美章网 资料文库 银导爆索热处理工艺论文范文

银导爆索热处理工艺论文范文

时间:2022-04-18 11:38:48

银导爆索热处理工艺论文

1试验部分

1.1试剂与仪器KBr,光谱纯;聚奥炸药,204所提供。精密烘箱,成都天宇试验设备有限责任公司,CK-30型,量程10~200℃,温度均匀度±1℃,温度波动度≤±1℃。傅里叶变换红外光谱仪,德国布鲁克公司,Vertex70型,光谱范围4000~400cm-1,采用中红外光源。

1.2试验原理有机炸药不同晶型之间虽分子结构式相同,但存在空间异构体,可以利用红外光照射物质后,不同结构的基团或官能团产生不同的吸收峰来确定物的结构,不同晶型的空间异构体,其红外吸收特征峰存在个体差异;采用烘箱模拟退火及回火过程热效应处理炸药试样及导爆索,对炸药及索内炸药进行红外光谱分析,研究红外吸收峰结构变化情况与保温试验温度、时间的关系,制定热处理工艺。

1.3试验方案设计结合HMX转晶温度(158℃),及银质导爆索常规去应力和软化温度(160~175℃),在此温度对聚奥炸药进行短时间保温,或在低于此温度附近选择不同温度、保温不同时间研究其结构变化情况。设计选择4步方案进行分析并采集红外光谱图。即:1)175℃,保温时间≤5h;2)160℃,保温时间≤8h;3)150℃,保温时间≤25h;4)130℃,保温时间≤26h。对于4个方案,首先分析原态炸药在不同的方案的红外光谱图,比较分析其与β-HMX及α-HMX晶型的相关度,以制定初步热处理条件。然后依据初步热处理条件制定的方案,模拟拉索热处理过程,选择银导爆索在进行退火处理之前和退火处理之后两步方案,进行模拟试验及红外光谱测试,对比分析其与β-HMX标准红外图谱的相关度,研究不同保温温度、保温时间与相关度的关系,确定最终的退火回火热处理参数条件。通过试验研究,选择既满足金属银导爆索拉伸性能及导爆索拉制安全性,又保持晶型不发生转变的适宜参数条件,确定热处理工艺。

2结果与讨论

2.1炸药试验结果与讨论

2.1.1聚奥炸药175℃模拟保温试验将聚奥炸药加热至175℃,保温3、4、5h,采集红外光谱图,如图1。HMX的4种晶型中,能稳定存在的为α、β、γ型,β型是作为含能材料使用要求的晶型,高于转晶温度时,其会转换成不稳定的δ型,δ型在室温下放置后会有部分转变为α型,影响产品的性能,β及α2种晶型奥克托今炸药的标准红外光谱图见图2。在红外光谱中,以β-HMX标样图谱为参比,建立快速比较方法,利用软件快速比较计算出试样图谱相对于标样图谱吸收峰的相似程度,得到相关度数据。经过对图1中3张图谱的对比分析,结果表明:在175℃保温3~5h过程中,其红外吸收峰与β-HMX及α-HMX相比差异较大,与常规β-HMX相关度由最初的98.90%降为50.77%。表明聚奥炸药在175℃保温3h以上即发生晶型变化。

2.1.2聚奥炸药160℃模拟保温试验将聚奥炸药加热至160℃,保温4~8h,得到保温4、5、6、7、8h5张红外光谱图(叠加),如图3。经过图谱快速比较方法,结果表明:在160℃保温4~8h过程中,其红外吸收峰与β-HMX及α-HMX相比差异较大,与β-HMX相关度由最初的98.90%降为22.64%,表明聚奥炸药在160℃保温4h以上即发生晶型变化。

2.1.3聚奥炸药150℃模拟保温试验将聚奥炸药加热至150℃,保温22h,每2h选取一份试样,之后继续保温3h,每1h选取一份样 品进行红外光谱分析,共采集14张红外光谱图进行比较,如图4、图5。图4中,自上而下依次为150℃保温时间2、4、6、8、10、12、14h的红外光谱比较图;图5依次为16、18、20、22、23、24、25h的红外光谱比较图,分析14个红外光谱吸收峰相近,其结构为β-HMX,比较分析150℃保温不同时间图谱与β-HMX红外图谱相关度,结果表明:在2h至23h,相关度为97.15%以上;保温至24h,相关度下降为91.82%,聚奥炸药在150℃保温23h以上晶型发生变化。

2.1.4聚奥炸药130℃模拟保温试验将聚奥炸药加热至130℃,保温18h,每3h取一份,继续保温8h,每2h取一份样品进行红外光谱分析,比较采集的10张图谱,10个红外光谱吸收峰相近,分析结构为β-HMX结构,130℃保温不同时间图谱与β-HMX红外图谱相关度数据见表1。表1中,聚奥炸药与β-HMX红外图谱相关度在3h至24h为97.21%以上;继续保温至26h,相关度略有下降,为93.75%,表明聚奥炸药在130℃保温25h以上晶型才有轻微变化。

2.2银导爆索试验结果与讨论炸药装索后,在热处理过程中存在热积累、炸药装填密实且隔离空气等情况;以上因素可能会影响导爆索内炸药局部温度高于散装炸药,因此结合装填炸药模拟试验结果,避免拉索过程热积累,保证生产有一定裕度,初步确定退火温度控制在130℃。进行银导爆索模拟试验。

2.2.1未退火银导爆索模拟保温试验生产中需将银导爆索从10.0mm拉至1.6mm,依据试验确定的初步退火温度,将炸药装入银导爆管,在不退火的条件(即室温)下,拉至规定值。为研究索内保温的热积累效应对炸药的影响,对拉好的导爆索进行130℃保温试验,并解剖不同保温时间下导爆索内炸药,进行红外光谱分析,与β-HMX、α-HMX比较,相关度分析结果见表2。由表2知,银导爆索在130℃条件下,保温时间在11h内可保证产品中炸药晶型基本不发生转变。不退火拉索试验中,不仅费力、易拉断,而且拉制的银导爆索壁厚不均匀。因此,需对银导爆索进行高温软化处理(即退火与回火),恒定温度130℃,进行不同时间的工艺摸底试验。

2.2.2已退火银导爆索模拟保温试验对导爆索在130℃进行退火1.5h后,模拟回火保温不同时间(3~7h),采集红外谱图,比较退火银导爆索保温3、5、6、7h的红外光谱图。分析图6,已退火导爆索保温3~7h,红外光谱吸收峰显示为β-HMX结构,比较其图谱与β-HMX红外图谱相关度,结果显示与β-HMX相关度均在96%以上,未发生晶型转变。结果表明,某装填聚奥炸药的银导爆索在130℃下,累计保温7h以内,其内装聚奥炸药未发生晶型转变,拉索安全且不易断裂。以此制定了热处理工艺。银导爆索由10.0mm拉至6.0mm室温即可进行;从6.0mm拉至1.6mm需软化处理。由于退火软化后银导爆索持续拉制过程耗时较长,产生散热而使温度下降,使后期拉制较为费力。因此为保证生产中易于拉索,采用130℃间断性的退火软化,然后于此温度回火保温,重复多次,拉至规定值,总体累计时间小于7h。依此进行生产工艺试验,综合两结果,最终确定了热处理工艺条件为:某银导爆索由10.0mm拉至6.0mm,室温放置1h,拉至5.0mm,按130℃、1h退火,拉至4.4mm、3.5mm、2.5mm,各按130℃、0.5h退火,拉至1.6mm,按130℃、1.5h退火。

3结论

银导爆索兼具金属材料及含能材料两种特性,热处理工艺中需全面考虑,既要保持索体材料拉伸性最佳和拉制操作的安全性,更需要保持索内填充炸药或炸药的物理、化学性质在热处理过程不发生变化,因此设计了通过装药拉索,热模拟不同参数条件对炸药及银导爆索进行预处理,采用红外光谱分析技术,测试炸药及导爆索内解剖炸药的晶型结构,确定适宜的退火、回火的温度与时间。通过试验研究,制定了某银导爆索的热处理工艺参数。此方法具有独创性、先进性、推广性。所制定的银导爆索热处理工艺成果,在多项火工品重点项目中推广应用,经实践证明是高效节能、科学可行的。扩展了红外光谱技术在银导爆索热处理工艺中的应用。

作者:杨爱武华琦刘笑临李格玲何锋彦单位:北方特种能源集团西安庆华公司陕西安康庆华化工有限公司

被举报文档标题:银导爆索热处理工艺论文

被举报文档地址:

https://www.meizhang.comhttps://www.meizhang.com/gylw/rclgylw/670266.html
我确定以上信息无误

举报类型:

非法(文档涉及政治、宗教、色情或其他违反国家法律法规的内容)

侵权

其他

验证码:

点击换图

举报理由:
   (必填)