文

1温度是变形的关键因素

通过降低热处理的工艺温度能有效减少由此产生的变形。降低工艺温度,能相对减少工件的高温强度,并增强其塑性抗力以及抗应力变形、抗淬火变形、抗高温蠕变的能力。降低工艺温度,还能够减少工件加热、冷却的温度区间。温度区间减少后,由热处理引起的各部位温度的一致性也会增强,而温度的不一致性正是引起工件组织应力和热应力的根本原因,随着温度不一致性减少,由此而导致的变形也会相应减少。此外,在降低工艺温度并缩短工艺时间的情况下,将缩短工件的高温蠕变时间,从而减少变形。科学合理的热处理工艺是减小热处理变形的关键因素。由图1可以看出,在650%球化退火后的硬度梯度和740%球化+680%等温处理的硬度梯度结果相近,未经球化退火的齿轮的硬度较前两个低。这是因为球化退火可使淬火后渗层表面残留奥氏体量减少,从而提高了齿表面硬度,因此20CrNi2MoA钢齿圈渗碳后应采用球化退火工艺,同时为减小热处理变形,在650℃球化退火效果更好。

2变形的其他影响因素及减小措施

2.1预备热处理在热处理过程中,有可能引起内孔的变形增大,如存在混晶、大量索氏体或魏氏组织以及过高的正火温度。因此需要对正火温度进行控制,也可以采用等温退火的方式来对锻件进行处理。金属最终的变形量与很多因素有关,如淬火前进行的调质处理以及退火和正火。金属产生变形进而导致金属组织结构也发生变化。研究和实践表明,为使金属组织结构均匀,在进行正火处理时采用等温淬火是一种有效的减小其变形量的措施。

2.2运用合理的冷却方法金属淬火后冷却过程的控制也是必须考虑的一个因素。淬火后采用油进行冷却,因此其变形直接受到油的冷却能力的影响。通常来说,热油淬火产生的变形小于冷油淬火,一般控制在100+20%。同时,变形还受到淬火的搅拌方式和速度的影响。在进行金属热处理时,金属产生的应力及模具的变形与冷却的速度和冷却的均匀程度有关。过快的冷却速度和不均匀冷却都会导致应力及模具变形的增大。因此,应尽量采用预冷,不过需要注意的是应保证模具的硬度要求。为减少热应力和组织应力,可以选用分级冷却淬火,这种方式对形状复杂的工件十分有效,能显著减少其变形。采用等温淬火的方式,则适用于十分复杂并且有较高精度要求的工件,能使金属变形显著减少。

2.3零件结构要合理改善零件的结构是减少热处理变形的关键环节。经过热处理后的工件,其厚度不同的部分冷却的速度也是不同的。因此,在满足工件使用性能的前提下,应使工件的厚度差别不能过大,尽量使零件的截面均匀,减少由应力集中导致的过渡区的畸变和开裂现象。保持结构与材料成分和组织的对称性,避免尖锐棱角、沟槽等。此外,采用预留加工量的方式也是减少厚度不均匀零件变形的有效方式之一。

2.4采用合理的装夹方式及夹具通过采用合理的装夹方式和夹具,能够使工件获得均匀的加热和冷却,从而减少热应力以及组织应力的不均,有效减小热处理导致的工件变形。

2.5机械加工工件的加工通常需要经过很多道工序,如果热处理加工是最后的工序,则应控制其畸变的允许值,使之满足图样规定的工件尺寸。依据上道工序的加工尺寸来对畸变量加以确定,因此掌握畸变规律尤为重要,为使热处理导致的畸变处于合格的范围,在进行热处理前应对尺寸进行预修正。如果热处理是中间的工序,机加工余量和热处理畸变量之和即为热处理前的加工余量。导致热处理变形的因素多而复杂,因此相较于机械加工余量来说,热处理的加工余量不易确定,在实际加工中应留出足够的加工余量用于机械加工。

继续阅读

复合板热处理工艺论文

1试验材料及试验方案

1.1试验材料本文研究的材料为14Cr1MoR+S32154爆炸复合板,规格为(3+75)mm,2种材料的化学成分和力学性能见表1和表2。

1.2试验方案制定不同热处理工艺,对14Cr1MoR+S32154试板进行热处理试验,并检验理化性能和显微组织,试验方案见表3。

2试验结果及分析

2.1试验结果理化性能检测结果见表4.

2.2结果分析

2.2.1理化性能1)爆炸复合板依靠炸药爆轰产生的冲击力完成基覆板的冶金接合,完成爆炸焊接的同时,复合板也产生了冲击硬化和内应力,表4中6号试样为爆炸复合态的力学性能,与原始基板相比,其力学性能表现为强度高,屈强比高,断后伸长率低。2)1、2号试样经历了相变温度以上的高温热处理,基板性能与原始状态相比有较大差别,强度降低,冲击吸收功减少,断后伸长率增加。1号试样经历了高温正火+720℃回火热处理,基层获得较好的强度和塑韧度配合,综合力学性能较好;2号试样的热处理为800℃退火,与1号试样相比,强度和塑性差别不大,但冲击韧度大幅度降低,对覆层弯曲和晶间腐蚀检验均不合格。800℃下长时间停留对覆层S31254产生了不利影响,析出了脆性相。3)3、4、5号试样的热处理为相变温度以下的低温热处理,旨在消除爆炸冲击硬化,恢复性能,尽量减少对覆层S31254析出相的影响。从表4试验结果可以看出,低温退火可以消除爆炸加工硬化现象,随着加热温度的升高,基层14Cr1MoR强度逐渐降低,塑性变好,冲击吸收功无明显变化。同时覆层的外弯试验和晶间腐蚀试验结果均合格,可见低温热处理未对覆层产生明显不利影响。

2.2.2显微组织分析1)基覆材的原始状态显微组织如图1所示,基层为贝氏体组织,覆层组织为孪晶奥氏体+少量碳化物。2)1号试样经正火+回火后复合板基覆层的显微组织如图2所示,热处理后基层组织为铁素体+贝氏体,覆层组织为等奥氏体+碳化物,由于加热温度低,奥氏体为等轴晶粒[4];2号试样800℃退火后的金相组织如图3所示,热处理后基层组织为铁素体+珠光体+贝氏体,覆层组织为孪晶奥氏体+碳化物。与2号试样相比,1号试样基层组织更为均匀,更接近原始组织,故力学性能较好,但由于加热温度高,覆层组织与原始状态相比变化较大。与原始状态相比,2号试样覆层晶界和晶内产生了大量析出物,导致力学性能恶化和耐蚀性降低。3)由于3、4、5号试样的热处理为相变温度以下的退火处理,基层未发生相变,因此主要对覆层组织进行观察分析。金相照片(见图4)显示,3号和4号试样的金相组织与原始状态最为接近,为孪晶奥氏体+少量碳化物,5号试样在晶内和晶界析出相明显增多。

继续阅读
免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

友情链接
学术顾问

免费咨询 学术咨询 期刊投稿 文秘服务